博碩士論文 110356009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.139.240.142
姓名 徐珮英(HSU,PEI-YING)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 廢軟性印刷電路板(WFPCB)金元素精煉回收製程之碳足跡與環境衝擊評估
(Carbon footprint assessment and environmental impact of gold extraction and recovery from waste flexible printed circuit boards)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-15以後開放)
摘要(中) 本研究藉由文獻蒐集廢軟性印刷電路板(WFPCB)之金元素回收精煉製程的應用與
回收現況,透過相關法令及國際組織和產業提供之統計數據,調查金的回收原料、製
造、廢棄等相關資料,調查回收精煉製程的碳足跡,並將各階段活動量化的數據,借
由改善前後的比較,進一步了解作業排放熱點,及了解在製造、使用、廢棄對環境的
影響,並提出相對應的改善對策建議,也藉由盤查結果提出回收技術提昇的方向。
在碳盤查的過程中了解到廠務系統的作業是以全廠區用量規劃建置,當外在環境
變化時而基礎用量不變下,就會影響到每單位的碳排放量,在提高精煉金的回收率時
所進行的工法及流程變更作業時不僅僅是降低製程損耗,也減少廢水使用的藥劑量,
但在進行自動工程時也增加了用電量,這說明在改善規劃階段,同時也要將上下游作
業站一同規劃,做全面性相關聯的考量,以發揮最佳的成效。
盤查廢軟性印刷電路板(WFPCB)之金元素回收精煉製程碳足跡結果為,2021年總
碳排量89,306.6884公噸 CO2e/年,2022年總碳排量68,253.1933公噸 CO2e/年。2021
年回收每公克黃金碳排放量4.3379公噸 CO2e/年,2022年回收每公克黃金碳排放量
3.7721公噸 CO2e/年。2021年碳排放熱點為製程43,706.8963公噸 CO2e/年,其次為
能源間接42,466.0665公噸 CO2e/年,2022年碳排放熱點為能源間接36,148.2784公
噸CO2e/年,其次製程(P)29,023.5636公噸 CO2e/年。但由於部份數據取得不易,所
以本次盤查的範圍不包含廢棄物處理、廢水處理作業、員工通勤、上下游供應商,有待
以後持續盤查將數據結合,以了解回收廢軟性印刷電路的整個生命週期的碳排放量。
希望藉由本研究的盤查所獲得回收精煉製程的碳足跡數據分佈狀況及特性,提供
未來回收精煉製程及工程規劃時在導入量產可以減少能耗的投入及提高回收產品的利
用率,並降低在回收的過程中的碳排放量和電子廢棄物造成環境的影響的參考依據,
及朝向以循環經濟模式賦予廢棄物新生命。
摘要(英) This research surveys the application and recovery rate of recycling and refining process of gold element. The research investigated the recovered materials of gold, its production process, its waste, and its carbon footprint of the recycling and refining process. Data collected from each stage were quantified to compare before and after improvement to understand carbon emissions and its influence on our environment in manufacturing, usage, and waste. According
to the result of the inventory, this research also offered some suggestions of a new direction of recycled technique.
The inventory of the recycling and refining process of gold element from the waste flexible printed circuit board(WFPCB) shows that the total amount of carbon emission was 89,306.6884 tonne CO2e per year in 2021 and 68,253.1933 tonne CO2e per year in 2022. Carbon emissions per gram of recycled gold is 4.3379 tonne CO2e per year in 2021, and 3.7721 tonne CO2e per year in 2022. In 2021, projects with the highest carbon emissions was manufacturing of 43,706.8963 tonne CO2e per year, and secondarily comed by energy indirect greenhouse gas emission, which was 42,466.0665 tonne CO2e per year. In 2022, projects with the highest carbon emissions by energy indirect greenhouse gas emission 36,148.2784 tonne CO2e per year and manufacturing (P)29,023.5636 tonne CO2e per year. However, since part of the data was hard to collect, waste disposal, wastewater treatment, employee commuting, the supplier of the upstream and downstream were excluded from this research. Follow-up inventories were needed for further understanding of the carbon emissions of the whole
recycling and refining process.
Based on the data collected from the inventory, this study provides a reference for reducing energy waste in the recycling and refining process, improving the utilization rate of recycled products, reducing carbon emissions in the recycling process, and the environmental impact of e-waste. The aim of the research is to promote a circular economy and give new life
to waste.
關鍵字(中) ★ 軟性印刷電路板
★ 電子廢棄物
★ 碳足跡
★ 溫室氣體
★ 回收精煉
★ 循環經濟
關鍵字(英) ★ Flexible printed circuit board
★ E-waste
★ Carbon footprint
★ Greenhouse gases
★ Recycling and refining
★ Circular economy
論文目次 中文摘要 I
Abstract II
誌謝 III
表目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 研究流程與架構 4
第二章 文獻回顧 6
2-1 金精煉回收技術 6
2-1-1 金的配合物 6
2-1-2 貴金屬分離的方法 6
2-1-2-1 置換法 6
2-1-2-2 還原法 7
2-2 碳足跡的發展 8
2-2-1 PAS 2050碳足跡標準 9
2-2-2 ISO國際標準組織-ISO 14067 9
2-2-3 ISO國際標準組織-ISO 14046及ISO 14044 9
2-2-4 碳中和 10
2-2-5 淨零排放 11
2-3 溫室氣體國際公約發展 12
2-3-1 聯合國氣候變化綱要公約 12
2-3-2 IPCC國家溫室氣體清冊指南 12
2-3-3 ISO國際標準組織-ISO 14064 15
2-4 ReCiPe環境衝擊影響評估方法 18
第三章 研究方法 21
3-1 研究方法與步驟 21
3-2 研究目標與範疇界定 23
3-3 研究限制 23
3-4 作業改善方法與貴金屬回收流程 24
3-4-1 WFPCB貴金屬回收流程 24
3-4-2 作業改善方法 25
3-5 碳足跡的評估方法 28
3-5-1 碳足跡的盤查 28
3-5-2 碳排放源量化計算 29
3-5-3 碳盤查基準年設定及活數據收集 37
3-5-4 數據不確定分析 38
3-5-5 盤查數據品質管理 40
3-6 環境衝擊評估 43
第四章 結果與討論 44
4-1 碳足跡盤查標的選定及範圍的界定 44
4-2 碳足跡盤查活動數據收集 49
4-3 碳足跡盤查結果及分析 53
4-4 環境衝擊評析結果及分析 64
4-5 綜合評析 70
第五章 結論與建議 71
5-1 結論 71
5-2 建議 72
參考文獻 74
附錄一、各盤查規範之範疇排放系數分類對照表 76
附錄二、環境衝擊指標 80
附錄三、衝擊指標的中點到端點級別的損害路徑 83
參考文獻 1.UNFCCC, Kyoto Climate Change Conference, UNFCCC, Japan, 1997.

