博碩士論文 109326601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.138.204.208
姓名 阮國慶(Nguyen Quoc Khanh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
(A study on the determination of COD and TN fraction and denitrification performance of wastewater treatment plants)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 生物除氮程序(MLE Process)效能評估及污泥活性探討
★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討
★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究★ 以超聲波輔助化學氧化法處理廢棄 NF 膜之反應特性與膜再利用可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 活性污泥模型(ASMs)在生物處理程序的多個面向中發揮著重要作用、包括研究、
設計、控制和優化。工程人員可使用這些模型來進行預測與評估。為了獲得可靠之結果、
模式模擬必須考慮水質之分解特性的細分類。本研究探討了臺灣生活污水和工業廢水之
進流水中的化學需氧量(COD)和總氧(TN)比率。COD 比率是通過呼吸測量法進行
量測、該方法量化了生物降解過程中的氧氣攝取率(OUR)、是一種廣泛應用的技術。
TN 比率是使用轉換係數和水環境研究基金會(WERF)所描述的直接測量方法進行評
估。對這些分析結果的比較和總結將確立臺灣廢污水之水質特性方法的適用性。此外、
將使用典型的 MLE 和 OAO 程序評估 COD 和 TN 比率、並觀察本土水質的脫硝速率、
從而調整操作參數來增強除氮成效。
對於本土水質的 COD 細分類結果顯示、未過初沉池的生活污水可以分為以下幾類:
易降解 COD(SS)約佔 12.6%、緩慢降解 COD(XS)約佔 45.6%、溶解性惰性 COD(SI)
約佔 3.7%和顆粒性惰性 COD(XI)約佔 38.1%。另一方面、工業廢水的特性為 SS 約
25.4%、XS約 11.6%、SI約 30.1%和 XI約 32.9%;已過初沉池的生活污水包含 SS約 18.4%、
XS 約 57.2%、SI 約 6.6%、XI 約 17.8%。另一方面、工業廢水的特性為 SS 約 25.4%、XS
約 11.6%、SI約 30.1%和 XI約 32.9%。
根據總氮(TN)的直接測量確立了進流水的分類。在這個分類中,氨氮(SNH)約
佔 72.9%、溶解性可生物降解有機氮(SND)約佔 5.5%、不可生物降解的顆粒性有機氮
(XND)約佔 14.2%、溶解性惰性有機氮(SNI)約佔 2.8%、顆粒性惰性有機氮(XNI)約
佔總氮含量的 4.6%。對於未過初沉池的生活污水樣品、氮比率包括約 62.8%的 SNH、約
2.9%的 SND、約 18.4%的 XND、約 1.0%的 SNI和約 14.9%的 XNI。在工業廢水中、氮形式
的分佈因行業類型而異。通常、總氮的主要貢獻為 NO3
-
-N 和 NO2
-
-N、其中 NO3
-
-N 約
佔 34.1%、NO2
-
-N 約佔 16.1%、SNH約佔 20.4%、SND約佔 1.1%、XND 約佔 5.4%、SNI約
佔 8.0%、XNI 約佔 14.9%。通過利用轉換係數與質量平衡、本研究建議了新的氮轉換係
數:未過初沉池之生活污水的iN,SS為 0.03、iN,XS為 0.07、iN,SI為 0.05、iN,XI為 0.07;已過
初沉池之生活污水的iN,SS為 0.06、iN,XS為 0.06、iN,SI為 0.1、iN,XI為 0.06;而工業廢水的
iN,SS為 0.01、iN,XS為 0.06、iN,SI為 0.02、iN,XI為 0.06。
當碳氮比(C/N)不足時、脫硝能力受限、由於進流水中碳源不足、從而降低除氮效率。
摘要(英) Activated sludge models (ASMs) play a significant role in numerous aspects of biological
treatment processes, including research, design, control, and optimization. Handlers employ
these models to make forecasts and assessments. To ensure accurate results, the model
simulation must consider the subdivisions of water quality characteristics. In this study, I
investigated the proportions of chemical oxygen demand (COD) and total nitrogen (TN) in the
influent water quality of Taiwanese domestic and industrial wastewater. The determination of
COD fractions was accomplished through a respirometry assay, which quantifies the oxygen
uptake rate (OUR) during biodegradation and is a widely employed technique. The TN fractions
were assessed using the conversion coefficient and the direct measurement method described
by Water Environment Research Foundation (WERF). The comparative and summarizing
assessment of the outcomes of these analyses ascertained the suitability of water quality
characteristic methodologies in Taiwan. Furthermore, the COD and TN fractions were
evaluated using a typical Modified Ludzack Ettinger (MLE) and Oxic-Anoxic-Oxic (OAO)
processes, while observing the denitrification rate of local water quality. Operating parameters
were adjusted to enhance nitrogen removal.
