博碩士論文 107326025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.128.199.162
姓名 王靖萱(Ching-Hsuan Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2017~2019年臺灣都市PM2.5金屬元素健康風險評估
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 國際癌症協會宣告PM2.5 (指氣動直徑小於或等於2.5 μm懸浮微粒)及微粒重金屬Cr、As、Ni、Cd和Pb對人體具有致癌風險。本文引用2017年至2019年在環保署花蓮、板橋、忠明、斗六、嘉義和小港測站採樣的PM2.5數據,探討金屬元素與PM2.5質量濃度相關程度、時間變化趨勢,及健康風險的時空變化,然後使用條件雙變量機率函數(Conditional Bivariate Probability Function, CBPF)評估金屬元素健康風險發生機率值較高的區位。
結果顯示金屬元素是來自於PM2.5,但各測站金屬元素濃度相當微量,在PM2.5質量濃度占比3~4%,兩者線性相關係數數值介於0.5至0.6間。六個測站以Al、Fe、Na、Mg、K和Ca六個金屬元素有較高濃度,愈往南部的測站金屬元素濃度愈高。非致癌風險金屬元素的危害商數(Hazard Quotient, HQ)由高至低為Mn> V> Co> Ba> Se,有少數測站及樣本Mn的HQ> 1,各測站四季危害指標(Hazard Index, HI)則都在美國環保署提供的安全範圍內(< 1)。致癌金屬的致癌風險(Carcinogenic Risk, CR)由高至低為Cr (VI)> As> Ni> Cd> Pb,Cr (Ⅵ)的CR在各測站普遍超出閾值(1.00×10-6),雖然總致癌風險(Total Carcinogenic Risk, TCR)仍在美國環保署提供的可容忍範圍內(< 1.00×10-4)。
各測站以CBPF結合污染源區位,花蓮、忠明、斗六、嘉義、小港測站在東北東至西北方向,板橋測站在西南西方向,有超過金屬元素健康風險閾值機率較高的區位,普遍是受到移動和固定污染源影響。小港測站HI和TCR超過健康風險閾值區位的機率數值在各測站最高,花蓮測站則低很多。
摘要(英) The International Agency for Research on Cancer (IARC) declared that PM2.5 (referring to fine particulate matter with an aerodynamic diameter equal to or less than 2.5 μm) and heavy metals Cr, As, Ni, Cd, and Pb pose carcinogenic risks to human health. This study used PM2.5 sampling data from six monitoring stations named Hualien, Banqiao, Zhongming, Douliu, Chiayi, and Xiaogang, collected between 2017 and 2019 by the Environmental Protection Administration. The study aims to explore the correlation between metal elements and PM2.5 mass concentrations, their temporal variations, and the spatiotemporal variations of these metal elements in health risks. The Conditional Bivariate Probability Function (CBPF) is further employed to assess locations with higher occurring probabilities of health risks associated with metal elements.
The results show that metal elements originate from PM2.5, but their concentrations at each station are relatively low, accounting for approximately 3-4% of the PM2.5 mass concentration. The linear correlation coefficient between metal elements and PM2.5 falls between 0.5 and 0.6. Among the six stations, Al, Fe, Na, Mg, K, and Ca exhibit higher metal element concentrations, with levels increasing when moving southwards. The non-carcinogenic metal elements are ranked in order of Hazard Quotient (HQ) from high to low: Mn > V > Co > Ba > Se. A few stations and sampling days have HQ values for Mn exceeding 1, while the Hazard Index (HI) for all stations throughout the seasons remains within the safe range (<1) set by the US Environmental Protection Agency (US EPA). Regarding carcinogenic metal elements, the Carcinogenic Risk (CR) ranks from high to low: Cr (VI) > As > Ni > Cd > Pb. The CR for Cr (VI) generally surpasses the threshold (1.00×10-6) at all stations. However, the Total Carcinogenic Risk (TCR) remains within the acceptable range provided by the US EPA (<1.00×10-4).
By combining the CBPF with pollution source locations, the probability of higher health risks associated with metal elements is identified in the northeast-east to northwest direction for Hualien, Zhongming, Douliu, Chiayi, and Xiaogang stations, and in the southwest-west direction for Banqiao station. These locations are commonly affected by mobile and stationary pollution sources. The probability values of exceeding health risk thresholds for both HI and TCR are highest at the Xiaogang station, while Hualien station shows much lower probabilities.
關鍵字(中) ★ 細懸浮微粒(PM2.5)、PM2.5金屬元素健康風險、高健康風險污染源區位
★ 細懸浮微粒(PM2.5)
★ PM2.5金屬元素健康風險
★ 高健康風險污染源區位
關鍵字(英) ★ Fine particulate matter (PM2.5), Health risks of PM2.5 metal elements, High health risk of source locations
★ Fine particulate matter (PM2.5)
★ Health risks of PM2.5 metal elements
★ High health risk of source locations
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 細懸浮微粒(PM2.5)及重金屬形成來源 4
2.2 金屬和金屬元素比值 7
2.3 細懸浮微粒(PM2.5)對環境及人體健康的危害 18
2.3.1 非致癌風險及致癌風險 28
2.3.2 金屬毒性對建康的影響探討 32
2.3.3 鉻的來源及毒性差異 36
2.4 條件雙變量機率函數(Conditional bivariate probability function, CBPF) 38
第三章 研究方法 39
3.1 採樣時間與地點 40
3.2 採樣季節 41
3.3 六個採樣測站 42
3.4 細懸浮微粒質量濃度採樣器 44
3.4.1 Met One型號E-FRM採樣器 44
3.4.2 MetOne SASS採樣器 45
3.5 細懸浮微粒質量濃度分析方法 47
3.5.1 質量濃度秤重分析 47
3.5.2 氣膠金屬成分分析 48
3.6 風險評估 53
3.6.1 危害識別 54
3.6.2 劑量-反應評估 54
3.6.3 暴露評估 54
3.6.4 健康風險 55
3.7 模式推估條件雙變量機率函數(Conditional Bivariate Probability Function, CBPF) 58
第四章 結果與討論 60
4.1 金屬元素與PM2.5質量濃度在不同時間及季節的變化趨勢 61
4.1.1 金屬元素濃度總和與PM2.5質量濃度的直線相關性分析 61
4.1.2 金屬元素分類濃度總和與PM2.5質量濃度關係 66
4.1.3 花蓮測站 68
4.1.4 板橋測站 71
4.1.5 忠明測站 74
4.1.6 斗六測站 77
4.1.7 嘉義測站 80
4.1.8 小港測站 83
4.2 健康風險季節變化趨勢 87
4.2.1 非致癌健康風險金屬元素季節變化 87
4.2.2 致癌健康風險金屬元素季節變化 96
4.3 推論臺灣六個測站金屬元素健康風險污染來源區位 104
4.3.1 花蓮測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 108
4.3.2 板橋測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 110
4.3.3 忠明測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 113
4.3.4 斗六測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 117
4.3.5 嘉義測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 119
4.3.6 小港測站金屬元素非致癌及致癌健康風險超出閾值的CBPF機率 122
4.3.7 臺灣六個測站HI和TCR超出閾值CBPF機率 129
第五章 結論與建議 137
5.1 結論 137
5.2 建議 139
參考文獻 140
附錄一、2017年至2019年各測站金屬元素濃度總和與PM2.5高濃度日 166
附錄二、六個測站較高的三種分類金屬元素濃度 174
附錄三、2017年至2019年高PM2.5質量濃度日逆推氣流軌跡 175
附錄四、六個測站四季HQ和CR 197
附錄五、致癌風險金屬元素及高於健康風險的日子 199
附錄六、各測站金屬元素(含給定風向風速發生小時< 100CBPF空間分布圖 207
附錄七、忠明測站篩選>16小時盛行西北風(海風)樣本 217
附錄八、各測站污染源 219
附錄九、口試委員意見答覆 222
參考文獻 Abbas, I., Badran, G., Verdin, A., Ledoux, F., Roumie, M., Guidice, J.-M.L., Courcot, D., Garçon, G., 2019. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environmental research 171, 510-522.
