博碩士論文 110323055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.137.173.79
姓名 陳冠霖(Guan-Lin Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法分析高爐爐頂料倉爐料運動行為
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-8以後開放)
摘要(中) 本研究以離散元素法模擬高爐爐頂料倉中爐料顆粒的運動行為,分析無鐘罩式(Bell-less-type)高爐進料系統中料倉進料時顆粒的分布,以及卸料時料流的質量流率和各爐料的體積佔有率。首先進行焦炭、塊礦、燒結礦、球結礦、熱壓鐵塊(HBI)…等爐料顆粒的物理參數及機械性質參數量測實驗,量測出爐料的安息角、容積密度、摩擦係數、恢復係數…等參數,接著於DEM模擬中建立爐料顆粒模型,並使用與實驗相同的方法進行安息角、容積密度的量測模擬,最後將模擬與實驗量測結果進行比對驗證,確認模擬中爐料顆粒的參數調校,再進一步進行高爐爐頂料倉進料與卸料模擬。
依據中鋼高爐爐頂料倉尺寸,於模擬中建立等比例的料倉模型。將焦炭顆粒填入料倉,研究有無積料盒(Stone box)對於焦炭粒徑分布之差異,結果顯示安裝積料盒之後,料流撞至積料盒使料流一分為二。比較其粒徑分布,發現安裝積料盒可減少料倉中粒徑偏析(Size segregation)的現象。另外,將焦炭顆粒分別填入於左、右料倉,分析兩者的進、卸料差異,由於料倉頂部輸送皮帶的進料位置不對稱於雙料倉的中心軸,導致料倉上方的爐料偏左,使左料倉進料的料流速度大於右料倉。經模擬分析後,右料倉的粒徑偏析情形比左料倉嚴重,更多的大顆粒聚集於右料倉的壁面,使卸料時較多的大顆粒在最後排出料倉。另外,本研究的三組模擬中,右料倉卸料的平均質量流率皆大於左料倉。
使用HBI和燒結礦模擬含鐵爐料料倉的裝料情形,改變HBI顆粒填入於料倉中的先後順序,因HBI顆粒的尺寸比其他爐料顆粒大,須研究其是否會影響料倉卸料時的質量流率,如果顆粒在排料口發生架橋(Arching)現象,爐料無法下至高爐內,將被迫停止高爐生產。模擬中HBI顆粒分別於一開始、中間、最後時段填入於料倉中,再進行卸料。由結果可知,若一開始將HBI顆粒填入料倉中,卸料時會發生架橋現象,故應避免在進料時間的前段即將HBI填入料倉中。在中間、最後時段將HBI顆粒填入於料倉的模擬中皆未發生堵塞之情形。但兩者相比,在中間時段填入HBI,其料倉卸料時的質量流率相對穩定,故進料時間中段填入HBI顆粒為較佳的填料次序。
摘要(英) This study uses the Discrete Element Method (DEM) to simulate the particle flow behavior in the hopper of a blast furnace. The objectives are to analyze the particle distribution in the hopper during the material charging process in a bell-less charging system, as well as measure the mass flow rate and the volume fraction of different materials during discharge. To achieve these goals, firstly we measured the physical properties of materials used in the blast furnace including coke, lump ore, sinter, pellet, and hot briquetted iron (HBI), etc., through the experiments. The properties are the angle of repose, bulk density, friction coefficient, and restitution coefficient of the materials. The properties such as the angle of repose and bulk density, created in DEM were also calibrated and verified by the experimental results. After the calibration of particle properties, the materials were charged into the hopper to simulate the particle flow behavior.
