博碩士論文 110353005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.144.25.212
姓名 陳凱翔(Kai-Hsiang Chen)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 珠擊參數對SW-C與SWP-B螺旋壓縮彈簧機械性質之影響
(Effects of Shot Peening Parameters on the Mechanical Properties of SW-C and SWP-B Helical Compression Springs)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是利用滾筒式珠擊機,透過噴擊時間與鋼珠大小的改變,觀察兩種材質(SW-C、SWP-B)製成的螺旋壓縮彈簧經過疲勞試驗後的幾何尺寸、荷重承載、粗糙度與硬度的變化,再將疲勞測試後的彈簧,經由掃瞄式電子顯微鏡(SEM)觀察不同珠擊參數下破斷面情況。
研究結果顯示,未珠擊的螺旋壓縮彈簧呈現最差的疲勞壽命表現,經過珠擊後的實驗組以SW-C實驗組7 (Ø0.8+Ø1.2、60分)表現出最佳的疲勞壽命,達到404,202次,荷重衰退率為10.93%。SWP-B為實驗組10 (Ø0.8、60分)表現出最佳的疲勞壽命,達到254,279次,荷重衰退率為6.03%。再來由幾何尺寸觀察,珠擊處理與疲勞測試對於外徑沒有改變;自由長經珠擊處理後會縮短,隨著噴擊時間增加,自由長縮短幅度增加。粗糙度與硬度也隨著噴擊時間變長而上升。最後透過SEM的觀察得知,其斷裂模式為扁平舌狀,正常斷裂起始處為彈簧線圈內側應力較大處生成裂縫,並成長延伸至外側的最終斷裂區,而且疲勞裂縫穩定成長區的大小與疲勞壽命呈現正向關係。
由於彈簧設計值使用應力達到1441.11 MPa,已超過建議的使用範圍,並且受到幾何尺寸中垂直度的影響,使得抗張強度較高的材質SWP-B 未表現出優於SW-C的疲勞壽命。
摘要(英) This study aimed to investigate the variations of geometric dimension, load capacity, roughness, and hardness of helical compression springs made of two materials (SW-C and SWP-B) after shot peening and fatigue testing. In particular, the effects of shot peening time and bead size were studied, The fracture surfaces were analyzed using scanning electron microscopy (SEM).
The results showed that the helical compression spring without shot peening actually had the worst fatigue performance, while the 7th experimental group of SW-C (Ø0.8+Ø1.2、60 min) exhibited the best fatigue life, reaching up to 404,202 cycles before failure and a load decay rate of 10.93%. Group 10, SWP-B (Ø0.8、60 min), also showed the best fatigue life of 254,279 cycles and a load decay rate of 6.03%. In terms of geometric dimension, the shot peening and fatigue loading had no influence on the outer diameter. The free length was shortened after the shots and the extent of shortening was enlarged as the shot peening time increased. Roughness and hardness also increased with a longer shot peening time. Finally, it was observed by SEM that the fracture pattern was flat and tongue-like, with the fatigue fracture initiation at the point of greater stress on the inner side of the spring coils and propagation to the outer side at final fracture. There was a positive correlation between stable crack growth area and fatigue life.
Due to the fact that the designed spring had a stress of 1441.11 MPa which exceeded the recommended range of use and it was also influenced by the perpendicularity in the geometry, the material SWP-B of higher strength did not have a better fatigue life than SW-C.
關鍵字(中) ★ 螺旋壓縮彈簧
★ 彈簧鋼
★ 硬鋼線
★ 琴鋼線
★ 珠擊
★ 疲勞測試
關鍵字(英) ★ Helical compression spring
★ Spring steel
★ SW-C
★ SWP-B
★ Shot peening
★ Fatigue test
論文目次 摘要 -I-
ABSTRACT -II-
誌謝 -III-
目錄 -IV-
表目錄 -V-
圖目錄 -VII-
符號說明 -XIV-
第一章 簡介 -1-
1.1 壓縮彈簧簡介 -1-
1.1.1 螺旋壓縮彈簧類型 -1-
1.1.2 螺旋壓縮彈簧設計 -3-
1.2 彈簧鋼簡介 -5-
1.3 彈簧熱處理簡介 -8-
1.4 珠擊簡介 -11-
1.4.1 珠擊原理 -11-
1.4.2 殘餘應力 -13-
1.4.3 表面特性 -15-
1.4.4 珠擊參數 -15-
1.5 研究目的 -16-
第二章 研究方法 -18-
2.1 研究流程 -18-
2.2 彈簧設計 -18-
2.2.1 螺旋壓縮彈簧模型 -18-
2.2.2 螺旋壓縮彈簧材料 -22-
2.2.3 彈簧製造設備 -22-
2.2.4 熱處理 -24-
2.2.5 珠擊製程 -25-
2.2.6 端面研磨 -28-
2.2.7 尺寸量測 -30-
2.3 機械性質分析 -31-
2.3.1 荷重測試 -31-
2.3.2 疲勞測試 -32-
2.3.3 粗糙度測試 -34-
2.3.4 硬度測試 -35-
2.4 破斷面觀察 -37-
第三章 結果與討論 -38-
3.1 荷重與疲勞測試 -39-
3.1.1 SW-C疲勞測試結果 -39-
3.1.2 SWP-B疲勞測試結果 -41-
3.1.3 珠擊參數與疲勞測試表現之關聯性 -43-
3.2 幾何尺寸 -44-
3.2.1 SW-C與SWP-B外徑變化 -44-
3.2.2 SW-C與SWP-B自由長變化 -46-
3.2.3 SW-C與SWP-B垂直度變化 -49-
3.2.4 珠擊參數與自由長及垂直度變化之關聯性 -52-
3.3 粗糙度 -53-
3.4 硬度測試 -62-
3.5 破斷面觀察 -64-
第四章 結論 -85-
參考文獻 -87-
參考文獻 1. S. Tejesh, and T. Srinath, “Design and Analysis of Helical Compression Spring,” International Journal of Innovative Research and Advanced Studie, Vol. 9, pp. 103-108, 2022.