Akhtar, U.S., Rastogi, N., McWhinney, R.D., Urch, B., Chow, C.-W., Evans, G.J., Scott, J.A., 2014. The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells. Toxicology reports 1, 145-156.
Al-shayeb, Seaward, 2001. Heavy metal content of roadside soils ring road in Riyadh (Saudi Arabia). Asian Journal of Chemistry 13, 407–723.
Alias, N.F., Khan, M.F., Sairi, N.A., Zain, S.M., Suradi, H., Rahim, H.A., Banerjee, T., Bari, M.A., Othman, M., Latif, M.T., 2020. Characteristics, Emission Sources, and Risk Factors of Heavy Metals in PM2.5 from Southern Malaysia. ACS Earth and Space Chemistry 4, 1309-1323.
Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J., Bonnaire, N., 2016. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmospheric environment 129, 114-124.
Amato, F., Viana, M., Richard, A., Furger, M., Prévôt, A., Nava, S., Lucarelli, F., Bukowiecki, N., Alastuey, A., Reche, C., 2011. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics 11, 2917-2931.
Amesho, K.T., Lin, Y.-C., Gong, Z.-W., Chou, F.-C., Cheng, P.-C.J.A., Research, A.Q., 2021. Assessment of PM2.5 Chemical Composition and Air Quality Monitoring: Implications of Air Pollutants Emissions from a Night Market in Kaohsiung City, Taiwan. 21, 210206.
Anastasopolos, A.T., Hopke, P.K., Sofowote, U.M., Zhang, J.J., Johnson, M.J.A.E., 2022. Local and regional sources of urban ambient PM2.5 exposures in Calgary, Canada. 290, 119383.
Arditsoglou, A., Samara, C., 2005. Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59, 669-678.
ATSDR, 2023. ToxFAQs™ for Cobalt, in: Registry, A.f.T.S.a.D. (Ed.).
Bai, L., He, Z., Ni, S., Chen, W., Li, N., Sun, S., 2019. Investigation of PM2.5 absorbed with heavy metal elements, source apportionment and their health impacts in residential houses in the North-east region of China. Sustainable Cities and Society 51, 101690.
Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R., Brauer, M., Cohen, A.J., Stanaway, J.D., Beig, G., Joshi, T.K., Aggarwal, A.N., 2019. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. The Lancet Planetary Health 3, e26-e39.
Banu, S.K., Stanley, J.A., Sivakumar, K.K., Arosh, J.A., Taylor, R.J., Burghardt, R.C.J.R.T., 2017. Chromium VI− Induced developmental toxicity of placenta is mediated through spatiotemporal dysregulation of cell survival and apoptotic proteins. 68, 171-190.
Barman, S., Singh, R., Negi, M., Bhargava, S., 2008. Fine particles (PM2.5) in residential areas of Lucknow city and factors influencing the concentration. Clean–Soil, Air, Water 36, 111-117.
Basagaña, X., Jacquemin, B., Karanasiou, A., Ostro, B., Querol, X., Agis, D., Alessandrini, E., Alguacil, J., Artiñano, B., Catrambone, M., 2015. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: results from the MED-PARTICLES project. Environment international 75, 151-158.
Bates, J.T., Fang, T., Verma, V., Zeng, L., Weber, R.J., Tolbert, P.E., Abrams, J.Y., Sarnat, S.E., Klein, M., Mulholland, J.A., 2019. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environmental science & technology 53, 4003-4019.
Bates, J.T., Weber, R.J., Abrams, J., Verma, V., Fang, T., Klein, M., Strickland, M.J., Sarnat, S.E., Chang, H.H., Mulholland, J.A., 2015. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environmental science & technology 49, 13605-13612.
Begum, S., Adnan, M., Akhtar, N., Aziz, M.A., Yousaf, S., Tariq, A.J.J.o.H.E.S., 2015. Chemical investigation of soil and vegetation in the vicinity of brick kilns in Fateh Jang region of Pakistan. 48, 32.
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F., 2009. Hospital admissions and chemical composition of fine particle air pollution. American journal of respiratory and critical care medicine 179, 1115-1120.
Bi, C., Chen, Y., Zhao, Z., Li, Q., Zhou, Q., Ye, Z., Ge, X., 2020. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere 238, 124620.
Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G., Monks, T.J., 2000. Role of quinones in toxicology. Chemical research in toxicology 13, 135-160.
Boublil, L., Assémat, E., Borot, M.-C., Boland, S., Martinon, L., Sciare, J., Baeza-Squiban, A., 2013. Development of a repeated exposure protocol of human bronchial epithelium in vitro to study the long-term effects of atmospheric particles. Toxicology in Vitro 27, 533-542.
Bozlaker, A., Prospero, J.M., Price, J., Chellam, S., 2019. Identifying and quantifying the impacts of Advected North African dust on the concentration and composition of airborne fine particulate matter in Houston and Galveston, Texas. Journal of Geophysical Research: Atmospheres 124, 12282-12300.