The detailed classification COD results of local water quality reveal that settled domestic
wastewater could be categorized as follows: readily biodegradable COD (SS) accounted for
approximately 18.4%, slowly biodegradable COD (XS) represented around 57.2%, soluble inert
COD (SI) accounted for approximately 6.6%, and particulate inert COD (XI) contributed about
17.8%. Raw domestic wastewater, on the other hand, consisted of about 12.6% SS,
approximately 45.6% XS, around 3.7% SI, and approximately 38.1% XI. Finally, ordinary
industrial wastewater was characterized by approximately 25.4% SS, around 11.6% XS,
approximately 30.1% SI, and about 32.9% XI.
The classification of influent based on TN (Total nitrogen) was determined through direct
measurement. In this classification, for settled domestic wastewater, ammonia nitrogen (SNH)
accounted for approximately 72.9%, soluble biodegradable organic nitrogen (SND) accounted
for around 5.5%, particulate biodegradable organic nitrogen (XND) contributed about 14.2%,
soluble inert organic nitrogen (SNI) contributed approximately 2.8%, and particulate inert
organic nitrogen (XNI) accounted for approximately 4.6% of the total nitrogen content. For raw
domestic wastewater, the nitrogen fractions consisted of approximately 62.8% SNH, SND around
2.9%, XND about 18.4%, SNI approximately 1.0%, and XNI around 14.9%. In industrial
wastewater, the distribution of nitrogen forms varied depending on the industry type. Generally,
iii
NO3
-
-N and NO2
-
-N were the major contributors to the total nitrogen content, with NO3
-
-N
accounted for approximately 34.1%, NO2
-
-N for around 16.1%, SNH about 20.4%, SND around
1.1%, XND approximately 5.4%, SNI around 8.0%, and XNI about 14.9% of the total nitrogen
content. By applying conversion factors and utilizing mass balance, this research had generated
new nitrogen conversion factors: settled domestic wastewater 0.06 for iN,SS
, 0.06 for iN,XS
, 0.1
for iN,SI
and 0.06 for iN,XI
; raw domestic wastewater 0.03 for iN,SS
, 0.07 for iN,XS
, 0.05 for
iN,SI
and 0.07 for iN,XI
; industrial wastewater 0.01 for iN,SS
, 0.06 for iN,XS
, 0.02 for iN,SI
and
0.06 for iN,XI
.
The denitrification capacity was constrained when the carbon-nitrogen (C/N) ratio was
insufficient, resulting in low nitrogen removal efficiency attributable to the low carbon source
in the influent.
關鍵字(中) ★ COD 細分類
★ TN 細分類
★ 廢水特性
★ 生活廢水
★ 工業廢水
★ 脫硝
關鍵字(英) ★ COD fractions
★ TN fractions
★ wastewater characteristics
★ domestic wastewater
★ industrial wastewater
★ denitrification
論文目次 摘要............................................................................................................................................i
Abstract......................................................................................................................................ii
Acknowledgement..................................................................................................................... v
Table of Contents...................................................................................................................... vi
List of tables ...........................................................................................................................viii
List of figures ............................................................................................................................ x
Abbreviations .........................................................................................................................xiii
Chapter 1 Introduction............................................................................................................... 1
1-1 Problem identification..................................................................................................... 1
1-2 Objectives........................................................................................................................ 3
Chapter 2 Literature Review...................................................................................................... 4
2-1 Characterization of COD fractions.................................................................................. 4
2-1-1 COD versus BOD as a modeling parameter ............................................................ 5
2-1-2 COD fractions.......................................................................................................... 6
2-1-3 Biological characterization ...................................................................................... 9
2-1-4 Methodology of COD fraction determination........................................................ 14
2-2 Characterization of TKN fractions................................................................................ 24
2-2-1 TKN fractions ........................................................................................................ 24
2-2-2 Methodology of TKN fraction determination........................................................ 25
2-3 Heterotrophic denitrification......................................................................................... 30
2-3-1 Organic carbon sources for denitrification............................................................. 31
2-3-2 Hydrolysis of organic matter.................................................................................. 32
2-3-3 Rate-limiting substrate uptake ............................................................................... 32
Chapter 3 Materials and Methods............................................................................................ 33
3-1 Preparation .................................................................................................................... 33
3-2 Research structure ......................................................................................................... 33
3-3 COD fractions method .................................................................................................. 36
3-3-1 BCOD estimation method...................................................................................... 36
3-3-2 Oxygen uptake rate (OUR) .................................................................................... 37
