博碩士論文 108326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.135.205.146
姓名 莊鏡薰(Ching-Hsun Chuang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2020 ~ 2021年鹿林山氣流軌跡類型對氣膠化學及光學特性影響
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年3至4月中南半島北部山區大規模生質燃燒(Biomass Burning, BB),燃燒煙團傳輸到東亞影響範圍甚廣。本文於2020年9~10月以及2021年3~4月在鹿林山大氣背景觀測站(2,862 m a.s.l.)觀測大氣氣膠化學成分,並結合觀測站相關監測資料,分析氣膠的光學特性。
2019年底新冠肺(COVID-19)爆發,許多國家實施鎖國政策,人為活動減少。2020年秋季背景(Background, BK)期間,PM2.5及PM10的質量濃度分別為2 ± 1及3 ± 2 μg m-3,與2019年秋季相比下降了76%及70%。2021春季,PM2.5及PM10的質量濃度分別為20 ± 9及29 ± 13 μg m-3,PM2.5占PM10 68%;PM10是近五年濃度最高的一年,不受疫情影響。2021年春季三種氣流軌跡類型PM2.5碳成分受到BB、化石燃料燃燒、烹飪排放不等的影響;採樣期間發生阿里山森林大火,OC/ EC及Char-EC/ Soot-EC比值證實受到BB影響。當大氣氣膠在NH4+/SO42-莫耳比1.5時,NO3-與NH4+大多結合成NH4NO3。
以Revised IMPROVE公式計算大氣消光係數,2020年秋季約為17.0 Mm-1,2021年春季為53.6至104.6 Mm-1;空氣分子是秋季主要影響大氣消光因子,春季則是氣膠有機物及硫酸銨。計算2019~2021年的大氣消光係數與氣膠光學厚度判定係數R2 = 0.41 (n = 36, p < 0.01),表示大氣層氣膠成分平均組成和鹿林山測站量測結果有相關但不全然相近。2016 ~ 2021年春季原生排放有機碳(POC)推估濃度有逐漸增加的趨勢,代表境外傳輸BB煙團排放碳成分比例增高,二次形成有機碳(SOC)濃度降低。近六年春季氣膠碳成分ECR(=SOC/(POC+EC)) 吸光較散光效應強;然而,ECR值逐漸升高,顯示PM2.5碳成分對太陽輻射的吸光效應還是有逐漸減弱的趨勢。
總結來說,東亞高山地區大氣氣膠以PM2.5為主,2021年春季氣膠濃度較國際新冠肺炎疫情前高。近六年(2016-2021)春季PM2.5碳成分對太陽輻射的吸光較散光效應強,但有逐漸減弱的趨勢。
摘要(英) Each year, from March to April, large-scale biomass burning (BB) occurs in the northern mountainous regions of the Indochina Peninsula, and the resulting smoke plumes can impact a wide area in East Asia. This study conducted atmospheric aerosol chemical composition measurements at the Lulin Atmospheric Background Observation Station (2,862 m a.s.l.) from September to October 2020 and March to April 2021. The study also analyzed the optical properties of the aerosols in conjunction with relevant monitoring data from the station.
At the end of 2019, the outbreak of the COVID-19 pandemic led to many countries implementing lockdown policies, resulting in reduced human activities. During the background (BK) period in autumn 2020, the mass concentrations of PM2.5 and PM10 were 2 ± 1 μg m-3 and 3 ± 2 μg m-3, respectively, representing a decrease of 76% and 70% compared to autumn 2019. In spring 2021, the mass concentrations of PM2.5 and PM10 were 20 ± 9 μg m-3 and 29 ± 13 μg m-3, with PM2.5 accounting for 68% of PM10. Despite the pandemic, PM10 concentrations in spring 2021 reached their highest level in the past five years, unaffected by the COVID-19 impact. During spring 2021, PM2.5 carbonaceous components were influenced by BB, fossil fuel combustion, and cooking emissions. The occurrence of the Alishan forest fire during the sampling period was confirmed to have affected the OC/EC and Char-EC/Soot-EC ratios, indicating the influence of BB.
When the molar ratio of NH4+/SO42- in atmospheric aerosols was approximately 1.5, most of the NO3- combined with NH4+ to form NH4NO3. The atmospheric extinction coefficients were calculated using the Revised IMPROVE formula and were approximately 17.0 Mm-1 in autumn 2020 and ranged from 53.6 to 104.6 Mm-1 in spring 2021. In autumn, air molecules were the primary factors affecting the atmospheric extinction, while in spring, organic aerosols and ammonium sulfate played significant roles. The correlation coefficient (R2) between the calculated atmospheric extinction coefficients and aerosol optical thickness from 2019 to 2021 was 0.41 (n = 36, p < 0.01), indicating a significant but not entirely consistent relationship between the average aerosol composition and measurement results at the Lulin station.
From 2016 to 2021, there was a gradual increase in the estimated concentration of primary organic carbon (POC) during spring, indicating an increasing proportion of carbonaceous components from transported BB smoke plumes, while the concentration of secondary organic carbon (SOC) decreased. Over the past six years, the ECR (= SOC/(POC+EC)) of aerosol carbon components in spring showed a stronger light-absorbing effect than scattering, but there was a trend of gradual weakening.
In summary, PM2.5 dominates the atmospheric aerosols in the East Asian high mountain regions, and the aerosol concentration in spring 2021 was higher than pre-COVID-19 pandemic levels. Over the past six years (2016-2021), the light-absorbing effect of PM2.5 carbonaceous components on solar radiation has shown a gradually weakening trend, despite the stronger light absorption compared to scattering effects initially.