Camilleri, R., Stark, C., Vella, A.J., Harrison, R.M., Aquilina, N.J.J.H., 2023. Validation of an optimised microwave-assisted acid digestion method for trace and ultra-trace elements in indoor PM2.5 by ICP-MS analysis. e12844.
Carpenter, D.O., Bushkin-Bedient, S., 2013. Exposure to chemicals and radiation during childhood and risk for cancer later in life. Journal of Adolescent Health 52, S21-S29.
Carslaw, D.C., Beevers, S.D.J.E.m., software, 2013. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. 40, 325-329.
Cartledge, B.T., Majestic, B.J.J.A.P.R., 2015. Metal concentrations and soluble iron speciation in fine particulate matter from light rail activity in the Denver-Metropolitan area. 6, 495-502.
Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z.J., Badaloni, C., Beelen, R., Caracciolo, B., de Faire, U., Erbel, R., Eriksen, K.T., 2014. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. Bmj 348.
Chalvatzaki, E., Chatoutsidou, S.E., Lehtomäki, H., Almeida, S.M., Eleftheriadis, K., Hänninen, O., Lazaridis, M., 2019. Characterization of human health risks from particulate air pollution in selected European cities. Atmosphere 10, 96.
Chao, S., Jiang, L., Zhang, W., 2014. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics.
Charron, A., Polo-Rehn, L., Besombes, J.-L., Golly, B., Buisson, C., Chanut, H., Marchand, N., Guillaud, G., Jaffrezo, J.-L., 2019. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmospheric Chemistry and Physics 19, 5187-5207.
Chen, H.-L., Li, C.-P., Tang, C.-S., Lung, S.-C.C., Chuang, H.-C., Chou, D.-W., Chang, L.-T., 2020. Risk Assessment for People Exposed to PM2.5 and Constituents at Different Vertical Heights in an Urban Area of Taiwan. Atmosphere 11, 1145.
Chen, K.-F., Tsai, Y.-P., Lai, C.-H., Xiang, Y.-K., Chuang, K.-Y., Zhu, Z.-H., 2021. Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples. Environmental Science and Pollution Research 28, 40640-40652.
Chen, P., Bi, X., Zhang, J., Wu, J., Feng, Y., 2015. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 20, 104-109.
Cheng, Y., He, K.-b., Du, Z.-y., Zheng, M., Duan, F.-k., Ma, Y.-l., 2015. Humidity plays an important role in the PM2.5 pollution in Beijing. Environmental pollution 197, 68-75.
Chiari, M., Del Carmine, P., Orellana, I.G., Lucarelli, F., Nava, S., Paperetti, L., 2006. Hourly elemental composition and source identification of fine and coarse PM10 in an Italian urban area stressed by many industrial activities. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 249, 584-587.
Christoforidis, A., Stamatis, N., 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala′s region, Greece.
Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389, 1907-1918.
Connell, D.P., Winter, S.E., Conrad, V.B., Kim, M., Crist, K.C., 2006. The Steubenville Comprehensive Air Monitoring Program (SCAMP): Concentrations and solubilities of PM2.5 trace elements and their implications for source apportionment and health research. Journal of the Air & Waste Management Association 56, 1750-1766.
Corbin, J.C., Mensah, A.A., Pieber, S.M., Orasche, J., Michalke, B., Zanatta, M., Czech, H., Massabò, D., Buatier de Mongeot, F., Mennucci, C., 2018. Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine. Environmental science & technology 52, 6714-6722.
Darrow, L.A., Klein, M., Flanders, W.D., Mulholland, J.A., Tolbert, P.E., Strickland, M.J., 2014. Air pollution and acute respiratory infections among children 0–4 years of age: an 18-year time-series study. American journal of epidemiology 180, 968-977.
Das, A., Habib, G., Vivekanandan, P., Kumar, A., 2021. Reactive oxygen species production and inflammatory effects of ambient PM2.5-associated metals on human lung epithelial A549 cells “one year-long study”: The Delhi chapter. Chemosphere 262, 128305.
Dergham, M., Lepers, C., Verdin, A., Billet, S., Cazier, F., Courcot, D., Shirali, P., Garçon, G., 2012. Prooxidant and proinflammatory potency of air pollution particulate matter (PM2.5–0.3) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chemical research in toxicology 25, 904-919.
Dobaradaran, S., Schmidt, T.C., Nabipour, I., Khajeahmadi, N., Tajbakhsh, S., Saeedi, R., Mohammadi, M.J., Keshtkar, M., Khorsand, M., Ghasemi, F.F., 2018. Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste management 78, 649-658.
Dumax-Vorzet, A.F., Tate, M., Walmsley, R., Elder, R.H., Povey, A.C., 2015. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis 30, 621-633.
Englert, N., 2004. Fine particles and human health—a review of epidemiological studies. Toxicology letters 149, 235-242.
Fang, B., Zeng, H., Zhang, L., Wang, H., Liu, J., Hao, K., Zheng, G., Wang, M., Wang, Q., Yang, W., 2021. Toxic metals in outdoor/indoor airborne PM2.5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environmental Pollution 279, 116937.
Fang, G.-C., Kao, C.-L., Zhuang, Y.-J., Liang, G.-R., 2020. Characterization of trace metals from different particle sizes, sources and contamination identifications for a mixed site in Taiwan. Environmental Forensics 21, 351-362.
Fazekašová, D., Fazekaš, J., 2020. Soil quality and heavy metal pollution assessment of Iron ore mines in Nizna Slana (Slovakia). Sustainability 12, 2549.
Feng, S., Gao, D., Liao, F., Zhou, F., Wang, X., 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and environmental safety 128, 67-74.
Fernandes, K.S., Santos, E.O.d., Godoi, R.H., Yamamoto, C.I., Barbosa, C.G., Souza, R.A., Machado, C., 2021. Characterization, Source Apportionment and Health Risk Assessment of PM2.5 for a Rural Classroom in the Amazon: A Case Study. Journal of the Brazilian Chemical Society 32, 363-375.
Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O′Reilly, S., Brauer, M., Caravanos, J., Chiles, T., Cohen, A., Corra, L., 2022. Pollution and health: a progress update. The Lancet Planetary Health.
Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Hof, V.I., Heyder, J., Gehr, P., 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental health perspectives 113, 1555-1560.
Ghasemi, F.F., Dobaradaran, S., Saeedi, R., Nabipour, I., Nazmara, S., Abadi, D.R.V., Arfaeinia, H., Ramavandi, B., Spitz, J., Mohammadi, M.J., 2020. Levels and ecological and health risk assessment of PM2.5-bound heavy metals in the northern part of the Persian Gulf. Environmental Science and Pollution Research 27, 5305-5313.
