博碩士論文 110323108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.141.38.154
姓名 吳侑叡(Yu-Jui Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多元進料質子陶瓷燃料電池與質子交換膜燃料電池複合動力系統之熱力分析研究
(Thermodynamic Analysis of Protonic Ceramic Fuel Cell-Proton Exchange Membrane Fuel Cell Hybrid Systems Fed by Hydrocarbon Fuels)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 本研究建立以碳氫燃料為燃料之質子陶瓷燃料電池(Protonic ceramic fuel cell)與質子交換膜燃料電池(Protonic Exchange Membrane fuel cell)之複合動力系統(PCFC-PEMFC hybrid system)。根據電化學理論利用MATLAB計算PCFC及PEMFC之性能曲線,並將電化學模型鑲嵌於商用軟體Thermolib中進行系統模擬。其中PEMFC之性能曲線為根據本實驗室所製作之PEMFC百瓦電堆之實驗數據進行模型結果與實驗量測相互驗證。
在本研究中,建立了三種不同燃料電池複合系統,其中,系統一為燃料使用甲醇之燃料電池複合系統,系統二為燃料使用乙醇之燃料電池複合系統,系統三為燃料使用丙烷之燃料電池複合系統,各系統之系統配置有些需不同,透過在不同操作條件下進行比較,並從中分析系統之相關熱力特性對系統能耗與性能之影響。
研究結果表明,使用乙醇之燃料電池複合系統具有最佳之系統效率,其可用能效率亦為三系統中之最高。此外,從不同操作條件下之分析可得知,若是提升PCFC的燃料使用率,系統整體效率最高可以提高20%,若是,提升PEMFC的燃料使用率,系統整體效率最高可以提高5%。
摘要(英) In this study, a hybrid power system consisting of a Protonic Ceramic Fuel Cell (PCFC) and a Proton Exchange Membrane Fuel Cell (PEMFC) was established, fueled by hydrocarbon fuels. The performance curves of the PCFC and PEMFC were calculated using electrochemical theory in MATLAB, and the electrochemical models were embedded in the commercial software Thermolib for system simulation. The performance curve of the PEMFC was validated by comparing the model results with experimental data obtained from our laboratory′s PEMFC stack.
Three different fuel cell hybrid systems were developed in this study. System 1 utilized methanol as the fuel, System 2 utilized ethanol, and System 3 utilized propane. Each system had different configurations, and comparisons were made under various operating conditions to analyze the influence of thermodynamic characteristics on system energy consumption and performance.
The results demonstrated that the ethanol-based fuel cell hybrid system achieved the highest system efficiency and exergy efficiency among the three systems. Furthermore, the analysis of different operating conditions revealed that increasing the fuel utilization rate of the PCFC could improve the overall system efficiency by up to 20%, while increasing the fuel utilization rate of the PEMFC could improve the overall system efficiency by up to 5%.
關鍵字(中) ★ 質子陶瓷燃料電池
★ 質子交換膜燃料電池
★ 碳氫燃料
★ 複合動力系統
關鍵字(英)
論文目次 中文摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XV
符號表 XVI
一、緒論 1
1-1 前言 1
1-2 研究背景 4
1-2-1 固態氧化物燃料電池 4
1-2-2 質子交換膜燃料電池 6
1-2-3 極化現象 8
1-2-4 PCFC–PEMFC系統 11
1-2-5 熱回收系統 11
1-3 研究動機與目的 12
二、文獻回顧 14
2-1 SOFC模型 14
2-2 PEMFC模型 18
2-3 SOFC系統 20
2-4 PEMFC系統 23
三、理論分析 25
3-1 問題描述與假設 25
3-2 電池與系統模型 26
3-2-1 燃料電池電化學模型 26
3-2-2 質子陶瓷燃料電池(PCFC)電堆模型 32
3-2-3 質子交換膜燃料電池(Protonic Exchange Membrane fuel cell)電堆模型 32
3-2-4 熱交換器 33
3-2-5 後燃器 34
3-2-6 氣體泵浦 35
3-2-7 分離器 35
3-2-8 氫氣傳輸膜(Hydrogen transport membrane, HTM) 35
3-2-9 壓縮機 36
3-2-10 混合器 36
3-2-11 可用能(Exergy)定義 37
3-2-12 效率定義 38
3-2-13 質子陶瓷燃料電池(PCFC)參數條件 39
3-2-14 質子交換膜燃料電池(Protonic Exchange Membrane fuel cell)參數條件 40
3-3 數值方法與驗證 41
3-3-1 數值方法 41
3-3-2 程式驗證 45
四、結果與討論 47
4-1 質子陶瓷燃料電池(PCFC)性能曲線與模型驗證 47
4-2 質子交換膜燃料電池(PEMFC)性能曲線與模型驗證 50
4-2-1 燃料電池堆組裝與實驗結果 50
4-2-2 燃料電池堆性能曲線 53