The geometry for the DEM simulation is on the basis of the hopper on the top of the blast furnace at China Steel Corporation. The effect of installing and not installing a stone box inside the hopper on the particle flow behavior was investigated. The simulation results show that the size segregation of particles inside the hopper with a stone box for the buffer was mitigated. In the simulation, the coke charging into the hopper is used to study the difference between whether there is a stone box or not. The simulation results show that the size segregation in the hopper can be reduced by installing the stone box. Furthermore, the study investigates the charging and discharging differences between the left and right hopper. It is found that the charging position of the conveyor belt at the top is asymmetric to the center axis of the dual hopper. This leads to the leftward deviation of the burden flow, resulting in a higher flow velocity in the left hopper compared to the right hopper. So more large particles gather on the wall of the right hopper, and the particle size segregation of the right hopper is more severe than that of the left hopper. In the three sets of simulations in this study, the average mass flow rate of discharge from the right hopper was higher than that of the left hopper.
In the simulation of the iron-bearing material being charged into the hopper, using sinter and HBI, the sequence in which HBI particles are filled into the hopper is varied. Since HBI particles are larger in size compared to other burdens, it is important to study whether their charging sequence affects the mass flow rate during discharge. The concern is that if particle arching occurs, it could significantly impact the Ironmaking process. If HBI particles are initially charged into the hopper, arching occurs during discharge. However, no arching occurred when charging HBI particles into the hopper in the middle and final stage, and compared to the results of charging HBI particles during the final stage, the simulation with HBI particles charged during the middle stage showed a more stable mass flow rate during discharge.
關鍵字(中) ★ 離散元素模擬
★ 高爐
★ 料倉
★ 爐料
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
附圖目錄 vii
表格目錄 x
符號目錄 xi
1 第一章 研究計畫之背景及目的 1
1.1 前言 1
1.2 使用離散元素法模擬高爐佈料之相關研究 3
1.2.1 模擬的顆粒參數設定 3
1.2.2 高爐模擬與實驗驗證 4
1.2.3 模擬分析爐料於爐頂的運動及分布 6
1.3 研究動機 7
2 第二章 研究方法 11
2.1 離散元素法 11
2.1.1 三維剛體運動方程式 11
2.1.2 接觸力模型 13
2.1.3 臨界時步 15
2.2 爐料顆粒參數實驗與模擬 15
2.2.1 爐料顆粒參數量測實驗 16
2.2.2 爐料顆粒參數模擬 18
2.3 高爐爐頂料倉模擬設置 19
2.3.1 料倉模型 19
2.3.2 料倉進卸料模擬設置 20
3 第三章 結果與討論 29
3.1 顆粒參數量測實驗和模擬結果 29
3.1.1 爐料顆粒參數量測實驗結果 29
3.1.2 爐料顆粒參數模擬結果 30
3.2 焦炭料倉進卸料模擬結果 30
3.2.1 積料盒對於料倉進、卸料的影響 31
3.2.2 左右料倉之焦炭進、卸料的差異 32
3.3 含鐵爐料料倉進卸料模擬結果 33
3.3.1 改變HBI於含鐵爐料料倉裝料次序的影響 34
3.3.2 左右料倉之含鐵爐料進、卸料的差異 35
第四章 結論 67
參考文獻 69
參考文獻 [1]中鋼公司官網:鋼品生產流程圖。取自https://www.csc.com.tw/csc/pd/prs.htm
[2]Yu, Y.," EXPERIMENTAL AND DISCRETE ELEMENT SIMULATION STUDIES OF BELL-LESS CHARGING OF BLAST FURNACE". Department of Chemical Engineering Åbo Akademi University, Proefschrift, 2013.
[3]Zhang, J., J. Qiu, H. Guo, S. Ren, H. Sun, G. Wang, and Z. Gao," Simulation of particle flow in a bell-less type charging system of a blast furnace using the discrete element method". Particuology, 2014, Vol. 16, pp. 167-177.
[4]Cundall, P.A. and O.D. Strack," A discrete numerical model for granular assemblies". geotechnique, 1979, Vol. 29(1), pp. 47-65.