Giaginis, C., Gatzidou, E., Theocharis, S., 2006. DNA repair systems as targets of cadmium toxicity. Toxicology and applied pharmacology 213, 282-290.
Gietl, J.K., Lawrence, R., Thorpe, A.J., Harrison, R.M., 2010. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment 44, 141-146.
Gorjinezhad, S., Kerimray, A., Torkmahalleh, M.A., Keleş, M., Ozturk, F., Hopke, P.K., 2017. Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment. Environmental science and pollution research 24, 9515-9529.
Grigoratos, T., Martini, G., 2015. Brake wear particle emissions: a review. Environmental Science and Pollution Research 22, 2491-2504.
Gualtieri, M., Mantecca, P., Cetta, F., Camatini, M., 2008. Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549. Environment International 34, 437-442.
Gupta, P., Satsangi, M., Satsangi, G.P., Jangid, A., Liu, Y., Pani, S.K., Kumar, R., 2019. Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis. Environmental geochemistry and health, 1-19.
Gupta, T., Mandariya, A.J.E.S., Research, P., 2013. Sources of submicron aerosol during fog-dominated wintertime at Kanpur. 20, 5615-5629.
Hanfi, M.Y., Mostafa, M.Y., Zhukovsky, M.V., 2020. Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environmental monitoring and assessment 192, 1-21.
Harrison, R.M., Smith, D., Luhana, L.J.E.s., technology, 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. 30, 825-832.
Hennigan, C.J., Mucci, A., Reed, B.E., 2019. Trends in PM2.5 transition metals in urban areas across the United States. Environmental Research Letters 14, 104006.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hsu, S.-C., Liu, S.C., Jeng, W.-L., Lin, F.-J., Huang, Y.-T., Lung, S.-C.C., Liu, T.-H., Tu, J.-Y., 2005. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Science of the Total Environment 347, 111-121.
Hsu, S.C., Liu, S.C., Huang, Y.T., Chou, C.C., Lung, S.C., Liu, T.H., Tu, J.Y., Tsai, F., 2009. Long‐range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in northern Taiwan. Journal of Geophysical Research: Atmospheres 114.
Hu, M.-T., Chen, S.-J., Huang, K.-L., Lin, Y.-C., Chang-Chien, G.-P., Tsai, J.-H., 2009. Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices. Science of the total environment 407, 3290-3294.
Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., Wu, J., 2012. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric environment 57, 146-152.
Huang, B.-F., Chang, Y.-C., Han, A.-L., Hsu, H.-T., 2018. Metal composition of ambient PM2.5 influences the pulmonary function of schoolchildren: a case study of school located nearby of an electric arc furnace factory. Toxicology and industrial health 34, 253-261.
Huang, Q., Chi, Y., Deng, J., Liu, Y., Lu, Y., Chen, J., Dong, S., 2017. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Scientific reports 7, 1-9.
Huang, Y.-C.T., Ghio, A.J., Stonehuerner, J., McGee, J., Carter, J.D., Grambow, S.C., Devlin, R.B., 2003. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhalation toxicology 15, 327-342.
Hulskotte, J., Roskam, G., Van Der Gon, H.D., 2014. Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric environment 99, 436-445.
Hung, D.-Z., Yang, K.-W., Wu, C.-C., Hung, Y.-H., 2021. Lead poisoning due to incense burning: an outbreak in a family. Clinical toxicology 59, 756-759.
IARC, 2016. List of Classifications - Agents classified by the IARC Monographs, Volumes 1–132.
IARC, 2022. Agents Classified by the IARC Monographs, Volumes 1–132.
Iijima, A., Sato, K., Yano, K., Tago, H., Kato, M., Kimura, H., Furuta, N., 2007. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmospheric Environment 41, 4908-4919.
ILO, 2019. Safety and health in shipbuilding and ship repair.
Ishii, H., Hayashi, S., Hogg, J.C., Fujii, T., Goto, Y., Sakamoto, N., Mukae, H., Vincent, R., Van Eeden, S.F., 2005. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment. Respiratory research 6, 1-12.
Ismail, I.N., Jalaludin, J., Bakar, S.A., Hisamuddin, N.H., Suhaimi, N.F., 2019. Association of Traffic-Related Air Pollution (TRAP) with DNA Damage and Respiratory Health Symptoms among Primary School Children in Selangor. Asian Journal of Atmospheric Environment (AJAE) 13.
Järup, L., Hellström, L., Alfvén, T., Carlsson, M.D., Grubb, A., Persson, B., Pettersson, C., Spång, G., Schütz, A., Elinder, C.-G., 2000. Low level exposure to cadmium and early kidney damage: the OSCAR study. Occupational and environmental medicine 57, 668-672.
Jung, C.-C., Chou, C.C.-K., Huang, Y.-T., Chang, S.-Y., Lee, C.-T., Lin, C.-Y., Cheung, H.-C., Kuo, W.-C., Chang, C.-W., Chang, S.-C., 2022. Isotopic signatures and source apportionment of Pb in ambient PM2.5. Scientific reports 12, 1-11.
Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric environment 60, 504-526.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., Courcot, D., 2016. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences 40, 114-128.
Kim, J.-Y., Kim, U.-S., Byeon, M.-S., Kang, W.-K., Hwang, K.-T., Cho, W.-S., 2011. Recovery of cerium from glass polishing slurry. Journal of Rare Earths 29, 1075-1078.
Kim, S., Kim, T.-Y., Yi, S.-M., Heo, J., 2018. Source apportionment of PM2.5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of environmental management 214, 325-334.
Kleinbaum, D.G., Kupper, L.L., Nizam, A., Rosenberg, E.S., 2013. Applied regression analysis and other multivariable methods. Cengage Learning.
Kobzik, B.S.P.P.S.o.P.H.L., 1998. Environmental particulate-mediated cytokine production in lung epithelial cells (A549): role of preexisting inflammation and oxidant stress. Journal of Toxicology and Environmental Health Part A 55, 31-44.
Kolakkandi, V., Sharma, B., Rana, A., Dey, S., Rawat, P., Sarkar, S., 2020. Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Science of The Total Environment 705, 135805.
Kong, S., Ji, Y., Lu, B., Chen, L., Han, B., Li, Z., Bai, Z., 2011. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment 45, 5351-5365.
Kulkarni, P., Chellam, S., Fraser, M.P., 2007. Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environmental science & technology 41, 6748-6754.