2. 成大先, 彈簧手冊-彈簧, 化學工業出版社, pp. 153-162, 北京, 2017.
3. 張英會、劉輝航、王德成等, 彈簧手冊, 機械公會出版社, pp. 25-31, pp. 132-148, 北京, 2017.
4. 日本產業規格JIS B2704-1, Coil Spring-part 1: Basic Calculation Method on Helical Compression and Extension Spring, Japanese Industrial Standards (JIS), 日本, 2009.
5. 青野通匡, “特集/ばねの種類と製造方法のやさしい解説-冷間成形用ばね鋼(線),” 特殊鋼, Vol. 69, No. 3, pp. 41-43, 2020.
6. 李勝隆, 金屬熱處理原理與應用, 全華圖書股份有限公司, pp. 2-3, 新北市, 2020.
7. 住友電氣工業株式會社, Technical Manual Special Steel Wire, 住友電氣工業株式會社-特殊線事業部, 日本, pp. 226-236, 1998.
8. Metal Improvement Company, Surface Technologies Shot Peening Applications, Metal Improvement Company, USA, pp. 8-9, 2018.
9. J. Champaigne, Shot Peening Overview, Electronics Inc, Mishawaka, pp. 3-6, 2001.
10. 倪其新,“珠擊對鋁合金薄件殘留應力與疲勞壽命的影響,”長庚大學機械工程研究所碩士論文, 2015.
11. K. Tosha, “Influence of Residual Stresses on the Hardness Number in the Affected Layer Produced by Shot Peening,” Proceedings of the Second Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology, Korea, pp. 48–54, 2002.
12. P. S. Puranik, “Shot Peening Process and Applications,” International Conference on Shot Peening and Blast Cleaning, India, pp. 190-195, 2001.
13. E. Maleki, O. Unal, K. Reza Kashyzadeh, S. Bagherifard, and M. Guagliano, “A Systematic Study on the Effects of Shot Peening on a Mild Carbon Steel: Microstructure, Mechanical Properties, and Axial Fatigue Strength of Smooth and Notched Specimens,” Applied Surface Science Advances 4, 100071, 2021.
14. G. C. Bird, and D. Saynor, “The Effect of Peening-Shot Size on the Performance of Carbon-Steel Springs,” Journal of Mechanical Working Technology, Vol. 10, pp. 175-185, 1984.
15. E. U. K. Maliwemu, V. Malau, and P. T. Iswanto, “Effect of Shot Peening in Different Shot Distance and Shot Angle on Surface Morphology, Surface Roughness and Surface Hardness of 316L Biomaterial,” IOP Conference Series: Materials Science and Engineering, 012051, 2018.
16. R. V. Patil, P. R. Reddy, and P. Laxminarayana, “Buckling Analysis of Straight Helical Compression Springs Made of ASTM A229 Gr-II, ASTM A313 Materials (Type 304 & 316),” International Journal of Engineering Research & Technology, Vol. 2, pp. 978-986, 2013.
17. P. Byczkowska, J. Sawicki, B. Januszewicz, and M. Stegliński, “Analysis of the Impact of Double Shot Peening on The Value of Roughness Parameter and Distribution of Stresses in the Rsa 501 Alloy,” Advances in Science and Technology Research Journal, Vol. 11, pp. 1-9, 2017.
18. G. H. Farrahi, J. L. Lebrijn, and D. Couratin, “Effect of Shot Peening on Residual Stress and Fatigue Life of a Spring Steel,” Fatigue Fract. Eng. Mater. Struct, Vol. 18, pp. 211-220, 1995.
19. Y. Harada, S. Tanaka, M. Itoh, and M. Nakatani, “Effect of Microshot Peening on Fatigue Life of Spring Steel SUP9,” Procedia Engineering, Vol. 81, pp. 1493-1498, 2014.
20. Y. Harada, and R. Yakura, “Effect of Shot Peening on Surface Chracteristics of Carbon Steel with Different Heat Treatments,” AIP Conference Proceedings, Vol. 1315, pp. 745-750, 2010.
21. K. Vladimir, “Unification Proposals for Fatigsue Crack Propagation Laws,” Multidiscipline Modeling in Materials and Structures, Vol. 13, pp. 262-283, 2017.
22. 何志勤、沈坤耀, “飛機結構疲勞之預防與維修,” 空軍學術雙月刊, No. 625, pp. 124-133, 2011.
23. J. Z. He, J. N. Lu, X. Y. Deng, X. Q. Xing, and Z. C. Luo, “Premature Fracture of High-strength Suspension Springs Caused by Corrosion Fatigue Cracking,” Results in Engineering, Vol. 16, 100749, 2022.
24. J. M. A. M. Rocha, A. R. Pimenta, S. R. Correa, M. Cindra Fonseca, and M. G. Diniz, “Fracture Failure Analysis in Compression Spring of a Wagon Torpedo,” Engineering Failure Analysis, Vol. 122, 105245, 2021.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2023-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明