3-4 TKN fractions method................................................................................................... 45
3-5 Nitrate uptake rate (NUR)............................................................................................. 47
3-6 Experimental materials, equipment and analytical methods......................................... 53
vii
3-6-1 Experimental materials .......................................................................................... 53
3-6-2 Experimental equipment ........................................................................................ 55
3-6-3 Analytical methods................................................................................................. 56
3-6-4 Measure maximum specific growth rate µmax and half substrate saturation constant
KS..................................................................................................................................... 56
Chapter 4 Results and Discussion ........................................................................................... 58
4-1 Wastewater characteristics analysis results................................................................... 58
4-2 The optimal initial loading (So/Xo) ............................................................................... 59
4-3 Heterotroph yield coefficient ........................................................................................ 61
4-4 Biodegradable COD...................................................................................................... 65
4-5 Characterization of COD fractions................................................................................ 68
4-5-1 Soluble biodegradable COD value from OUR test................................................ 68
4-5-2 Maximum specific growth rate µmax and half substrate saturation constant KS..... 70
4-5-3 COD fractions........................................................................................................ 73
4-6 Characterization of TN fractions................................................................................... 83
4-7 Denitrification performance .......................................................................................... 88
4-7-1 Acetate as a control model ..................................................................................... 88
4-7-2 Raw wastewater as carbon source.......................................................................... 94
Chapter 5 Conclusions and Recommendations..................................................................... 103
5-1 Conclusions................................................................................................................. 103
5-1-1 COD fractions...................................................................................................... 103
5-1-2 TN fractions ......................................................................................................... 104
5-1-3 Heterotroph denitrification................................................................................... 104
5-2 Recommendations....................................................................................................... 106
References ............................................................................................................................. 107
Appendix ............................................................................................................................... 114
參考文獻 Æsøy, A., & Ødegaard. (1994). Nitrogen removal efficiency and capacity in biofilms with
biologically hydrolysed sludge as a carbon source. Water Science Technology, 30(6), 63.
Alrousan, D., & Murshed, M. (2019). Determination of BOD kinetic parameters of domestic
and industrial wastewater using different mathematical methods. AIP Conference
Proceedings,
Ammary, B. Y., & Al-Samrraie, L. a. A. (2014). Evaluation and comparison of methods used
for the determination of BOD first-order model coefficients. International Journal of
Environment and Waste Management, 13(4), 362-375.
Aquino, S., & Stuckey, D. (2004). The effect of organic and hydraulic shock loads on the
production of soluble microbial products in anaerobic digesters. Water Environment
Research, 76(7), 2628-2636.
Aravinthan, V., Mino, T., Takizawa, S., Satoh, H., & Matsuo, T. (2001). Sludge hydrolysate as
a carbon source for denitrification. Water Science and Technology, 43(1), 191-199.
ATV–DVWK, A.-D. (2000). Standard A 131E. Dimensioning of Single-Stage Activated Sludge
Plants, ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany.
Azami, H., Sarrafzadeh, M. H., & Mehrnia, M. R. (2012). Soluble microbial products (SMPs)
release in activated sludge systems: a review. Iranian journal of environmental health
science & engineering, 9, 1-6.
Baban, A., Yediler, A., Ciliz, N., & Kettrup, A. (2004). Biodegradability oriented treatability
studies on high strength segregated wastewater of a woolen textile dyeing plant.
Chemosphere, 57(7), 731-738.
Baquero-Rodríguez, G. A., Lara-Borrero, J. A., & Martelo, J. (2016). A simplified method for
estimating chemical oxygen demand (COD) fractions. Water Practice and Technology,
11(4), 838-848.
Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in
wastewater treatment systems. Water Research, 33(14), 3063-3082.
Beck, C., LE ROY, K., & SADOWSKI, A. (2005). A coupled sewer system and WWTP
modelling approach to minimise annual discharge: a case study. Proc. of the 10th
International Conference on Urban Drainage, Copenhagen/Denmark,
Benneouala, M. (2017). Biodegradation of slowly biodegradable organic matter in wastewater
treatment plant (WWTP): In depth analysis of physical and biological factors affecting
hydrolysis of large particles INSA de Toulouse].
Bolek, R. (2021). Determination of Readily Biodegradable COD PennTec 2021 - PWEA
Annual Technical Conference & Exhibition, Pocono Manor, Pennsylvania.
https://www.alloway.com/events/penntec-2021-pwea-annual-technical-conferenceexhibition
Borzooei, S., Simonetti, M., Scibilia, G., & Zanetti, M. C. (2021). Critical evaluation of
respirometric and physicochemical methods for characterization of municipal
wastewater during wet-weather events. Journal of Environmental Chemical
Engineering, 9(3), 105238.