Kuo, C.-Y., Lin, Y.-R., Chang, S.-Y., Lin, C.-Y., Chou, C.-H., 2013. Aerosol characteristics of different types of episode. Environmental monitoring and assessment 185, 9777-9787.
Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Prain, H.D., Bull, I.D., 2013. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmospheric environment 77, 548-557.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D.J.C., 2017. Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. 181, 713-724.
Lepeule, J., Laden, F., Dockery, D., Schwartz, J., 2012. Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environmental health perspectives 120, 965-970.
Li, Y., Zhang, Z., Liu, H., Zhou, H., Fan, Z., Lin, M., Wu, D., Xia, B., 2016. Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environmental geochemistry and health 38, 353-362.
Liao, Y.-H., Chen, W.-L., Wang, C.-C., Lai, C.-H., 2020. Associations between Personal Exposure to Metals in Fine Particulate Matter and Autonomic Nervous System Dysfunction among Healthy Adults. Aerosol and Air Quality Research 20, 1842-1849.
Lin, C.E., Pan, S.Y., Hsiao, T.-C., Chou, C., Chi, K.H., 2022. Spatio-Temporal Variation of PM2.5 And Their Associated Health Risk in Taipei City, Taiwan.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Lin, Y., Huang, K., Zhuang, G., Fu, J.S., Wang, Q., Liu, T., Deng, C., Fu, Q., 2014. A multi-year evolution of aerosol chemistry impacting visibility and haze formation over an Eastern Asia megacity, Shanghai. Atmospheric environment 92, 76-86.
Lippmann, M., Chen, L.C., Gordon, T., Ito, K., Thurston, G.D., 2013. National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. Research Report (Health Effects Institute), 5-13.
Liu, J., Chen, Y., Chao, S., Cao, H., Zhang, A., 2019. Levels and health risks of PM2.5-bound toxic metals from firework/firecracker burning during festival periods in response to management strategies. Ecotoxicology and environmental safety 171, 406-413.
Liu, L., Zhou, Q., Yang, X., Li, G., Zhang, J., Zhou, X., Jiang, W., 2020. Cytotoxicity of the soluble and insoluble fractions of atmospheric fine particulate matter. Journal of Environmental Sciences 91, 105-116.
Loret, T., Peyret, E., Dubreuil, M., Aguerre-Chariol, O., Bressot, C., Le Bihan, O., Amodeo, T., Trouiller, B., Braun, A., Egles, C., 2016. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions. Particle and fibre toxicology 13, 1-21.
Møller, P., Folkmann, J.K., Forchhammer, L., Bräuner, E.V., Danielsen, P.H., Risom, L., Loft, S., 2008. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer letters 266, 84-97.
Ma, L., Dadashazar, H., Braun, R.A., MacDonald, A.B., Aghdam, M.A., Maudlin, L.C., Sorooshian, A., 2019. Size-resolved characteristics of water-soluble particulate elements in a coastal area: Source identification, influence of wildfires, and diurnal variability. Atmospheric Environment 206, 72-84.
Madrigano, J., Kloog, I., Goldberg, R., Coull, B.A., Mittleman, M.A., Schwartz, J., 2013. Long-term exposure to PM2.5 and incidence of acute myocardial infarction. Environmental health perspectives 121, 192-196.
Mancuso, T., 1975. Consideration of chromium as an industrial carcinogen, International conference on heavy metals in the environment. University of Toronto, Institute of Environmental Studies Toronto, Canada, pp. 343-356.
Mancuso, T.F.J.A.j.o.i.m., 1997a. Chromium as an industrial carcinogen: Part I. 31, 129-139.
Mancuso, T.F.J.A.j.o.i.m., 1997b. Chromium as an industrial carcinogen: Part II. Chromium in human tissues. 31, 140-147.
Mantecca, P., Farina, F., Moschini, E., Gallinotti, D., Gualtieri, M., Rohr, A., Sancini, G., Palestini, P., Camatini, M., 2010. Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicology letters 198, 244-254.
Mantecca, P., Sancini, G., Moschini, E., Farina, F., Gualtieri, M., Rohr, A., Miserocchi, G., Palestini, P., Camatini, M., 2009. Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicology Letters 189, 206-214.
Markesbery, W.R., Ehmann, W.D., Alauddin, M., Hossain, T., 1984. Brain trace element concentrations in aging. Neurobiology of aging 5, 19-28.
Matawle, J.L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M.K., Pervez, Y., 2015. Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research 15, 2537-2548.
Mbengue, S., Alleman, L.Y., Flament, P., 2015. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environmental geochemistry and health 37, 875-889.
Mbengue, S., Alleman, L.Y., Flament, P., 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmospheric Research 183, 202-211.
Mitra, A., Morawska, L., Sharma, C., Zhang, J., 2002. Chapter two: methodologies for characterisation of combustion sources and for quantification of their emissions. Chemosphere 49, 903-922.
Mohseni Bandpi, A., Eslami, A., Shahsavani, A., Khodagholi, F., Aliaghaei, A., Alinejad, A., 2017. Water-soluble and organic extracts of ambient PM2.5 in Tehran air: assessment of genotoxic effects on human lung epithelial cells (A549) by the Comet assay. Toxin reviews 36, 116-124.
Moreno, T., Querol, X., Alastuey, A., Gibbons, W., 2008. Identification of FCC refinery atmospheric pollution events using lanthanoid-and vanadium-bearing aerosols. Atmospheric Environment 42, 7851-7861.
Mukhtar, A., Limbeck, A., 2013. Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica chimica acta 774, 11-25.
Mutuku, J.K., Lee, Y.-Y., Huang, B.-W., Chen, W.-H., Hou, W.-C., 2021. Assessment of the emission factors for potentially toxic elements from coal-fired boilers and sintering furnaces in a steel production plant. Science of The Total Environment, 148329.
Mwinyihija, M., 2010. Ecotoxicological diagnosis in the tanning industry. Springer Science & Business Media.
Németh, Z., Rosati, B., Zíková, N., Salma, I., Bozó, L., de España, C.D., Schwarz, J., Ždímal, V., Wonaschütz, A., 2018. Comparison of atmospheric new particle formation events in three Central European cities. Atmospheric Environment 178, 191-197.
Nakatsubo, R., Oshita, Y., Aikawa, M., Takimoto, M., Kubo, T., Matsumura, C., Takaishi, Y., Hiraki, T., 2020. Influence of marine vessel emissions on the atmospheric PM2.5 in Japan’s around the congested sea areas. Science of The Total Environment 702, 134744.
Nordberg, G., Jin, T., Bernard, A., Fierens, S., Buchet, J.P., Ye, T., Kong, Q., Wang, H., 2002. Low bone density and renal dysfunction following environmental cadmium exposure in China. AMBIO: a journal of the human environment 31, 478-481.