4-3 燃料使用乙醇之燃料電池複合系統 60
4-3-1 乙醇燃料電池複合系統設計 60
4-3-2 燃料量及空氣量對乙醇燃料電池複合系統之影響 63
4-3-3 質子陶瓷燃料電池燃料使用率對系統之影響 68
4-3-4 質子交換膜燃料電池燃料使用率對系統之影響 70
4-3-5 乙醇燃料電池複合系統之可用能分析 72
4-4 燃料使用丙烷之燃料電池複合系統 74
4-4-1 丙烷燃料電池複合系統設計 74
4-4-2 燃料量及空氣量對丙烷燃料電池複合系統之影響 77
4-4-3 質子陶瓷燃料電池燃料使用率對系統之影響 82
4-4-4 質子交換膜燃料電池燃料使用率對系統之影響 84
4-4-5 丙烷燃料電池複合系統之可用能分析 86
4-5 燃料使用甲醇之燃料電池複合系統 88
4-5-1 甲醇燃料電池複合系統設計 88
4-5-2 燃料量及空氣量對甲醇燃料電池複合系統之影響 91
4-5-3 質子陶瓷燃料電池燃料使用率對系統之影響 96
4-5-4 質子交換膜燃料電池燃料使用率對系統之影響 98
4-5-5 甲醇燃料電池複合系統之可用能分析 100
4-6 綜合系統效率分析 102
4-6-1 燃料使用率之影響比較 102
4-6-2 系統效率分析與比較 106
五、結論 110
5-1 結論 110
5-2 未來建議 111
參考文獻 112
參考文獻 [1] 趙中興,「燃料電池基礎」,全華圖書,2008 。
[2] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[3] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[4] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte / electrode-supported solid oxide fuel cells,” J. Applied Electrochemistry, 32, pp. 339–347, 2002.
[5] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, 122, pp. 9-18, 2003.
[6] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, 161, pp. 1012-1022, 2006.
[7] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, 250, pp. 21-29, 2014.
[8] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., 37, pp. 1568–78, 2008.
[9] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, 26, no. 10, pp. 1103–1108, 2001.
[10] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, 7, pp. 269-278, 2007.
[11] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, 183, pp. 682-686, 2008.
[12] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[13] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, pp. 573-578, 1987.
[14] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., 65, pp. 581-589, 2010.
[15] J. Basbus, M. Arce, H. Troiani, Q. Su, H. Wang, A. Caneiro, L. Mogni, “Study of BaCe0.4Zr0.4Y0.2O3-δ/BaCe0.8Pr0.2O3-δ (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC)”, International Journal of Hydrogen Energy, Vol. 45, Issue 8, pp. 5481-5490, 2020.
[16] P. C. Cheng, S. W. Lee, K. R. Lee, N. Setiawan, M. Bhavanari, C. T. Shen, N. Osman, C. J. Tseng, “Carbon resistant Ni1-xCux-BCZY anode for methane-fed protonic ceramic fuel cell”, International Journal of Hydrogen Energy, Vol. 48, Issue 30, pp. 11455-11462, 2023.
[17] Y. Bu, S. Joo, Y. Zhang, Y. Wang, D. Meng, X. Ge, G. Kim, “A highly efficient composite cathode for proton-conducting solid oxide fuel cells”, Journal of Power Sources, Vol. 451(1), pp. 227812, 2020.
[18] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Rogerge, A. Rodrigues, “Parametric modelling of the performance of a 5kW proton-exchange membrane fuel cell stack”, Journal of Power Sources, Vol. 49, pp.349-356, 1994.
[19] R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, P. R. Roberge, “Development and application of a generalised steady-state electrochemical model for a PEM fuel cell”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 173-180, 2000.
[20] I. J. Baschuk, X. Li, “Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 181-196, 2000.
[21] D. Yu, S. Yuvarajan, “A NOVEL CIRCUIT MODEL FOR PEM FUEL CELLS”, published in Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004.