關鍵字(中) ★ 鹿林山
★ 生質燃燒長程傳輸
★ 氣膠化學與光學
★ COVID-19
關鍵字(英) ★ Mountain Lulin
★ Long-range transport of biomass burning
★ Aerosol chemistry and optics
★ COVID-19
論文目次 摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1.研究緣起 1
1.2.研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒長程傳輸 3
2.2 氣膠水溶性無機離子 5
2.2.1 WSIIs特徵比應用 7
2.3 氣膠碳成分 9
2.3.1 碳成分特徵比 10
2.3.2 有效碳特徵比(Effective carbon ratio, ECR) 13
2.4 氣膠光學特性 16
2.4.1氣膠吸光、散光及消光係數 16
2.4.2 單一散射反照率(single scatter albedo, SSA) 17
2.5 COVID-19對全球氣膠質量濃度的影響 18
第三章 研究方法 19
3.1 研究架構 19
3.2 鹿林山空氣品質背景監測站(Lulin Atmospheric Background Station, LABS) 21
3.3 採樣觀測儀器 23
3.3.1 R&P Model 3500 自組式蜂巢式套管化學採樣器 23
3.4 採樣濾紙與前處理方法 26
3.4.1 儀器與濾紙配置 26
3.4.2 濾紙前處理 28
3.4.3 樣本運送與保存 29
3.5 樣本分析方法 29
3.5.1 樣本質量濃度秤重 29
3.5.2 氣膠碳成分分析 30
3.5.3氣膠水溶性無機離子分析 33
3.5.4 氣膠微粒揮發成分補償校正 36
3.6氣膠水溶性離子非海洋來源 39
3.7 NOAA 氣膠觀測系統 40
3.7.1 積分式散光儀 (TSI Model 3563 Integrating Nephelometer) 40
3.7.2 微粒碳吸收光度計 (PSAP) 42
3.7.3 黑碳儀(Aethalometer AE-31, Magee Scientific) 46
3.8環保署鹿林山測站其他自動觀測儀器 49
3.9 判別生質燃燒發生方法 50
3.9.1美國太空總署 (NASA) 自然災害網 50
3.9.2 美國太空總署全球火災監測中心 50
3.9.3 氣流軌跡模式 (NOAA HYSPLIT) 51
3.10一次與二次有機碳的估計 52
3.11 Revised IMPROVE 公式計算大氣消光係數 53
第四章 結果與討論 56
4.1.1 氣流軌跡分類方式 56
4.1.2 秋季氣膠質量濃度 58
4.1.3 秋季氣膠水溶性無機離子與碳成分 60
4.1.4 不同氣流軌跡類型氣膠化學成分差異 64
4.2 2021年春季鹿林山氣膠化學成分特性分析 68
4.2.1 春季氣流軌跡分類及氣膠特性 68
4.2.2 阿里山森林大火事件 76
4.2.3 鹿林山2021年春季三種氣流軌跡類型氣膠不同粒徑化學成分 80
4.2.4 春季氨根離子結合型態說明 96
4.3鹿林山氣膠化學成分與光學特性 98
4.3.1 IMPROVE公式推算秋季、春季消光係數與自動量測消光係數比較 98
4.3.2 各氣流軌跡PM2.5化學成分消光貢獻 102
4.3.3 氣膠光學厚度 (AOD) 與化學成分相關性 104
4.3.4 PM2.5成分及氣象因子與消光係數多元迴歸模式 105
4.4 Covid - 19爆發對氣膠化學成分影響 109
4.4.1 近五年 (2017~20201年)氣膠化學成分占比變化 109
4.4.2 氣膠SOC與 POC推估及有效碳特徵比 (ECR) 應用 116
第五章 結論與建議 121
5.1 結論 121
5.2 建議 123
附錄一 鹿林山採樣期間氣流軌跡類型 147
附錄二 鹿林山春季觀測期間火點 172
附錄三 口試委員意見回覆 174
參考文獻 Almeida, G.P., Bittencourt, A.T., Evangelista, M.S., Vieira-Filho, M.S., Fornaro, A., 2019. Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmospheric environment 202, 149-159.
Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Iorio, T.D., Dulac, F., Mallet, M., 2016. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin. Atmospheric Chemistry and Physics 16, 4725-4742.
Andreae, M.O., Gelencser, A., 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics 6, 3131–3148.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Andreae, M.O., Metlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966.
Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Ray, B.J., 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. Journal of Geophysical Research: Atmospheres 101, 2011-2023.
Arnott, W.P., Hamasha, K., Moosmüller, H., Sheridan, P.J., Ogren, J.A., 2005. Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer. Aerosol Science and Technology 39, 17-29.
Babar, Z.B., Park, J.-H., Lim, H.-J., 2017. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmospheric Environment 164, 71-84.
Backman, J., Schmeisser, L., Virkkula, A., Ogren, J.A., Asmi, E., Starkweather, S., Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., Bergin, M., Makshtas, A., 2016. On Aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic. Atmospheric Measurement Techniques.
Bagtasa, G., Cayetano, M.G., Yuan, C.-S., Uchino, O., Sakai, T., Izumi, T., Morino, I., Nagai, T., Macatangay, R.C., Velazco, V.A., 2019. Long-range transport of aerosols from East and Southeast Asia to northern Philippines and its direct radiative forcing effect. Atmospheric Environment 218.
Bisht, D.S., Dumka, U.C., Kaskaoutis, D.G., Pipal, A.S., Srivastava, A.K., Soni, V.K., Attri, S.D., Sateesh, M., Tiwari, S., 2015. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Science of the Total Environment 521-522, 431-445.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols. Aerosol Science and Technology 30, 582-600.