OEHHA, 2011. Final Public Health Goal for Hexavalent Chromium.
Ono, J., Harada, K., Kodaka, R., Sakurai, K., Tajiri, H., Takagi, Y., Nagai, T., Harada, T., Nihei, A., Okada, A., 1995. Manganese deposition in the brain during long‐term total parenteral nutrition. Journal of Parenteral and Enteral Nutrition 19, 310-312.
Onyele, O.G., Anyanwu, E.D., 2018. HUMAN HEALTH RISK ASSESSMENT OF SOME HEAVY METALS IN A RURAL SPRING, SOUTHEASTERN NIGERIA. African Journal of Environment and Natural Science Research 1, 15-23.
Oruko, R., Selvarajan, R., Ogola, H., Edokpayi, J., Odiyo, J.J.P.S., Protection, E., 2020. Contemporary and future direction of chromium tanning and management in sub Saharan Africa tanneries. 133, 369-386.
Ostro, B., Feng, W.-Y., Broadwin, R., Green, S., Lipsett, M., 2007. The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental health perspectives 115, 13-19.
Owoade, O.K., Abiodun, P.O., Omokungbe, O.R., Fawole, O.G., Olise, F.S., Popoola, O.O., Jones, R.L., Hopke, P.K.J.A., Research, A.Q., 2021. Spatial-temporal Variation and Local Source Identification of Air Pollutants in a Semi-urban Settlement in Nigeria Using Low-cost Sensors. 21, 200598.
Pandey, P., Patel, D., Khan, A., Barman, S., Murthy, R., Kisku, G., 2013. Temporal distribution of fine particulates (PM2.5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environmental Science and Health, Part A 48, 730-745.
Park, D., Oh, M., Yoon, Y., Park, E., Lee, K., 2012. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmospheric Environment 49, 180-185.
Park, J., Kim, H., Kim, Y., Heo, J., Kim, S.-W., Jeon, K., Yi, S.-M., Hopke, P.K.J.S.o.T.T.E., 2022. Source apportionment of PM2.5 in Seoul, South Korea and Beijing, China using dispersion normalized PMF. 833, 155056.
Peixoto, M.S., de Oliveira Galvão, M.F., de Medeiros, S.R.B., 2017. Cell death pathways of particulate matter toxicity. Chemosphere 188, 32-48.
Perrone, M.G., Gualtieri, M., Ferrero, L., Porto, C.L., Udisti, R., Bolzacchini, E., Camatini, M., 2010. Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 78, 1368-1377.
Pey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment 44, 1587-1596.
Pinkerton, K.E., Green, F., Saiki, C., Vallyathan, V., Plopper, C.G., Gopal, V., Hung, D., Bahne, E.B., Lin, S.S., Ménache, M.G., 2000. Distribution of particulate matter and tissue remodeling in the human lung. Environmental Health Perspectives 108, 1063-1069.
Polidori, A., Cheung, K.L., Arhami, M., Delfino, R.J., Schauer, J.J., Sioutas, C., 2009. Relationships between size-fractionated indoor and outdoor trace elements at four retirement communities in southern California. Atmospheric Chemistry and Physics 9, 4521-4536.
Pomier-Layrargues, G., Spahr, L., Butterworth, R., 1995. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet (London, England) 345, 735-735.
Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287, 1132-1141.
Pope III, C.A., Ezzati, M., Dockery, D.W., 2009. Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine 360, 376-386.
Qu, Y., Ji, H., Oudray, F., Yan, Y., Liu, Y.J.O., 2021. Online composition detection and cluster analysis of Tibetan incense. 241, 166999.
Rachwał, M., Wawer, M., Jabłońska, M., Rogula-Kozłowska, W., Rogula-Kopiec, P., 2020. Geochemical and Mineralogical Characteristics of Airborne Particulate Matter in Relation to Human Health Risk. Minerals 10, 866.
Rai, P., Chakraborty, A., Mandariya, A.K., Gupta, T.J.A.R., 2016. Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF. 178, 506-520.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M.J.E.s., technology, 2009. Emissions inventory of PM2.5 trace elements across the United States. 43, 5790-5796.
Romanazzi, V., Casazza, M., Malandrino, M., Maurino, V., Piano, A., Schilirò, T., Gilli, G., 2014. PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere 112, 210-216.
Roy, D., Lyou, E.S., Kim, J., Lee, T.K., Park, J., 2022. Commuters health risk associated with particulate matter exposures in subway system–Globally. Building and Environment 216, 109036.
Rudnick, R., Gao, S., 2002. Composition of the Continental Crust. University of Maryland, College Park, MD, USA.
Salma, I., Füri, P., Németh, Z., Balásházy, I., Hofmann, W., Farkas, Á., 2015. Lung burden and deposition distribution of inhaled atmospheric urban ultrafine particles as the first step in their health risk assessment. Atmospheric Environment 104, 39-49.
Sarkar, S., Khillare, P.S., Jyethi, D.S., Hasan, A., Parween, M., 2010. Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials 184, 321-330.
Scheffler, S., Dieken, H., Krischenowski, O., Aufderheide, M., 2015. Cytotoxic evaluation of e-liquid aerosol using different lung-derived cell models. International journal of environmental research and public health 12, 12466-12474.
Schlesinger, R., Kunzli, N., Hidy, G., Gotschi, T., Jerrett, M., 2006. The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhalation toxicology 18, 95-125.
Schraufnagel, D.E., 2020. The health effects of ultrafine particles. Experimental & molecular medicine 52, 311-317.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: from air pollution to climate change. New York. John Willey & Sons. Inc.–1999.-1295 P.
Shen, H., Yuan, C.-S., Lu, C.-C., Jiang, Y., Jing, G., Hu, G., Yu, R.J.A., Research, A.Q., 2019. Chemical composition and health risk of PM2.5 from near-ground firecracker burning in micro region of eastern Taiwan. 19, 2252-2266.
Shen, J., Gao, Z., 2019. Commuter exposure to particulate matters in four common transportation modes in Nanjing. Building and Environment 156, 156-170.
Singh, R., Sharma, B.S.J.E.M., Assessment, 2012. Composition, seasonal variation, and sources of PM10 from world heritage site Taj Mahal, Agra. 184, 5945-5956.
Siudek, P., 2020. Seasonal variability of trace elements in fine particulate matter (PM2.5) in a coastal city of northern Poland–profile analysis and source identification. Environmental Science: Processes & Impacts 22, 2230-2243.