[5]Carvalho, R., A. Kwade, and L. Tavares," Contact parameter estimation for DEM simulation of iron ore pellet handling". Powder Technology, 2013, Vol. 248, pp. 84-93.
[6]Yan, Z., S. Wilkinson, E. Stitt, and M. Marigo," Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis". Computational Particle Mechanics, 2015, Vol. 2, pp. 1-17.
[7]Chen, H., Y.G. Xiao, Y.L. Liu, and Y.S. Shi," Effect of Young′s modulus on DEM results regarding transverse mixing of particles within a rotating drum". Powder Technology, 2017, Vol. 318.
[8]Lommen, S., D. Schott, and G. Lodewijks," DEM speedup: Stiffness effects on behavior of bulk material". Particuology, 2014, Vol. 12, pp. 107-112.
[9]Adema, A.T., " DEM-CFD Modelling of the ironmaking blast furnace". Materials Science and Engineering of Delft University of Technology, Proefschrift, March 2014.
[10]Yu, Y. and H. Saxen," Particle Flow and Behavior at Bell‐Less Charging of the Blast Furnace". steel research international, 2013, Vol. 84.
[11]Wei, H., L. Zan, Y. Li, Z. Wang, H. Saxén, and Y. Yu," Numerical and experimental studies of corn particle properties on the forming of pile". Powder Technology, 2017, Vol. 321, pp. 533-543.
[12]Mei, L., J. Hu, J. Yang, and J. Yuan," Research on parameters of EDEM simulations based on the angle of repose experiment". International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2016, pp. 570-574.
[13]Wang, L., R. Li, B. Wu, Z. Wu, and Z. Ding," Determination of the coefficient of rolling friction of an irregularly shaped maize particle group using physical experiment and simulations". Particuology, 2018, Vol. 38, pp. 185-195.
[14]Wei, S., H. Wei, H. Saxen, and Y. Yu," Numerical Analysis of the Relationship between Friction Coefficient and Repose Angle of Blast Furnace Raw Materials by Discrete Element Method". Materials, 2022, Vol. 15(3), pp. 903.
[15]Qiu, J., D. Ju, J. Zhang, and Y. Xu," DEM simulation of particle flow in a parallel-hopper bell-less charging apparatus for blast furnace". Powder Technology, 2017, Vol. 314, pp. 218-231.
[16]Wei, H., X. Tang, Y. Ge, M. Li, H. Saxén, and Y. Yu," Numerical and experimental studies of the effect of iron ore particle shape on repose angle and porosity of a heap". Powder Technology, 2019, Vol. 353, pp. 526-534.
[17]Yu, Y., A. Westerlund, T. Paananen, and H. Saxen," Inter-particle Percolation Segregation during Burden Descent in the Blast Furnace". ISIJ international, 2011, Vol. 51, pp. 7.
[18]Wei, H., W. Ding, Y. Li, H. Nie, H. Saxén, H. Long, and Y. Yu," Porosity distribution of moving burden layers in the blast furnace throat". Granular Matter, 2021, Vol. 23(1), pp. 10.
[19]Mitra, T. and H. Saxén," Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace". Computational Particle Mechanics, 2016, Vol. 3(4), pp. 541-555.
[20]Wei, H., H. Nie, Y. Li, H. Saxén, Z. He, and Y. Yu," Measurement and simulation validation of DEM parameters of pellet, sinter and coke particles". Powder Technology, 2020, Vol. 364, pp. 593-603.
[21]Natsui, S., S. Ueda, M. Oikawa, Z. Fan, J. Kano, R. Inoue, and T. Ariyama," Optimization of Physical Parameters of Discrete Element Method for Blast Furnace and Its Application to the Analysis on Solid Motion around Raceway". ISIJ International, 2009, Vol. 49(9), pp. 1308-1315.
[22]Mio, H., M. Kadowaki, S. Matsuzaki, and K. Kunitomo," Development of particle flow simulator in charging process of blast furnace by discrete element method". Minerals Engineering, 2012, Vol. 33, pp. 27-33.