Bond, T.C., Bergstrom, R.W., 2007. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Science and Technology 40, 27-67.
Boongla, Y., Chanonmuang, P., Hata, M., Furuuchi, M., Phairuang, W., 2021. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environmental Pollution 272, 115940.
Bozzetti, C., Haddad, I.E., Salameh, D., Daellenbach, K.R., Fermo, P., Gonzalez, R., Minguillón, M.C., Iinuma, Y., Poulain, L., Elser, M., Müller, E., Slowik, J.G., Jaffrezo, J.-L., Baltensperger, U., Marchand, N., Prévôt, A.S.H., 2017. Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmospheric Chemistry and Physics 17, 8247-8268.
Buchunde, P.S., Safai, P.D., Mukherjee, S., Raju, M.P., Meena, G.S., Sonbawne, S.M., Dani, K.K., Pandithurai, G., 2021. Seasonal abundances of primary and secondary carbonaceous aerosols at a high-altitude station in the Western Ghat Mountains, India. Air Quality, Atmosphere & Health 15, 209-220.
Bukowiecki, N., Steinbacher, M., Henne, S., Nguyen, N.A., Nguyen, X.A., Hoang, A.L., Nguyen, D.L., Duong, H.L., Engling, G., Wehrle, G., Gysel-Beer, M., Baltensperger, U., 2019. Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. Aerosol and Air Quality Research 19, 1172-1187.
Cabada, J.C., Pandis, S.N., Subramanian, R., Robinson, A.L., Polidori, A., Turpin, B., 2004. Estimating the Secondary Organic Aerosol Contribution to PM2.5 Using the EC Tracer Method Special Issue of Aerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology 38, 140-155.
Cao, J.J., Lee, S.C., Ho, K.F., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research 6, 106-122.
Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K., Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Chakrabarty, R.K., Pervez, S., Chow, J.C., Watson, J.G., Dewangan, S., Robles, J., Tian, G., 2013. Funeral Pyres in South Asia: Brown Carbon Aerosol Emissions and Climate Impacts. Environmental Science & Technology Letters 1, 44-48.
Chand, D., Guyon, P., Artaxo, P., Schmid, O., Frank, G.P., Rizzo, L.V., Mayol-Bracero, O.L., Gatti, L.V., Andreae, M.O., 2006. Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season. Atmospheric Chemistry and Physics 6, 2911–2925.
Chauvigné, A., Aliaga, D., Sellegri, K., Montoux, N., Krejci, R., Mocnik, G., Moreno, I., Müller, T., Pandolfi, M., Velarde, F., Weinhold, K., Ginot, P., Wiedensohler, A., Andrade, M., Laj, P., 2019. Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.). Atmospheric Chemistry and Physics 19, 14805-14824.
Chen, L.-W.A., Moosmüller, H., Arnott, W.P., Chow, J.C., Watson, J.G., Susott, R.A., Babbitt, R.E., Wold, C.E., Lincoln, E.N., Hao, W.M., 2007. Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles. Environmental Science & Technology 41, 4317–4325.
Cheng, Y., Engling, G., He, K.B., Duan, F.K., Ma, Y.L., Du, Z.Y., Liu, J.M., Zheng, M., Weber, R.J., 2013. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics 13, 7765–7781.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., Su, H., 2016. Reactive nitrogen chemistry in aerosol water as asource of sulfate during haze events in China. Science Advances 2.
Chow, J.C., Watson, J.G., Chen, L.-W.A., Arnott, W.P., Moosmüller, H., Fung, K., 2004a. Equivalence of Elemental Carbon by Thermal Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science & Technology 38, 4414–4422.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004b. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Chuang, M.-T., Chou, C.C.-K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Chung, C.E., Ramanathan, V., Decremer, D., 2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proceedings of the National Academy of Sciences 109, 11624-11629.
Coen, M.C., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques 3, 457–474.
Dahari, N., Muda, K., Latif, M.T., Hussein, N., 2019. Studies of Atmospheric PM2.5 and its Inorganic Water Soluble Ions and Trace Elements around Southeast Asia: a Review. Asia-Pacific Journal of Atmospheric Sciences 57, 361-385.
Dallmann, T.R., Onasch, T.B., Kirchstetter, T.W., Worton, D.R., Fortner, E.C., Herndon, S.C., Wood, E.C., Franklin, J.P., Worsnop, D.R., Goldstein, A.H., Harley, R.A., 2014. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics 14, 7585-7599.
Day, M.C., Zhang, M., Pandis, S.N., 2015. Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment 112, 317-325.
Dobracki, A., Zuidema, P., Howell, S.G., Saide, P., Freitag, S., Aiken, A.C., Burton, S.P., Sedlacek Iii, A.J., Redemann, J., Wood, R., 2023. An attribution of the low single-scattering albedo of biomass burning aerosol over the southeastern Atlantic. Atmospheric Chemistry and Physics 23, 4775-4799.
Dong, X., Fu, J.S., Huang, K., Lin, N.-H., Wang, S.-H., Yang, C.-E., 2018. Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region. Scientific reports 8, 8962.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Echalar, F., Gaudichet, A., 1995. Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. Geophysical Research Letters 22, 3039-3042.
Forestieri, S.D., Helgestad, T.M., Lambe, A.T., Renbaum-Wolff, L., Lack, D.A., Massoli, P., Cross, E.S., Dubey, M.K., Mazzoleni, C., Olfert, J.S., III, A.J.S., Freedman, A., Davidovits, P., Onasch, T.B., Cappa, C.D., 2018. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmospheric Chemistry and Physics 18, 12141-12159.
