參考文獻 |
[1] Andert, Franz & Strickert, Gordon & Thielecke, Frank. (2006). Depth Image Processing for Obstacle Avoidance of an Autonomous VTOL UAV.
[2] Dário Pedro, André Mora, João Carvalho, Fábio Azevedo, José Fonseca. ColANet: A UAV Collision Avoidance Dataset. 11th Doctoral Conference on Computing, Electrical and Industrial Systems,(DoCEIS), 2020,Costa de Caparica, Portugal. pp.53-62, ff10.1007/978-3-030-45124-0_5.
[3]UAV Collision Avoidance,https://github.com/dario-pedro/uav-collision-avoidance
[4]Chen, Cheng, Zian Wang, Zheng Gong, Pengcheng Cai, Chengxi Zhang, and Yi Li. ,"Autonomous Navigation and Obstacle Avoidance for Small VTOL UAV in Unknown Environments" ,Symmetry 14, no. 12: 2608. https://doi.org/10.3390/sym14122608,2022.
[5]Lee, Sunwoo, Dongkyu Lee, and Seok-Cheol Kee. 2022. "Deep-Learning-Based Parking Area and Collision Risk Area Detection Using AVM in Autonomous Parking Situation" Sensors 22, no. 5: 1986. https://doi.org/10.3390/s22051986
[6]R. N. Zufar and D. Banjerdpongchai, "Performance Comparison of Lightweight CNN Models for Drone Collision Avoidance Dataset," 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Nakhon Phanom, Thailand, 2023, pp. 1-6, doi: 10.1109/ECTI-CON58255.2023.10153233.
[7]Pedro, Dário, João Pedro Matos-Carvalho, José Manuel Fonseca and André Damas Mora. “Collision Avoidance on Unmanned Aerial Vehicles Using Neural Network Pipelines and Flow Clustering Techniques.” Remote. Sens. 13 (2021): 2643.
[8]Santos, Ricardo, João Pedro Matos-Carvalho, Slavisa Tomic, Marko Beko and Sérgio Duarte Correia. “A Hybrid LSTM-based Neural Network for Satellite-less UAV Navigation.” 2023 6th Conference on Cloud and Internet of Things (CIoT) (2023): 91-97.
[9] Prasad, Deepak, Ieee S. Thanikai Adhithiyan Member, Kondru Thanmai and Gourinath Banda. “PAVeDS: A Synthetic Dataset for Developing Autonomous Personal Aerial Vehicles.” IEEE Access 11 (2023): 101556-101566.
[10]Zufar, Rifqi Nabila and David Banjerdpongchai. “Performance Comparison of Lightweight CNN Models for Drone Collision Avoidance Dataset.” 2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2023): 1-6.
[11] Pedro, Dário, João Pedro Matos-Carvalho, Fábio Azevedo, Ricardo Sacoto-Martins, Luís Bernardo, Luís Miguel Campos, José Manuel Fonseca and André Damas Mora. “FFAU - Framework for Fully Autonomous UAVs.” Remote. Sens. 12 (2020): 3533.
[12] Chilkunda, Adarsh, Sarah Nakama, Vikram Chilkunda, Dário Pedro, João Pedro Matos-Carvalho and Luís Miguel Campos. “UAV-based Scenario Builder and Physical Testing platform for Autonomous Vehicles.” 2023 6th Conference on Cloud and Internet of Things (CIoT) (2023): 77-84.
[13] Scanavino, Matteo, Arrigo Avi, Andrea Vilardi and Giorgio Guglieri. “Unmanned Aircraft Systems Performance in a Climate-Controlled Laboratory.” Journal of Intelligent & Robotic Systems 102 (2021): 1-16.
[14]Saunders, Jack, Sajad Saeedi and Wenbin Li. “Autonomous Aerial Delivery Vehicles, a Survey of Techniques on how Aerial Package Delivery is Achieved.” ArXiv abs/2110.02429 (2021): n. pag.
[15] Azevedo, Fábio, Jaime S. Cardoso, André Ferreira, Tiago A. Fernandes, Miguel Moreira and Luís Miguel Campos. “Efficient Reactive Obstacle Avoidance Using Spirals for Escape.” Drones (2021): n. pag.
[16] Moreira, Miguel, Fábio Azevedo, André Ferreira, Dário Pedro, João Pedro Matos-Carvalho, Álvaro Ramos, Rui Loureiro and Luís Miguel Campos. “Precision Landing for Low-Maintenance Remote Operations with UAVs.” Drones (2021): n. pag.
[17] Gao Huang, , Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. "Densely Connected Convolutional Networks." (2018).
[18] Mingxing Tan, , and Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." (2020).
[19]Andrew G. Howard, , Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications." (2017).
[20] Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
[21] Joseph Redmon, , Santosh Divvala, Ross Girshick, and Ali Farhadi. "You Only Look Once: Unified, Real-Time Object Detection." (2016).
[22] Krizhevsky, A., Sutskever, I., Hinton, G.E.: "ImageNet classification with deep convolutional neural networks." In: Advances in neural information processing systems. pp. 1097–1105 (2012).
[23] LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: "Backpropagation applied to handwritten zip code recognition." Neural computation 1(4), 541–551 (1989).
[24] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86(11), 2278–2324 (1998).
[25] Zeiler, M.D., Fergus, R.: "Visualizing and understanding convolutional networks." In: Computer Vision–ECCV 2014, pp. 818–833. Springer (2014).
[26] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: "OverFeat: Integrated recognition, localization and detection using convolutional networks." arXiv preprint arXiv:1312.6229 (2013).
[27] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: "Large-scale video classification with convolutional neural networks." In: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. pp. 1725–1732. IEEE (2014).
[28] He, K., Gkioxari, G., Dollár, P., Girshick, R.: "Mask R-CNN." In: Proceedings of the IEEE international conference on computer vision. pp. 2961–2969 (2017).
[29] Mohammed Jouhari et al.: "Distributed CNN Inference on Resource-Constrained UAVs for Surveillance Systems: Design and Optimization." ar5iv.org/abs/2105.11013 (2021).
[30] Zhiqing Wei et al.: "Anti-collision Technologies for Unmanned Aerial Vehicles: Recent Advances and Future Trends." ar5iv.org/pdf/2109.12832 (2021).
[31] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.
[32] Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:180308375. 2018.
[33] Janocha, Katarzyna & Czarnecki, Wojciech. (2017). On Loss Functions for Deep Neural Networks in Classification. Schedae Informaticae. 25. 10.4467/20838476SI.16.004.6185.
[34] S. Liu and W. Deng, "Very deep convolutional neural network based image classification using small training sample size," 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015, pp. 730-734, doi: 10.1109/ACPR.2015.7486599.
[35] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.
[36] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90. |