Carley, B. N., & Mavinic, D. S. (1991). The Effects of External Carbon Loading on Nitrification
and Denitrification of a High Ammonia Landfill Leachate. Research Journal of the
Water Pollution Control Federation, 63(1), 51-59.
https://www.jstor.org/stable/25043951
Carucci, A., Ramadori, R., Rossetti, S., & & Tomei, M. C. (1996). Kinetics of denitrification
reactions in single sludge systems. Water Research, 30(1), 51-56.
Chen, R., Deng, M., He, X., & Hou, J. (2017). Enhancing nitrate removal from freshwater pond
by regulating carbon/nitrogen ratio. Frontiers in microbiology, 8, 1712.
108
Chiavola, A., Farabegoli, G., & Antonetti, F. (2014). Biological treatment of olive mill
wastewater in a sequencing batch reactor. Biochemical Engineering Journal, 85, 71-78.
Choi, E., & Daehwan, R. (2001). NUR and OUR relationship in BNR processes with sewage
at different temperatures and its design application. Water Research, 35(7), 1748-1756.
Choi, Y.-Y., Baek, S.-R., Kim, J.-I., Choi, J.-W., Hur, J., Lee, T.-U., Park, C.-J., & Lee, B. J.
(2017). Characteristics and biodegradability of wastewater organic matter in municipal
wastewater treatment plants collecting domestic wastewater and industrial discharge.
Water, 9(6), 409.
Cutrera, G., Manfredi, L., del Valle, C. E., & González, J. F. (1999). On the determination of
the kinetic parameters for the BOD test. WATER SA-PRETORIA-, 25, 377-380.
Czerwionka, K., & Makinia, J. (2014). Dissolved and colloidal organic nitrogen removal from
wastewater treatment plants effluents and reject waters using physical–chemical
processes. Water Science and Technology, 70(3), 561-568.
Czerwionka, K., Makinia, J., Pagilla, K., & Stensel, H. D. (2012). Characteristics and fate of
organic nitrogen in municipal biological nutrient removal wastewater treatment plants.
Water Research, 46(7), 2057-2066.
Dircks, K., Pind, P. F., Mosbæk, H., & Henze, M. (1999). Yield determination by respirometryThe possible influence of storage under aerobic conditions in activated sludge. WATER
SA-PRETORIA-, 25, 69-74.
Dold, P., & Marais, G. v. R. (1986). Evaluation of the general activated sludge model proposed
by the IAWPRC task group. Water Science and Technology, 18(6), 63-89.
Drechsel, P., Qadir, M., & Baumann, J. (2022). Water reuse to free up freshwater for higher‐
value use and increase climate resilience and water productivity. Irrigation and
Drainage, 71, 100-109.
Drewnowski, J. (2014). The impact of slowly biodegradable organic compounds on the oxygen
uptake rate in activated sludge systems. Water Science and Technology, 69(6), 1136-
1144.
Drewnowski, J., Remiszewska-Skwarek, A., Fudala-Ksiazek, S., Luczkiewicz, A., Kumari, S.,
& Bux, F. (2019). The evaluation of COD fractionation and modeling as a key factor for
appropriate optimization and monitoring of modern cost-effective activated sludge
systems. Journal of Environmental Science and Health, Part A, 54(8), 736-744.
Drewnowski, J., Szeląg, B., Xie, L., Lu, X., Ganesapillai, M., Deb, C. K., Szulżyk-Cieplak, J.,
& Łagód, G. (2020). The Influence of COD fraction forms and molecules size on
hydrolysis process developed by comparative our studies in activated sludge modelling.
Molecules, 25(4), 929.
Ekama, G., Dold, P., & Marais, G. v. R. (1986). Procedures for determining influent COD
fractions and the maximum specific growth rate of heterotrophs in activated sludge
systems. Water Science and Technology, 18(6), 91-114.
Ekama, G., Sötemann, S., & Wentzel, M. (2006). Mass balance-based plant-wide wastewater
treatment plant models–Part 3: Biodegradability of activated sludge organics under
anaerobic conditions. Water Sa, 32(3), 287-296.
El Sheikh, R., GOUDA, A., Salem, A., & Hendy, I. (2016). Analysis and Characterization of
Wastewater Nitrogen Components for using in Wastewater Modeling and Simulation.
International Journal of Advanced Research in Chemical Science, 3, 2349-
0403.0305004.
Elshorbagy, W., & Shawaqfah, M. (2015). Development of an ASM1 dynamic simulation
model for an activated sludge process in United Arab Emirates. Desalination and Water
Treatment, 54(1), 15-27.
Federation, W. E., & Association, A. (2005). Standard methods for the examination of water
and wastewater. American Public Health Association (APHA): Washington, DC, USA,
109
21.