Franco, J.F., Pacheco, J., Belalcazar, L.C., Behrentz, E., 2015. Characterization and source identification of VOC species in Bogotá, Colombia. Atmósfera 28, 1-11.
Frank, N.H., 2006. Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern U.S. cities. Journal of the Air & Waste Management Association 56, 500-511.
Fuzzi, S., Andreae, M.O., Huebert, B.J., Kulmala, M., Bond, T.C., Boy, M., Doherty, S.J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V.-M., Lohmann, U., Russell, L.M., Poschl, U., 2006. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics 6, 2017–2038.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Gon, H.D.v.d., Facchini, M.C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J.G., Spracklen, D.V., Vignati, E., Wild, M., Williams, M., Gilardoni, S., 2015. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics 15, 8217-8299.
Ge, B., Xu, X., Ma, Z., Pan, X., Wang, Z., Lin, W., Ouyang, B., Xu, D., Lee, J., Zheng, M., Ji, D., Sun, Y., Dong, H., Squires, F.A., Fu, P., Wang, Z., 2019. Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in the North China Plain. Earth and Space Science 6, 1675-1693.
Ghahremanloo, M., Lops, Y., Choi, Y., Jung, J., Mousavinezhad, S., Hammond, D., 2022. A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: A deep learning approach. Atmospheric Environment 272, 118944.
Gácita, M.S., Longo, K.M., Freire, J.L.M., Freitas, S.R., Martin, S.T., 2017. Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia. Atmospheric Chemistry 17, 2373-2392.
Gurjar, B.R., Nagpure, A.S., Kumar, P., Gaseous Emissions from Agricultural Activities and Wetlands in National Capital Territory of Delhi. Ecological Engineering 75, 123-127.
Hama, S., Ouchen, I., Wyche, K.P., Cordell, R.L., Monks, P.S., 2022. Carbonaceous aerosols in five European cities: Insights into primary emissions and secondary particle formation. Atmospheric Research 274.
Han, T., Xu, W., Chen, C., Liu, X., Wang, Q., Li, J., Zhao, X., Du, W., Wang, Z., Sun, Y., 2015. Chemical apportionment of aerosol optical properties during the Asia‐Pacific Economic Cooperation summit in Beijing, China. Journal of Geophysical Research: Atmospheres 120, 12281-12295.
Han, Y., Cao, J., Chow, J.C., Watson, J.G., An, Z., Jin, Z., Fung, K., Liu, S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 69, 569-574.
Han, Y.M., Lee, S.C., Cao, J.J., Ho, K.F., An, Z.S., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Hays, M., Fine, P.M., Geron, C.D., Kleeman, M., Gullett, B.K., 2005. Open burning of agricultural biomass: Physicaland chemical properties of particle-phase emissions. Atmospheric Environment 39, 6747-6764.
He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., Chen, G., 2012. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics 12, 1377-1395.
Hennigan, C.J., Izumi, J., Sullivan, A.P., Weber, R.J., Nenes, A., 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics 15, 2775-2790.
Hitzenberger, R., Ctyroky, P., Berner, A., Tursic, J., Podkrajsek, B., Grgić, I., 2006. Size distribution of black (BC) and total carbon (TC) in Vienna and Ljubljana. Chemosphere 65, 2106-2113.
Hsu, N.C., Herman, J.R., Tsay, S.-C., 2003. Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia. Geophysical Research Letters 30.
Huang, T., Chen, J., Zhao, W., Cheng, J., Cheng, S., 2016a. Seasonal Variations and Correlation Analysis of Water-Soluble Inorganic Ions in PM2.5 in Wuhan, 2013. Atmosphere 7.
Huang, X.-F., Yu, J.Z., 2008. Size distributions of elemental carbon in the atmosphere of a coastal urban area in South China: characteristics, evolution processes, and implications for the mixing state. Atmospheric Chemistry and Physics Discussions 7, 10743–10766.
Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., Wang, Y., 2016b. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research.
Hussein, T., Li, X., Bakri, Z., Alastuey, A., Arar, S., Al-Hunaiti, A., Viana, M., Petäjä, T., 2022. Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere 13.
Huy, D.H., Thanh, L.T., Hien, T.T., Takenaka, N., 2020. Comparative study on water-soluble inorganic ions in PM2.5 from two distinct climate regions and air quality. Journal of Environmental Sciences 88, 349-360.
Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., Zhu, T., 2011. Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmospheric Chemistry and Physics 11, 10803-10822.
Ichikawa, Y., Naito, S., 2017. Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions. Asian Journal of Atmospheric Environment 11, 79-95.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697.
Jain, S., Sharma, S.K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T.K., Gupta, A., Gupta, N.C., Sharma, C., 2017. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research 24, 14637-14656.
Jia, H.-y., Wang, L., Li, P.-h., Wang, Y., Guo, L.-q., Li, T., Sun, L., Shou, Y.-p., Mao, T.-y., Yi, X.-l., 2016. Characterization, Long-Range Transport and Source Identification of Carbonaceous Aerosols during Spring and Autumn Periods at a High Mountain Site in South China. Atmosphere 7.
Jongejans, L.L., Strauss, J., Lenz, J., Peterse, F., Mangelsdorf, K., Fuchs, M., Grosse, G., 2018. Organic carbon stored in a thermokarst affected landscape on Baldwin Peninsula, Alaska. Laboratoire EDYTEM 0 UMR5204.
Kang, Y.H., SeungheeYou, Bae, M., Kim, E., Son, K., Bae, C., Kim, Y., Kim, B.U., Kim, H.C., Kim, S., 2020. The impacts of COVID-19, meteorology, and emission control policies on PM2.5 drops in Northeast Asia. Scientific Reports 10, 22112.