[23]Xu, W., S. Cheng, and C. Li," Effect of the charging sequence of iron-bearing burden on burden distribution during the charging process of blast furnace based on discrete element method". Ironmaking & Steelmaking, 2022, Vol. 49(2), pp. 208-216.
[24]Wu, S., M. Kou, J. Xu, X. Guo, K. Du, W. Shen, and J. Sun," DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper". Chemical Engineering Science, 2013, Vol. 99, pp. 314-323.
[25]Zhang, T.F., J.Q. Gan, A.B. Yu, D. Pinson, and Z.Y. Zhou," Size segregation of granular materials during Paul-Wurth hopper charging and discharging process". Powder Technology, 2021, Vol. 378, pp. 497-509.
[26]Xu, W., S. Cheng, Q. Niu, and G. Zhao," Effect of the Main Feeding Belt Position on Burden Distribution during the Charging Process of Bell-less Top Blast Furnace with Two Parallel Hoppers". ISIJ International, 2017, Vol. 57(7), pp. 1173-1180.
[27]Yu, Y. and H. Saxén," Segregation behavior of particles in a top hopper of a blast furnace". Powder Technology, 2014, Vol. 262, pp. 233-241.
[28]Zhang, T.F., J.Q. Gan, A.B. Yu, D. Pinson, and Z.Y. Zhou," Segregation of granular binary mixtures with large particle size ratios during hopper discharging process". Powder Technology, 2020, Vol. 361, pp. 435-445.
[29]Xu, W., S. Cheng, Q. Niu, W. Hu, and J. Bang," Investigation on the uneven distribution of different types of ores in the hopper and stock surface during the charging process of blast furnace based on discrete element method". Metallurgical Research & Technology, 2019, Vol. 116, pp. 314 -322.
[30]Tsuji, Y., T. Tanaka, and T. Ishida," Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe". Powder Technology, 1992, Vol. 71(3), pp. 239-250.
[31]Li, T., Y. Peng, Z. Zhu, S. Zou, and Z. Yin," Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles". Materials, 2017, Vol. 10(5).
[32]Hlosta, J., L. Jezerská, J. Rozbroj, D. Žurovec, J. Nečas, and J. Zegzulka," DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1—Determination of the DEM Parameters and Calibration Process". Processes, 2020, Vol. 8(2).
[33]Akashi, M., H. Mio, A. Shimosaka, Y. Shirakawa, J. Hidaka, and S. Nomura," Estimation of Bulk Density Distribution in Particle Charging Process Using Discrete Element Method Considering Particle Shape". ISIJ International, 2008, Vol. 48(11), pp. 1500-1506.
[34]Xu, Y., J. Xu, C. Sun, K. Ma, C. Shan, L. Wen, S. Zhang, and C. Bai," Quantitative comparison of binary particle mass and size segregation between serial and parallel type hoppers of blast furnace bell-less top charging system". Powder Technology, 2018, Vol. 328, pp. 245-255.
[35]Chibwe, D.K., G.M. Evans, E. Doroodchi, B.J. Monaghan, D.J. Pinson, and S.J. Chew," Charge material distribution behaviour in blast furnace charging system". Powder Technology, 2020, Vol. 366, pp. 22-35.
[36]Luo, Z., Y. You, H. Li, H. Zhou, and Z. Zou," Experimental Study on Charging Process in the COREX Melter Gasifier". Metallurgical and Materials Transactions B, 2018, Vol. 49(4), pp. 1740-1749.
[37]Honeyands, T., J. Truelove, D. Trotter, A. Brent, D. Varcoe, J. Seneviratne, and S. Sun," Performance of HBI in scrap pre-heating systems". SCANMET I : 1st International Conference on Process Development in Iron and Steelmaking, 2000, Vol. 29, pp. 61-74.
指導教授 蕭述三 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明