Fonseca, A. D., Crespo, J. G., Almeida, J. S., & Reis, M. A. (2000). Drinking water
denitrification using a novel ion-exchange membrane bioreactor. Environmental science
& technology, 34(8), 1557-1562.
Germirli, F., Orhon, D., & Artan, N. (1991). Assessment of the initial inert soluble COD in
industrial wastewaters. Water Science and Technology, 23(4-6), 1077-1086.
Grady Jr, C. L., Daigger, G. T., Love, N. G., & Filipe, C. D. (2011). Biological wastewater
treatment. CRC press.
Gujer, W. (2006). Activated sludge modelling: past, present and future. Water Science and
Technology, 53(3), 111-119.
Gujer, W., Henze, M., Mino, T., Matsuo, T., Wentzel, M., & Marais, G. (1995). The activated
sludge model No. 2: biological phosphorus removal. Water Research, 31(2), 1-11.
Gujer, W., Henze, M., Mino, T., & Van Loosdrecht, M. (1999). Activated sludge model No. 3.
Water Science and Technology, 39(1), 183-193.
Guo, L., Guo, Y., Sun, M., Gao, M., Zhao, Y., & She, Z. (2018). Enhancing denitrification with
waste sludge carbon source: the substrate metabolism process and mechanisms.
Environmental Science and Pollution Research, 25, 13079-13092.
Gupta, M., Giaccherini, F., Sridhar, G. R. D., Batstone, D., Santoro, D., & Nakhla, G. (2018).
Application of respirometric techniques to determine COD fractionation and biokinetic
parameters of sieved wastewater. Proc Water Environ Feder, 2018, 106-121.
Güven, D. (2009). Effects of different carbon sources on denitrification efficiency associated
with culture adaptation and C/N ratio. CLEAN–Soil, Air, Water, 37(7), 565-573.
Hallin, S., & & Pell, M. (1998). Metabolic properties of denitrifying bacteria adapting to
methanol and ethanol in activated sludge. Water Research, 31(1), 13-18.
Henze, M. (1986). Nitrate versus oxygen utilization rates in wastewater and activated sludge
systems. Water Science and Technology, 18(6), 115-122.
Henze, M. (1992). Characterization of wastewater for modelling of activated sludge processes.
Water Science and Technology, 25(6), 1-15.
Henze, M., Grady, C., Gujer, W., Marais, G. v. R., & Matsuo, T. (1987). Activated Sludge Model
No. 1. Scientific and Technical Report, No. 1, IAWPRC, London.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., Marais, G. v. R., & Van Loosdrecht,
M. (1995). Activated Sludge Model No. 2, IAWQ. Scientific and Technical Report No.
3, IAWQ.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R., & Van Loosdrecht,
M. C. (1999). Activated sludge model no. 2d, ASM2d. Water Science and Technology,
39(1), 165-182.
Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. (2000). Activated sludge models
ASM1, ASM2, ASM2d and ASM3. IWA publishing.
Henze, M., Holm Kristensen, G., & Strube, R. (1994). Rate-capacity characterization of
wastewater for nutrient removal processes. Water Science and Technology, 29(7), 101-
107.
Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (2008). Biological
wastewater treatment. IWA publishing.
Her, J. J., & & Huang, J. S. (1995). Influences of carbon source and C/N ratio on nitrate/nitrite
denitrification and carbon breakthrough. Bioresource technology, 54(1), 45-51.
How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T., & Curtis, T. P. (2019). Enhanced nitrogen
removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater:
low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for
denitrification. Science of the Total Environment, 693, 133526.
How, S. W., Sin, J. H., Wong, S. Y. Y., Lim, P. B., Mohd Aris, A., Ngoh, G. C., Shoji, T., Curtis,
110
T. P., & Chua, A. S. M. (2020). Characterization of slowly-biodegradable organic
compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen
removal. Water Science and Technology, 81(1), 71-80.
Hulsbeek, J., Kruit, J., Roeleveld, P., & Van Loosdrecht, M. (2002). A practical protocol for
dynamic modelling of activated sludge systems. Water Science and Technology, 45(6),
127-136.
Insel, G., Karahan Gül, Ö., Orhon, D., Vanrolleghem, P., & Henze, M. (2002). Important
limitations in the modeling of activated sludge: biased calibration of the hydrolysis
process. Water Science and Technology, 45(12), 23-36.
Insel, G., Orhon, D., & Vanrolleghem, P. A. (2003). Identification and modelling of aerobic
hydrolysis–application of optimal experimental design. Journal of Chemical
Technology & Biotechnology: International Research in Process, Environmental &
Clean Technology, 78(4), 437-445.