Kant, Y., Mitra, D., Chauhan, P., 2020. Space-Based Observations on The Impact of COVID-19-Induced Lockdown on Aerosols over India. Current Science 119, 539-544.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Keene, W.C., Pszenny, A.A.P., Galloway, J.N., Hawley, M.E., Sea-Salt Corrections and Interpretation of Constituent Ratios in Marine Precipitation. Journal of Geophysical Research 91, 6647-6658.
Keller, A., Burtscher, H., 2017. Characterizing particulate emissions from wood burning appliances including secondary organic aerosol formation potential. Journal of Aerosol Science 114, 21-30.
Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres 109.
Koch, D., 2001. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. Journal of Geophysical Research: Atmospheres 106, 20311-20332.
Kollanus, V., Tiittanen, P., Niemi, J.V., Lanki, T., 2016. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environmental Research 151, 351-358.
Kotchenmthe, R.A., Hobbs, P.V., Hegg, D.A., 1999. Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. Journal of Geophysical Research: Atmospheres 104, 2239-2251.
Koutrakis, P., Sloutas, C., Ferguson, S.T., Wolfson, J.M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science & Technology 27, 2497-2501.
Kumar, S., Yadav, S., 2020. Chemistry of size-segregated particles: study of sources and processes in N-NW India. Atmospheric Pollution Research 11, 370-382.
Kuniyal, J.C., Guleria, R.P., 2019. The current state of aerosol-radiation interactions: A mini review. Journal of Aerosol Science 130, 45-54.
Laskin, A., Laskin, J., Nizkorodov, S.A., 2015. Chemistry of atmospheric brown carbon. Chemical Reviews 115, 4335-4382.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45, 5784-5794.
Lee, C.-T., Ram, S.S., Nguyen, D.L., Chou, C.C.K., Chang, S.-Y., Lin, N.-H., Chang, S.-C., Hsiao, T.-C., Sheu, G.-R., Ou-Yang, C.-F., Chi, K.H., Wang, S.-H., Wu, X.-C., 2016. Aerosol Chemical Profile of Near-Source Biomass Burning Smoke in Sonla, Vietnam during 7-SEAS Campaigns in 2012 and 2013. Aerosol and Air Quality Research 16, 2603-2617.
Li, L., Yin, Y., Kong, S., Wen, B., Chen, K., Yuan, L., Li, Q., 2014. Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmospheric Environment 98, 242-252.
Li, P.-h., Han, B., Huo, J., Lu, B., Ding, X., Chen, L., Kong, S.-f., Bai, Z.-p., Wang, B., 2012. Characterization, Meteorological Influences and Source Identification of Carbonaceous Aerosols during the Autumn-winter Period in Tianjin, China. Aerosol and Air Quality Research 12, 283-294.
Li, P.-h., Wang, Y., Li, T., Sun, L., Yi, X., Guo, L.-q., Su, R.-h., 2015. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport. Environmental Science and Pollution Research 22, 14189-14199.
Li, Q., Yang, Z., Li, X., Ding, S., Du, F., 2019. Seasonal Characteristics of Sulfate and Nitrate in Size-segregated Particles in Ammonia-poor and -rich Atmospheres in Chengdu, Southwest China. Aerosol and Air Quality Research 9, 2697-2706.
Li, X., Wang, S., Duan, L., Hao, J., 2009. Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. Environmental Research Letters 4.
Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., Kang, K., 2012. Ionic and carbonaceous compositions of PM 10, PM 2.5 and PM 1.0 at Gosan ABC Superstation and their ratios as source signature. Atmospheric Chemistry and Physics 12, 2007-2024.
Lin, G., Penner, J.E., Flanner, M.G., Sillman, S., Zhou, L.X.C., 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. Journal of Geophysical Research: Atmospheres 119, 7453-7476.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., Chang, C.W.J., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric environment 64, 358-365.
Liu, L., Tan, H., Fan, S., Cai, M., Xu, H., Li, F., Chan, P., 2018. Influence of aerosol hygroscopicity and mixing state on aerosol optical properties in the Pearl River Delta region, China. Science of the Total Environment 627, 1560-1571.
Liu, T., Wang, X., Hu, J., Wang, Q., An, J., Kangjia, G., Sun, J., Li, L., Qin, M., Li, J., Tian, J., Huang, Y., Liao, H., Zhou, M., Hu, Q., Yan, R., Wang, H., Huang, C., 2020. Driving Forces of Changes in Air Quality during the COVID-19 Lockdown Period in the Yangtze River Delta Region, China. Environmental Science & Technology Letters 7, 779-786.
Liu, X., Zhang, Y.-L., Peng, Y., Xu, L., Zhu, C., Cao, F., Zhai, X., Haque, M.M., Yang, C., Chang, Y., Huang, T., Xu, Z., Bao, M., Zhang, W., Fan, M., Lee, X., 2019. Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution. Atmospheric Chemistry and Physics 19, 11213-11233.
Lu, Z., Streets, D.G., Winijkul, E., Yan, F., Chen, Y., Bond, T.C., Feng, Y., Dubey, M.K., Liu, S., Pinto, J.P., Carmichael, G.R., 2015. Light absorption properties and radiative effects of primary organic aerosol emissions. Environmental Science & Technology 49, 4868-4877.
Markowicz, K.M., Flatau, P.J., Quinn, P.K., Carrico, C.M., Flatau, M.K., Vogelmann, A.M., Bates, D., Liu, M., Rood, M.J., 2003. Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. Journal of Geophysical Research 108.