2.UNFCCC, Conference of the Parties serving as the meeting of the Parties to the Paris
Agreement Glasgow Climate Change Conference, UNFCCC, United Kingdom of
Great Britain and Northern Ireland, 2021.

3.Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. 2006 IPCC guidelines
for national greenhouse gas inventories., Published by the Institute for Global
Environmental Strategies (IGES) for the IPCC, Japan, 2006.

4.U.S. Geological Survey, Mineral commodity summaries 2019: U.S. Geological Survey,
Reston, Virginia, 2019.

5.Myles R. Allen, Opha Pauline Dube, William Solecki, Fernando Aragón-Durand, Wolfgang Cramer, Stephen Humphreys, Mikiko Kainuma, Jatin Kala, Natalie Mahowald, Yacob Mulugetta, Rosa Perez, & Morgan Wairiu, Kirsten Zickfeld 2018: Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, IPCC, UK and New York, 2018.

6.M.A.J. Huijbregts, Z.J.N. Steinmann, P.M.F. Elshout, G. Stam, F. Verones, M.D.M. Vieira,
A. Hollander, M. Zijp, & R. van Zelm, ReCiPe 2016: a harmonized life cycle impact
assessment method at midpoint and endpoint level report I: characterization, National
Institute for Public Health and the Environment, Nederlanden, 2016.

7.ISO 14064-1, Greenhouse Gases-Specification with Guidance at the Organization Level
for Quantification and Reporting of Greenhouse Gas Emissions and Removals. BSI, United Kingdom, 2018.

8.ISO 14046, Environmental management - Water footprint - Principles, requirements and
guidelines, BSI, United Kingdom, 2014.

9.PAS 2050, Specification for the Assessment of the Life Cycle GreenhouseGas Emissions
of Goods and Services., BSI, United Kingdom, 2011.

10.PAS 2060, Specification for the demonstration of carbon neutrality, BSI, United Kingdom,
2014.

11.Forti Vanessa, Baldé Cornelis Peter, Kuehr Ruediger, Bel Garam, The Global E-waste
Monitor 2020: Quantities, flows and the circular economy potential, United Nations
University (UNU)/United Nations Institute for Training and Research (UNITAR)–co-
hosted SCYCLE Programme, International Telecommunication Union (ITU) &
International Solid Waste Association(ISWA), Bonn/Geneva/Rotterdam, 2020.

12.World Gold Council, Gold and climate change:An introduction, World Gold Council,
United Kingdom, 2018.

13.行政院環境保護署,溫室氣體排放量盤查作業指引,行政院環境保護署,2022。

14.陳逹平,貴金屬回收工藝學,中國金融出版社,1991。

15.黃金生產工藝指南編委會,黃金生產工藝指南,地質出版社,2000。

16.黃禮煌,金銀提取技術,冶金工業出版社,2012。

17.財團法人環境與發展基金會,經濟部工業局109年度專案計畫期末執行成果報告,經濟部工業,2020。

18.董鍾明,軟板及軟硬結合板掌握全球電路板產業的未來新商機,工研院產業科技國際策略發展所,2021。

19.黎鼎鑫,貴金屬提取與精煉,中南工大學出版社,2003。
指導教授 秦靜如(Chin.Ching-Ju) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明