Isaacs, S. H., & Henze, M. (1995). Controlled carbon source addition to an alternating
nitrification-denitrification wastewater treatment process including biological P
removal. Water Research, 29(1), 77-89.
Jiang, T., Myngheer, S., De Pauw, D. J., Spanjers, H., Nopens, I., Kennedy, M. D., Amy, G., &
Vanrolleghem, P. A. (2008). Modelling the production and degradation of soluble
microbial products (SMP) in membrane bioreactors (MBR). Water Research, 42(20),
4955-4964.
Kim, I. S., Young, J. C., Kim, S., & Kim, S. (2001). Development of monitoring methodology
to fingerprint the activated sludge processes using oxygen uptake rate. Environmental
Engineering Research, 6(4), 251-259.
Köhler, C. (2008). COD Fractions Dynamics: Respirometric Analysis & Modelling Sewer
Processes. Université Laval, Quebec, QC, Canada.
Kujawa-Roeleveld, K. (2000). Estimation of denitrification potential with respiration based
techniques. Wageningen University and Research.
Levine, A. D., Tchobanoglous, G., & Asano, T. (1985). Characterization of the size distribution
of contaminants in wastewater: treatment and reuse implications. Water Pollution
Control Federation, 805-816.
Liu, B., Terashima, M., Quan, N. T., Ha, N. T., Van Chieu, L., Goel, R., & Yasui, H. (2018).
Determination of optimal dose of allylthiourea (ATU) for the batch respirometric test of
activated sludge. Water Science and Technology, 77(12), 2876-2885.
Liu, G. Y., Zhang, H. Z., Li, W., & & Zhang, X. (2012). Advances of external carbon source in
denitrification. Advanced Materials Research, 518, 2319-2323.
Makinia, J., Pagilla, K., Czerwionka, K., & Stensel, H. D. (2011). Modeling organic nitrogen
conversions in activated sludge bioreactors. Water Science and Technology, 63(7),
1418-1426.
Mardani, S., Mirbagheri, A., Amin, M., & Ghasemian, M. (2011). Determination of biokinetic
coefficients for activated sludge processes on municipal wastewater. Journal of
Environmental Health Science & Engineering, 8(1), 25-34.
Marquot, A., Stricker, A.-E., & Racault, Y. (2006). ASM1 dynamic calibration and long-term
validation for an intermittently aerated WWTP. Water Science and Technology, 53(12),
247-256.
Mazumder, D., & Bhaduri, S. (2020). Simplistic approach for evaluating the BOD rate constants.
JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 97(9 A), 1399-1405.
Melcer, H., Dold, P. L., Jones, R. M., Bye, C. M., Takacs, I., Stensel, H. D., Wilson, A. W., Sun,
P., & & Bury, S. (2003). Methods for Wastewater Characterization in Activated Sludge
Modeling.
Mesquita, P. d. L., Aquino, S. F. d., Xavier, A., Silva, J., Afonso, R., & Silva, S. Q. (2010).
111
Soluble microbial product (SMP) characterization in bench-scale aerobic and anaerobic
CSTRs under different operational conditions. Brazilian Journal of Chemical
Engineering, 27, 101-111.
Metcalf, Eddy, Abu-Orf, M., Bowden, G., Burton, F. L., Pfrang, W., Stensel, H. D.,
Tchobanoglous, G., Tsuchihashi, R., & AECOM. (2014). Wastewater engineering:
treatment and resource recovery. McGraw Hill Education.
Metcalf & Eddy, I. (2003). Wastewater engineering : treatment and reuse. Fourth edition /
revised by George Tchobanoglous, Franklin L. Burton, H. David Stensel. Boston :
McGraw-Hill, [2003] ©2003.
https://search.library.wisc.edu/catalog/999935704402121
Mhlanga, F., Foxon, K., Fennemore, C., Mzulwini, D., & Buckley, C. (2009). Simulation of a
wastewater treatment plant receiving industrial effluents. Water Sa, 35(4).
Morgenroth, E., Kommedal, R., & Harremoës, P. (2002). Processes and modeling of hydrolysis
of particulate organic matter in aerobic wastewater treatment–a review. Water Science
and Technology, 45(6), 25-40.
Myszograj, S., Płuciennik-Koropczuk, E., & Jakubaszek, A. (2017). COD fractions-methods of
measurement and use in wastewater treatment technology. Civil and Environmental
Engineering Reports, 24(1), 195-206.
Naghizadeh, A., Mahvi, A., Mesdaghinia, A., & Sarkhosh, M. (2008). Bio-kinetic paramters in
municipal wastewater treatment with a submerged membrane reactor (SMBR).