Menut, L., Bessagnet, B., Siour, G., Mailler, S., Pennel, R., Cholakian, A., 2020. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Science of the Total Environment 741, 140426.
Minguillón, M.C., Campos, A.A., Cárdenas, B., Blanco, S., Molina, L.T., Querol, X., 2014. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. Atmospheric Environment 88, 320-329.
Mishra, M., Kulshrestha, U.C., 2021. Source Impact Analysis Using Char-EC/Soot-EC Ratios in the Central Indo-Gangetic Plain (IGP) of India. Aerosol and Air Quality Research 21.
Mu, L., Zheng, L., Liang, M., Tian, M., Li, X., Jing, D., 2019. Characterization and Source Analysis of Water-soluble Ions in Atmospheric Particles in Jinzhong, China. Aerosol and Air Quality Research 19, 2396-2409.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Myhre, G., Samset, B.H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T.K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R.C., Feichter, J., Ghan, S.J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.F., Lin, G., Liu, X., Lund, M.T., Luo, G., Ma, X., van Noije, T., Penner, J.E., Rasch, P.J., Ruiz, A., Seland, Ø., Skeie, R.B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.H., Zhang, K., Zhang, H., Zhou, C., 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics 13, 1853-1877.
Na, K., Sawant, A.A., Song, C., III, D.R.C., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
Pachauri, R.K., Meyer, L., 2015. Climate Change 2014 Synthesis Report. IPCC.
Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Gao, M., Wentworth, G.R., Michalski, G., Huang, X., Wang, Y., 2018. Source Apportionment of Aerosol Ammonium in an Ammonia‐Rich Atmosphere: An Isotopic Study of Summer Clean and Hazy Days in Urban Beijing. Journal of Geophysical Research: Atmospheres 123, 5681-5689.
Pan, Y.P., Wang, Y.S., Tang, G.Q., Wu, D., 2012. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmospheric Chemistry and Physics 12, 6515-6535.
Pani, S., Verma, S., 2014. Variability of winter and summertime aerosols over eastern India urban environment. Atmospheric research 137, 112-124.
Pani, S.K., Lee, C.-T., Chou, C.C.-K., Shimada, K., Hatakeyama, S., Takami, A., Wang, S.-H., Lin, N.-H., 2017. Chemical Characterization of Wintertime Aerosols over Islands and Mountains in East Asia: Impacts of the Continental Asian Outflow. Aerosol and Air Quality Research 17, 3006-3036.
Pani, S.K., Lin, N.-H., Griffith, S.M., Chantara, S., Lee, C.-T., Thepnuan, D., Tsai, Y.I., 2021. Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia. Environmental Pollution 276, 116735.
Park, S.-M., Song, I.-H., Park, J.S., Oh, J., Moon, K.J., Shin, H.J., Ahn, J.Y., Lee, M.-D., Kim, J., Lee, G., 2018. Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinction in Seoul. Aerosol and Air Quality Research 18, 2220-2229.
Park, S.S., Yu, J., 2016. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment 136, 114-122.
Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Zamora, M.L., Zeng, L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C.R., Collins, D.R., Molina, M.J., Zhang, R., 2016. Markedly enhanced absorption and direct radiativeforcing of black carbon under pollutedurban environments. Proceedings of the National Academy of Sciences 113, 4266-4271.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Pipal, A.S., Satsangi, P.G., 2015. Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India. Atmospheric Research 154, 103-115.
Pipal, A.S., Tiwari, S., Satsangi, P.G., Taneja, A., Bisht, D.S., Srivastava, A.K., Srivastava, M.K., 2014. Sources and characteristics of carbonaceous aerosols at Agra "World heritage site" and Delhi "capital city of India". Environmental Science and Pollution Research 21, 8678-8691.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Pokhrel, R.P., Wagner, N.L., Langridge, J.M., Lack, D.A., Jayarathne, T., Stone, E.A., Stockwell, C.E., Yokelson, R.J., Murphy, S.M., 2016. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning. Atmospheric Chemistry and Physics 16, 9549-9561.
Prenni, A.J., Hand, J.L., Malm, W.C., Copeland, S., Luo, G., Yu, F., Taylor, N., Russell, L.M., Schichtel, B.A., 2019. An examination of the algorithm for estimating light extinction from IMPROVE particle speciation data. Atmospheric Environment 214.
Qiao, B., Chen, Y., Tian, M., Wang, H., Yang, F., Shi, G., Zhang, L., Peng, C., Luo, Q., Ding, S., 2019. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China. Science of the Total Environment 650, 2605-2613.
Qin, Y.M., Tan, H.B., Li, Y.J., Li, Z.J., Schurman, M.I., Liu, L., Wu, C., Chan, C.K., 2018. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmospheric Chemistry and Physics 18, 16409-16418.
Ram, K., Sarin, M.M., Hegde, P., 2008. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmospheric Environment 42, 6785-6796.
Ramírez, O., Campa, A.M.S.d.l., Rosa, J.d.l., 2018. Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research 210, 110-122.
Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pandis, S.N., Pierce, J.R., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259-1262.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics 8, 6281–6295.
Safai, P., Raju, M., Rao, P., Pandithurai, G., 2014. Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmospheric environment 92, 493-500.
Saleh, R., Robinson, E.S., Tkacik, D.S., Ahern, A.T., Liu, S., Aiken, A.C., Sullivan, R.C., Presto, A.A., Dubey, M.K., Yokelson, R.J., Donahue, N.M., Robinson, A.L., 2014. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geoscience 7, 647-650.
Salma, I., Varga, P.T., Vasanits, A., Machon, A., 2022. Secondary organic carbon in different atmospheric environments of a continental region and seasons. Atmospheric Research 278.