Slezakova, K., Morais, S., do Carmo Pereira, M., 2014. Trace metals in size-fractionated particulate matter in a Portuguese hospital: exposure risks assessment and comparisons with other countries. Environmental Science and Pollution Research 21, 3604-3620.
Son, J., Kim, K., Kwon, S., Park, S.-m., Ha, K., Shin, Y., Ahn, M., Cho, S., Shin, J., Shin, Y., 2021. Source Quantification of PM10 and PM2.5 Using Iron Tracer Mass Balance in a Seoul Subway Station, South Korea. Aerosol and Air Quality Research 21, 200573-200573.
Song, Y., Wang, X., Maher, B.A., Li, F., Xu, C., Liu, X., Sun, X., Zhang, Z., 2016. The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China. Journal of Cleaner Production 112, 1312-1318.
Sternbeck, J., Sjödin, Å., Andréasson, K., 2002. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric environment 36, 4735-4744.
Sun, Y., Hu, X., Wu, J., Lian, H., Chen, Y., 2014. Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment 493, 487-494.
Sun, Z., Duan, F., Ma, Y., He, K., Zhu, L., Ma, T.J.A., Research, A.Q., 2019. Heavy particulate matter pollution during the 2014–2015 winter in Tianjin, China. 19, 1338-1345.
Tagliani, S.M., Carnevale, M., Armiento, G., Montereali, M.R., Nardi, E., Inglessis, M., Sacco, F., Palleschi, S., Rossi, B., Silvestroni, L., 2017. Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5. Atmospheric Environment 153, 47-60.
Takeda, A., 2003. Manganese action in brain function. Brain Research Reviews 41, 79-87.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Molecular, Clinical and Environmental Toxicology.
Tepanosyan, G., Maghakyan, N., Sahakyan, L., Saghatelyan, A., 2017. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and environmental safety 142, 257-265.
Teran, K., Žibret, G., Fanetti, M., 2020. Impact of urbanization and steel mill emissions on elemental composition of street dust and corresponding particle characterization. Journal of hazardous materials 384, 120963.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Trainer, V.L., Moore, S.K., Hallegraeff, G., Kudela, R.M., Clement, A., Mardones, J.I., Cochlan, W.P., 2019. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae.
Tsai, P.-J., Young, L.-H., Hwang, B.-F., Lin, M.-Y., Chen, Y.-C., Hsu, H.-T., 2020. Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan. Atmospheric Pollution Research.
Tseng, Y.-L., Wong, K.-W., Yuan, C.-S., Lin, C.J.A., Research, A.Q., 2022. Diurnal Variation of Chemical Characteristics and Source Identification of Fine Particles in the Kaohsiung Harbor. 22, 220100.
Tseng, Y.-L., Wu, C.-H., Yuan, C.-S., Bagtasa, G., Yen, P.-H., Cheng, P.-H.J.S.o.T.T.E., 2021. Inter-comparison of chemical characteristics and source apportionment of PM2.5 at two harbors in the Philippines and Taiwan. 793, 148574.
U.S.EPA, 1991. RISK ASSESSMENT GUIDANCE FOR SUPERFUND VOLUME I: HUMAN HEALTH EVALUATION MANUAL SUPPLEMENTAL GUIDANCE "STANDARD DEFAULT EXPOSURE FACTORS” INTERIM FINAL Office.
U.S.EPA, 1998. TOXICOLOGICAL REVIEW OF HEXAVALENT CHROMIUM.
U.S.EPA, 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), p. 13.
U.S.EPA, 2014. Regional Screening Levels (RSLs) - User′s Guide.
U.S.EPA, 2017. Regional Screening Level (RSL) Summary Table.
Uria-Tellaetxe, I., Carslaw, D.C., 2014. Conditional bivariate probability function for source identification. Environmental modelling & software 59, 1-9.
Van Giang, L., Thanh, T., Hien, T.T., Van Tan, L., Phuong, T.T.B., Loc, H.H., 2021. Heavy metals emissions from joss paper burning rituals and the air quality around a specific incinerator. Materials Today: Proceedings 38, 2751-2757.
Vempilly, J., Abejie, B., Diep, V., Gushiken, M., Rawat, M., Tyner, T.R., 2013. The synergetic effect of ambient PM2.5 exposure and rhinovirus infection in airway dysfunction in asthma: a pilot observational study from the Central Valley of California. Experimental lung research 39, 434-440.
Verma, V., Fang, T., Guo, H., King, L., Bates, J., Peltier, R., Edgerton, E., Russell, A., Weber, R., 2014. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics 14, 12915-12930.
Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T., Garcia Dos Santos, S., Herce, M.D., Fernández-Patier, R., 2009. Chemical tracers of particulate emissions from commercial shipping. Environmental science & technology 43, 7472-7477.
Višić, B., Kranjc, E., Pirker, L., Bačnik, U., Tavčar, G., Škapin, S., Remškar, M., 2018. Incense powder and particle emission characteristics during and after burning incense in an unventilated room setting. Air Quality, Atmosphere & Health 11, 649-663.
Wang, S., Hu, G., Yan, Y., Wang, S., Yu, R., Cui, J., 2019. Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmospheric environment 198, 302-312.
Wang, Y.-S., Chang, L.-C., Chang, F.-J., 2021. Explore regional PM2.5 features and compositions causing health effects in Taiwan. Environmental Management 67, 176-191.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Wei-Hsiang, C., Ming-Tsuen, H., Jie-Yu, Y., Adnan, Q., Chon-Lin, L., 2021. Temporal and vertical variations of polycyclic aromatic hydrocarbon at low elevations in an industrial city of southern Taiwan. Scientific Reports (Nature Publisher Group) 11.
Woo, S.-H., Kim, J.B., Bae, G.-N., Hwang, M.S., Tahk, G.H., Yoon, H.H., Yook, S.-J., 2018. Investigation of diurnal pattern of generation and resuspension of particles induced by moving subway trains in an underground tunnel. Aerosol and Air Quality Research 18, 2240-2252.
Wu, S.-P., Cai, M.-J., Xu, C., Zhang, N., Zhou, J.-B., Yan, J.-P., Schwab, J.J., Yuan, C.-S., 2020. Chemical nature of PM2.5 and PM10 in the coastal urban Xiamen, China: insights into the impacts of shipping emissions and health risk. Atmospheric Environment 227, 117383.
Wu, Y., Lu, B., Zhu, X., Wang, A., Yang, M., Gu, S., Wang, X., Leng, P., Zierold, K.M., Li, X., 2019. Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China. Aerosol and Air Quality Research 19, 2083-2092.