Proceeding of 12 th National Congress of Environmental Health,
Orhon, D., Insel, G., & Karahan, O. (2007). Respirometric assessment of biodegradation
characteristics of the scientific pitfalls of wastewaters. Water Science and Technology,
55(10), 1-9.
Pala, A., & Bölükbaş, Ö. (2005). Evaluation of kinetic parameters for biological CNP removal
from a municipal wastewater through batch tests. Process Biochemistry, 40(2), 629-635.
Pehlivanoglu-Mantas, E., & Sedlak, D. L. (2006). Wastewater-derived dissolved organic
nitrogen: analytical methods, characterization, and effects—a review. Critical Reviews
in Environmental Science and Technology, 36(3), 261-285.
Pehlivanoglu, E., & Sedlak, D. L. (2004). Bioavailability of wastewater-derived organic
nitrogen to the alga Selenastrum Capricornutum. Water Research, 38(14-15), 3189-
3196.
Phillips, H., Sahlstedt, K., Frank, K., Bratby, J., Brennan, W., Rogowski, S., Pier, D., Anderson,
W., Mulas, M., & Copp, J. (2009). Wastewater treatment modelling in practice: a
collaborative discussion of the state of the art. Water Science and Technology, 59(4),
695-704.
Płuciennik-Koropczuk, E., Jakubaszek, A., Myszograj, S., & Uszakiewicz, S. (2017). COD
fractions in mechanical-biological wastewater treatment plant. Civil and Environmental
Engineering Reports, 24(1), 207-217.
Pluciennik-Koropczuk, E., & Myszograj, S. (2019). New approach in COD fractionation
methods. Water, 11(7), 1484.
Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource
recovery from wastewater by biological technologies: opportunities, challenges, and
prospects. Frontiers in microbiology, 7, 2106.
Qadir, M., & Sato, T. (2016). Water reuse in arid zones.
Ravndal, K. T., Opsahl, E., Bagi, A., & Kommedal, R. (2018). Wastewater characterisation by
combining size fractionation, chemical composition and biodegradability. Water
Research, 131, 151-160.
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and
applications. McGraw-Hill Education.
112
Roeleveld, P., & Van Loosdrecht, M. (2002). Experience with guidelines for wastewater
characterisation in The Netherlands. Water Science and Technology, 45(6), 77-87.
Rossle, W., & Pretorius, W. (2001). A review of characterisation requirements for in-line
prefermenters
Paper 1: Wastewater characterisation. Water Sa, 27(3), 405-412. doi:10.4314/wsa.v27i3.4985
Sage, M., Daufin, G., & Gésan-Guiziou, G. (2006). Denitrification potential and rates of
complex carbon source from dairy effluents in activated sludge system. Water Research,
40(14), 2747-2755.
Shao, M., Guo, L., She, Z., Gao, M., Zhao, Y., Sun, M., & Guo, Y. (2019). Enhancing
denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation
liquid as external carbon source. Environmental Science and Pollution Research, 26,
4633-4644.
Sibil, R., Berkun, M., & Bekiroglu, S. (2014). The comparison of different mathematical
methods to determine the BOD parameters, a new developed method and impacts of
these parameters variations on the design of WWTPs. Applied Mathematical Modelling,
38(2), 641-658.
Siegrist, H., & Tschui, M. (1992). Interpretation of experimental data with regard to the
activated sludge model no. 1 and calibration of the model for municipal wastewater
treatment plants. Water Science and Technology, 25(6), 167-183.
Sin, G., Van Hulle, S. W., De Pauw, D. J., Van Griensven, A., & Vanrolleghem, P. A. (2005). A
critical comparison of systematic calibration protocols for activated sludge models: A
SWOT analysis. Water Research, 39(12), 2459-2474.
Slade, A. H., & Dare, P. H. (1993). Measuring maximum specific growth rate and half saturation
coefficient for activated sludge systems using a freeze concentration technique. Water
Research, 27(12), 1793-1795.
Smyk, J., & Ignatowicz, K. (2015). COD fractions changes during sewage treatment with
constructed wetland. Journal of Ecological Engineering, 16(3), 43-48.
Sophonsiri, C., & Morgenroth, E. (2004). Chemical composition associated with different
particle size fractions in municipal, industrial, and agricultural wastewaters.
Chemosphere, 55(5), 691-703.
Spanjers, H. (1993). Respirometry in activated sludge. Wageningen University and Research.
Spanjers, H., Vanrolleghem, P., Olsson, G., & Doldt, P. (1996). Respirometry in control of the
activated sludge process. Water Science and Technology, 34(3-4), 117-126.
Spérandio, M., Paul, E., Bessière, Y., Liu, Y. J. B. S. M., & Technologies, B. B. R. (2012).