Sang, X., Fu, H., Zhang, Y., Ding, X., Wang, X., Zhou, Y., Zou, L., Zellmer, G.F., Engling, G., 2020. Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. Atmosphere 11.
Saturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditas, F., Angelis, I.H.d., Morán-Zuloaga, D., Pöhlker, M.L., Rizzo, L.V., Walter, D., Wang, Q., Artaxo, P., Prati, P., Andreae, M.O., 2017. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmospheric Measurement Techniques 10, 2837-2850.
Schmid, O., Artaxo, P., Arnott, W.P., Chand, D., Gatti, L.V., Frank, G.P., Hoffer, A., Schnaiter, M., Andreae, M.O., 2006. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmospheric Chemistry and Physics 6, 3443–3462.
Schneidemesser, E.v., Monks, P.S., Allan, J.D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W.T., Paasonen, P., Righi, M., Sindelarova, K., Sutton, M.A., 2015. Chemistry and the Linkages between Air Quality and Climate Change. Chemical Reviews 115, 3856-3897.
See, S.W., Balasubramanian, R., 2008. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment 42, 8852-8862.
Sharma, S.K., Mandal, T.K., Banoo, R., Rai, A., Rani, M., 2022. Long-Term Variation in Carbonaceous Components of PM2.5 from 2012 to 2021 in Delhi. Bulletin of Environmental Contamination and Toxicology 109, 502-510.
Singh, A.K., Srivastava, A., 2020. Seasonal variation of carbonaceous species in PM1 measured over residential area of Delhi, India. SN Applied Sciences 2.
Singh, R., Kulshrestha, M.J., Kumar, B., Chandra, S., 2015. Impact of anthropogenic emissions and open biomass burning on carbonaceous aerosols in urban and rural environments of Indo-Gangetic Plain. Air Quality, Atmosphere & Health 9, 809-822.
Sioutas, C., Wang, P.Y., Ferguson, S.T., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Sonwani, S., Saxena, P., Shukla, A., 2021. Carbonaceous Aerosol Characterization and Their Relationship With Meteorological Parameters During Summer Monsoon and Winter Monsoon at an Industrial Region in Delhi, India. Earth and Space Science 8.
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., Pavoni, B., 2013. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics 13, 1927-1939.
Sresawasd, C., Chetiyanukornkul, T., Suriyawong, P., Tekasakul, S., Furuuchi, M., Hata, M., Malinee, R., Tekasakul, P., Dejchanchaiwong, R., 2021. Influence of Meteorological Conditions and Fire Hotspots on PM0.1 in Northern Thailand during Strong Haze Episodes and Carbonaceous Aerosol Characterization. Aerosol and Air Quality Research 21.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077.
Sudheer, A.K., Sarin, M.M., 2008. Carbonaceous aerosols in MABL of Bay of Bengal: Influence of continental outflow. Atmospheric Environment 42, 4089-4100.
Tao, J., Surapipith, V., Han, Z., Prapamontol, T., Kawichai, S., Zhang, L., Zhang, Z., Wu, Y., Li, J., Li, J., Yang, Y., Zhang, R., 2020. High mass absorption efficiency of carbonaceous aerosols during the biomass burning season in Chiang Mai of northern Thailand. Atmospheric Environment 240.
Tian, J., Wang, Q., Liu, H., Ma, Y., Liu, S., Zhang, Y., Ran, W., Han, Y., Cao, J., 2022. Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi′an, China. Atmospheric Chemistry and Physics 22, 8369-8384.
Tian, S., Pan, Y., Wang, Y., 2018. Ion balance and acidity of size-segregated particles during haze episodes in urban Beijing. Atmospheric Research 201, 159-167.
Vadrevu, K.P., Eaturu, A., Biswas, S., Lasko, K., Sahu, S., K.Garg, J., Justice, C., 2020. Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period. Scientifc Reports 10, 16574.
Vakkari, V., Beukes, J.P., Dal Maso, M., Aurela, M., Josipovic, M., van Zyl, P.G., 2018. Major secondary aerosol formation in southern African open biomass burning plumes. Nature Geoscience 11, 580.
van Pinxteren, D., Fomba, K.W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J.L., Herrmann, H.J.A.C., Physics, 2016. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon. 16, 3185-3205.
Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38, 1235–1246.
Wang-Li, L., 2013. Techniques for characterization of particulate matter emitted from animal feeding operations, Evaluating veterinary pharmaceutical behavior in the environment. ACS Publications, pp. 15-39.
Wang, F., Feng, T., Guo, Z., Li, Y., Lin, T., Rose, N.L., 2019a. Sources and dry deposition of carbonaceous aerosols over the coastal East China Sea: Implications for anthropogenic pollutant pathways and deposition. Environmental Pollution 245, 771-779.
Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q., Sullivan, A., Xia, L., 2016. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 148, 526-536.
Wang, J., Yu, A., Yang, L., Fang, C., 2019b. Research on Organic Carbon and Elemental Carbon Distribution Characteristics and Their Influence on Fine Particulate Matter (PM2.5) in Changchun City. Environments 6.
Wang, P., Cao, J.-j., Shen, Z.-x., Han, Y.-m., Lee, S.-c., Huang, Y., Zhu, C.-s., Wang, Q.-y., Xu, H.-m., Huang, R.-j., 2015. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi′an, China. Science of the Total Environment 508, 477-487.
Wang, Y., Ma, P.-L., Peng, J., Zhang, R., Jiang, J.H., Easter, R.C., Yung, Y.L., 2018. Constraining Aging Processes of Black Carbon in the Community Atmosphere Model Using Environmental Chamber Measurements. Journal of Advances in Modeling Earth Systems 10, 2514-2526.