[22] R. Wu, Q. Liao, X. Zhu, H. Wang, “Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell”, International Journal of Hydrogen Energy, Vol. 37, Issue 15, pp. 11255-11267, 2012.
[23] M. Aghighi, M. A. Hoeh, W. Lehnert, G. Merle, J. Gostick, “Simulation of a Full Fuel Cell Membrane Electrode Assembly Using Pore Network Modeling”, Journal of The Electrochemical Society, Vol. 163(5), pp. F384-392, 2016.
[24] H. Liu, G. Zhang, Z. Yu, D. Li, G. Wang, C. Wang, S. Bai, G. Li, “Research on Liquid Water Distribution in PEMFC Cathode Porous Media”, International Journal of Electrochemical Science, Vol. 15, pp. 6717-6736, 2020.
[25] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation — A review,” Renew. Sustain. Energy Rev., 20, pp. 430-442, 2013.
[26] C. Zamfirescu and I. Dincer, “Thermodynamic performance analysis and optimization of a SOFC-H + system,” Thermochimica Acta, 486, pp. 32-40, 2009.
[27] H. Xu, Z. Dang, and B. F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., 50, no. 1, pp. 1101-1110, 2013.
[28] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” 158, pp. 1290–1305, 2006.
[29] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant : Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[30] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, 277, pp. 292–303, Mar. 2015.
[31] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, 223, pp. 9–17, 2013.
[32] A. Fernandes, T. Woudstra, A. V. Wijk, L. Verhoef, P. V. Aravind, “Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer: An exergy analysis of different system designs”, Applied Energy, Vol. 173, pp. 13-28, 2016.
[33] M. Aghaie, M. Mehrpooya, F. Pourfayaz, “Introducing an integrated chemical looping hydrogen production, inherent carbon capture and solid oxide fuel cell biomass fueled power plant process configuration”, Energy Conversion and Management, Vol. 124, pp. 141-154, 2016.
[34] B. Eisavi, A. Chitsaz, J. Hosseinpour, F. Ranjbar, “Thermo-environmental and economic comparison of three different arrangements of solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems”, Energy Conversion and Management, Vol. 168(15), pp. 343-356, 2018.
[35] G. D. Marcoberardino, L. Roses, G. Manzolini, “Technical assessment of a micro-cogeneration system based on polymer electrolyte membrane fuel cell and fluidized bed autothermal reformer”, Applied Energy, Vol. 162, pp. 231-244, 2016.
[36] A. L. Dicks, R. G. Fellows, C. M. Mescal, C. Seymour, “A study of SOFC–PEM hybrid systems”, Journal of Power Sources, Vol. 86, Issue 1-2, pp. 501-506, 2000.
[37] Z. Wu, Z. Zhang, M. Ni, “Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses”, Energy Conversion and Management, Vol. 174(15), pp. 802-813, 2018.
[38] H. R. Kim, M. H. Seo, J. H. Ahn, T. S. Kim, “Thermodynamic design and analysis of SOFC/PEMFC hybrid systems with cascade effects: A perspective on complete carbon dioxide capture and high efficiency”, Energy Reports, Vol. 9, pp. 2335-2347, 2023.
[39] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, 181, pp. 1568-1576, 2010.
[40] J. KOH, D. YOON, and C. H. OH, “Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell,” J. Nucl. Sci. Technol., 47, no. 7, pp. 599–607, 2010.
[41] Sasmoko, S. W. Lee, M. Bhavanari, W. Wijayanti, I. N. G. Wardana, A. A. Azhari, C. J. Tseng, “Thermodynamic Analysis of Three Internal Reforming Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems”, Applied Sciences, Vol. 12, Issue 21, pp. 11140, 2022.
[42] E. H. Wang, H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao, Q. H. Mu, “Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery”, Energy, Vol. 36, Issue 5, pp. 3406-3418, 2011.
[43] J. H. Zhang, L. B. Lei, F. Y. Zhao, M. Ni, F. Chen, “Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage”, Journal of Power Sources, Vol. 400, ppp. 333-340, 2018.
[44] M. Chen, M. Zhou, Z. Liu, J. Liu, “A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid”, Ceramics International, Vol. 48, Issue 12, pp. 17208-17216, 2022.
[45] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte”, Solid State Ionics, Vol. 181, Issue 35-36, pp. 1568-1576, 2010.
[46] V. Menon, A.Banerjee, J. Dailly, O. Deutschmann, “Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming”, Applied Energy, Vol. 149, pp. 161-175.
[47] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[48] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
指導教授 曾重仁 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明