Sludge Production: Quantification and Prediction for Urban Treatment Plants and
Assessment of Strategies for Sludge Reduction. 81-116.
Struk-Sokołowska, J. (2015). COD fraction changes in the process of municipal and dairy
wastewater treatment in SBR reactors Bialystok University of Technology Bialystok,
Poland].
Struk-Sokolowska, J., & Tkaczuk, J. (2018). Analysis of bakery sewage treatment process
options based on COD fraction changes. Journal of Ecological Engineering, 19(4).
SUTARI, M. (2018). Wastewater chemistry and characterization - Nitrogen fractions SWIMH2020 SM – Sustainable Water Integrated Management and Horizon 2020 Support
Mechanism, Beirut, Lebanon https://www.swim-h2020.eu/
Tam, N. F. Y., Wong, Y. S., & & Leung, G. (1992). Significance of external carbon sources on
simultaneous removal of nutrients from wastewater. Water Science and Technology,
26(5-6), 1047-1055.
Tas, D. O., Karahan, Ö., I˙ nsel, G., Övez, S., Orhon, D., & Spanjers, H. (2009).
Biodegradability and denitrification potential of settleable chemical oxygen demand in
domestic wastewater. Water Environment Research, 81(7), 715-727.
113
Torrijos, M., Cerro, R.-M., Capdeville, B., Zeghal, S., Payraudeau, M., & Lesouef, A. (1994).
Sequencing batch reactor: A tool for wastewater characterization for the IAWPRC
model. Water Science and Technology, 29(7), 81-90.
Uribe Santos, G. A. (2021). A Pilot Scale-Study at the Nine Springs Wastewater Treatment Plant:
Seasonal Cod and F/M Ratio Trends and Their Application To Modeling Treatment
Processes
Van Haandel, A., Ekama, G., & Marais, G. (1981). The activated sludge process—3 single
sludge denitrification. Water Research, 15(10), 1135-1152.
van Loosdrecht, M. C., & Brdjanovic, D. (2014). Anticipating the next century of wastewater
treatment. Science, 344(6191), 1452-1453.
van Loosdrecht, M. C., Nielsen, P. H., Lopez-Vazquez, C. M., & Brdjanovic, D. (2016).
Experimental methods in wastewater treatment. IWA publishing.
Vanrolleghem, P. A., Insel, G., Petersen, B., Sin, G., De Pauw, D., Nopens, I., Weijers, S., &
Gernaey, K. (2003). A comprehensive model calibration procedure for activated sludge
models. Proceedings of WEFTEC,
Verstraete, W., Van de Caveye, P., & Diamantis, V. (2009). Maximum use of resources present
in domestic “used water”. Bioresource technology, 100(23), 5537-5545.
Wang, X., McCarty, P. L., Liu, J., Ren, N.-Q., Lee, D.-J., Yu, H.-Q., Qian, Y., & Qu, J. (2015).
Probabilistic evaluation of integrating resource recovery into wastewater treatment to
improve environmental sustainability. Proceedings of the National Academy of Sciences,
112(5), 1630-1635.
Wentzel, M. C., Ekama, G., & Sotemann, S. (2006). Mass balance-based plant-wide wastewater
treatment plant models-Part 1: Biodegradability of wastewater organics under anaerobic
conditions. Water Sa, 32(3), 269-275.
Wu, J. (2007). Characterization of activated sludge processes by particle and floc analysis
Loughborough University].
Xu, S., & Zheng, Q. (2021). Analysis the Influencing Factors of Toxic Substances Toxicity
Threshold on Biological Wastewater Treatment. IOP Conference Series: Earth and
Environmental Science,
Yu, G.-H., He, P.-J., Shao, L.-M., & Zhu, Y.-S. (2008). Extracellular proteins, polysaccharides
and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water
Research, 42(8-9), 1925-1934.
Zawilski, M., & Brzezińska, A. (2009). Variability of COD and TKN Fractions of Combined
Wastewater. Polish Journal of Environmental Studies, 18(3).
Zhang, J., Shao, Y., Liu, G., Qi, L., Wang, H., Xu, X., & Liu, S. (2021). Wastewater COD
characterization: RBCOD and SBCOD characterization analysis methods. Scientific
Reports, 11(1), 1-10.
Zhang, Y., Wang, X. C., Cheng, Z., Li, Y., & Tang, J. (2016). Effect of fermentation liquid from
food waste as a carbon source for enhancing denitrification in wastewater treatment.
Chemosphere, 144, 689-696.
Zorn, P. (1998). Multivariable Calculus from Graphical, Numerical, and Symbolic Points of
View. Saunders College Pub.
指導教授 莊順興(‪Shun-hsing Chuang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明