Wanthongchai, K., Tanpipat, V., Noochaiya, P., Sirimongkonlertkun, N., Macatangay, R., Thammavongsa, L., Oo, T.N., Bran, S.H., Solanki, R., 2021. Integrated highland wildfire, smoke, and haze management in the Upper Indochina region. APN Science Bulletin 11, 133-143.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Weber, R.J., Guo, H., Russell, A.G., Nenes, A., 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience 9, 282-285.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445-1463.
Wu, X., Deng, J., Chen, J., Hong, Y., Xu, L., Yin, L., Du, W., Hong, Z., Dai, N., Yuan, C.-S., 2017. Characteristics of Water-Soluble Inorganic Components and Acidity of PM2.5 in a Coastal City of China. Aerosol and Air Quality Research 17, 2152-2164.
Xu, H., Cao, J., Chow, J.C., Huang, R.-J., Shen, Z., Chen, L.W.A., Ho, K.F., Watson, J.G., 2016a. Inter-annual variability of wintertime PM2.5 chemical composition in Xi′an, China: Evidences of changing source emissions. Science of the Total Environment, 546-555.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research 104-105, 264-272.
Xu, W., Luo, X.S., Pan, Y.P., Zhang, L., Tang, A.H., Shen, J.L., Zhang, Y., Li, K.H., Wu, Q.H., Yang, D.W., Zhang, Y.Y., Xue, J., Li, W.Q., Li, Q.Q., Tang, L., Lu, S.H., Liang, T., Tong, Y.A., Liu, P., Zhang, Q., Xiong, Z.Q., Shi, X.J., Wu, L.H., Shi, W.Q., Tian, K., Zhong, X.H., Shi, K., Tang, Q.Y., Zhang, L.J., Huang, J.L., He, C.E., Kuang, F.H., Zhu, B., Liu, H., Jin, X., Xin, Y.J., Shi, X.K., Du, E.Z., Dore, A.J., Tang, S., Jr., J.L.C., Goulding, K., Sun, Y.X., Zhang, J.R.F.S., Liu, X.J., 2015. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics 15, 12345-12360.
Xu, X., Zhao, W., Zhang, Q., Wang, S., Fang, B., Chen, W., Venables, D.S., Wang, X., Pu, W., Wang, X., 2016b. Optical properties of atmospheric fine particles near Beijing during the HOPE-J 3 A campaign. Atmospheric Chemistry and Physics 16, 6421-6439.
Yoo, H.Y., Kim, K.A., Kim, Y.P., Jung, C.H., Shin, H.J., Moon, K.J., Park, S.M., Lee, J.Y., 2022. Validation of SOC Estimation Using OC and EC Concentration in PM2.5 Measured at Seoul. Aerosol and Air Quality Research 22.
Yu, G.-H., Zhang, Y., Cho, S.-Y., Park, S., 2017. Influence of haze pollution on water-soluble chemical species in PM2. 5 and size-resolved particles at an urban site during fall. Journal of Environmental Sciences 57, 370-382.
Yu, X., Shen, L., Xiao, S., Ma, J., Lü, R., Zhu, B., Hu, J., Chen, K., Zhu, J., 2019. Chemical and Optical Properties of Atmospheric Aerosols during the Polluted Periods in a Megacity in the Yangtze River Delta, China. Aerosol and Air Quality Research 19, 103-117.
Zhan, C., Zhang, J., Zheng, J., Yao, R., Wang, P., Liu, H., Xiao, W., Liu, X., Cao, J., 2019. Characterization of carbonaceous fractions in PM2.5 and PM10 over a typical industrial city in central China. Environmental Science and Pollution Research 26, 16855-16867.
Zhang, H., Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Hayakawa, K., Toriba, A., Tang, N., 2021a. Impact of COVID-19 Outbreak on the Long-Range Transport of Common Air Pollutants in KUWAMS. Chemical and Pharmaceutical Bulletin 69, 237–245.
Zhang, J., Tong, L., Huang, Z., Zhang, H., He, M., Dai, X., Zheng, J., Xiao, H., 2018. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Science of the Total Environment 639, 793-803.
Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., Lin, Y., 2019. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China. Journal of Atmospheric Chemistry 76, 73-88.
Zhang, Y., Peng, Y., Song, W., Zhang, Y.-L., Ponsawansong, P., Prapamontol, T., Wang, Y., 2021b. Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand. Atmospheric Environment 260.
Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
Zhu, J., Xia, X., Che, H., Wang, J., Zhang, J., Duan, Y., 2016. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmospheric Research 169, 237-247.
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
陳建安, 2018. 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文
莊仲霆, 2016. 2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析。國立中央大學環境工程研究所碩士論文.
陳彥銘, 2018. 2016~2017 年東亞背景、生質燃燒傳輸及高山雲霧水氣氣膠水溶性離子短時間變化. 國立中央大學環境工程研究所碩士論文
洪國鈞, 2014. 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析. 國立中央大學環境工程研究所碩士論文
邱鈞煦, 2019. 2016~2017年鹿林山長程傳輸氣膠特性分析. 國立中央大學環境工程研究所碩士論文
林寬昱, 2020. 2019年鹿林山背景生質燃燒傳輸氣膠特性及其大氣光學影響. 國立中央大學環境工程研究所碩士論文
許博鈞, 2021. 2019及2020年高山與都市環境氣膠化學及光學特性. 國立中央大學環境工程研究所碩士論文
指導教授 李崇德(Chung-Te Lee) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明