Xiong, K., Kukec, A., Rumrich, I.K., Rejc, T., Pasetto, R., Iavarone, I., Hänninen, O., 2018. Methods of health risk and impact assessment at industrially contaminated sites: a systematic review.
Ye, D., Klein, M., Mulholland, J.A., Russell, A.G., Weber, R., Edgerton, E.S., Chang, H.H., Sarnat, J.A., Tolbert, P.E., Ebelt Sarnat, S., 2018. Estimating acute cardiovascular effects of ambient PM2.5 metals. Environmental health perspectives 126, 027007.
Yuan, Y., Wu, Y., Ge, X., Nie, D., Wang, M., Zhou, H., Chen, M., 2019. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Science of The Total Environment 678, 301-308.
Zarros, A., Skandali, N., Al-Humadi, H., Liapi, C., 2008. Cadmium (Cd) as a carcinogenetic factor and its participation in the induction of lung cancer. Pneumon 21, 172-177.
Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., Zeng, G., 2014. Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Science of the Total Environment 493, 109-115.
Zhang, J., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., Mao, H., Wei, E., 2018. Elemental composition and health risk assessment of PM10 and PM2.5 in the roadside microenvironment in Tianjin, China. Aerosol and Air Quality Research 18, 1817-1827.
Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Ulbrich, I.M., Ng, N.L., Worsnop, D.R., Sun, Y.J.A., chemistry, b., 2011. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. 401, 3045-3067.
Zhang, X., Yin, Y., Lin, Z., Han, Y., Hao, J., Yuan, L., Chen, K., Chen, J., Kong, S., Shan, Y., 2017. Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Science of the Total Environment 575, 309-320.
Zhang, Y., 2003. 100 Years of Pb Deposition and Transport in Soils in Champaign, Illinois, U.S.A. Water, Air, and Soil Pollution 146, 197–210.
Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., Chen, L., 2013a. Characteristics and ship traffic source identification of air pollutants in China′s largest port. Atmospheric environment 64, 277-286.
Zhao, P., Dong, F., He, D., Zhao, X., Zhang, X., Zhang, W., Yao, Q., Liu, H., 2013b. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics 13, 4631-4644.
Zheng, W., Aschner, M., Ghersi-Egea, J.-F., 2003. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and applied pharmacology 192, 1-11.
Zhu, G., Xie, Z., Xu, H., Wang, N., Zhang, L., Mao, N., Cheng, J.J.S., 2022. Oil Spill Environmental Risk Assessment and Mapping in Coastal China Using Automatic Identification System (AIS) Data. 14, 5837.
Žibret, G., Van Tonder, D., Žibret, L., 2013. Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environmental science and pollution research 20, 4455-4468.
Zou, Y., Jin, C., Su, Y., Li, J., Zhu, B., 2016. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. Environmental pollution 212, 627-635.
臺灣行政院環境保護署, 2011. 健康風險評估技術規範.
臺灣行政院環境保護署, 2020. 空氣品質標準法規
王榮德, 1983. 飲用水改善前後, 烏腳病發生率之研究, 烏腳病之研究報告第18 輯, 台灣省烏腳病防治中心, 1983.
王鑫, 2004. 臺灣的特殊地景:北臺灣. 臺灣地理百科, 遠足出版社.
張順欽, 2012. 南科台南園區深層地下水富含砷的成因初探, 工業污染防治.
許家綺, 2015. 2011-2015 年臺灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響. 國立中央大學環境工程研究所碩士論文.
馬鴻文, 2016. 吳先琪, 風險評估專書編寫小組, 土壤地下水污染場址的風險評估與管理: 挑戰與機會. 五南.
徐櫻芳, 2016. 製香作業環境粉塵與重金屬分布特性之研究. 勞動及職業安全衛生研究季刊.
王偉, 2017. 2015-2016年臺灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估. 國立中央大學環境工程研究所碩士論文.
蔡政憲, 2017. 海岸濕地與石化工業區的共存:金屬暴露對鼩鼱與鼠之生物效應. 臺灣大學附設醫院斗六分院.
羅鈞, 2018. 我國固定污染源細懸浮微粒(PM2.5)排放特性之研究分析,中興工程,140, 47-62.
榮建誠, 黃譯樘, 周崇光, 李經民, 李崇德, 張士昱, 2018. 細懸浮微粒碳及鉛同位素分析技術發展與應用計畫. 107年環境科技論壇. EPA-105-U101-02-A272.
翁子芩, 2019. 2017年臺灣六個城市PM2.5金屬元素污染來源推估. 國立中央大學環境工程研究所碩士論文.
林乃芸, 2019. 2015-2017年臺灣都會區細懸浮微粒(PM2.5)元素成分濃度時間及空間變化. 國立中央大學環境工程研究所碩士論文.
周崇光、林煜棋、林順信、練建國、陳馥韻、黃譯樘、胡淑娟、黃昭豪, 103年12月. 懸浮微粒污染源特徵指標技術之建置與評析(2014). EPA-103-1602-02-06.
李崇德、周崇光、張士昱、蕭大智、許文昌,2017。“細懸浮微粒(PM2.5)化學成分監測及分析計畫”,期末報告(定稿本),環保署EPA-105-U102-03-A284,台北,106年12月。
中央氣象局, 2017. 106氣候年報, 中央氣象局.
李崇德、周崇光、張士昱、蕭大智、許文昌,2018。“107年度細懸浮微粒(PM2.5)化學成分監測及分析計畫”,期末報告(定稿本),環保署EPA-107-L101-02-A024,台北,107年12月。
中央氣象局, 2018. 107氣候年報, 中央氣象局.
李崇德、王家麟、周崇光、張士昱、蕭大智、莊銘棟、許文昌,2019。108年度細懸浮微粒(PM2.5)化學成分監測及分析計畫。期末報告,台北,108年12月。
中央氣象局, 2019. 108氣候年報, 中央氣象局.
李崇德、周崇光、張士昱、蕭大智、莊銘棟、許文昌,2020。“109年度細懸浮微粒(PM2.5)化學成分監測及分析計畫”,期末報告(定稿本),台北,109年12月。
中央氣象局, 2020. 109氣候年報, 中央氣象局.
李崇德、周崇光、張士昱、莊銘棟、許文昌,2022。“111年度細懸浮微粒(PM2.5)化學成分監測及分析計畫”,期末報告(定稿本),台北,111年12月。
莊文星, 2012. 北臺灣火山地形多樣性之探討, 國立自然科學博物館.
指導教授 李崇德(Chung-Te Lee) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明