博碩士論文 110326026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:18.118.184.237
姓名 洪瑋廷(Wei-Tung Hong)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 煅燒條件對牡蠣殼抗菌能力之影響及抗菌物種- 單線態氧的檢測
(Effects of calcination conditions on the antibacterial ability of oyster shells and the detection of antibacterial species-singlet oxygen)
相關論文
★ Advanced Wastewater Analysis: AI-Integrated Flow Injection Analysis (FIA) System for COD Online Monitoring★ 電混凝法應用於金屬表面處理廢水對於處理效率的影響
★ 聚乳酸塑膠在環境水體中的老化及重金屬吸附之探討★ 化學回收廢棄聚乳酸(PLA) 及製備聚氨酯材料
★ 錳改質牡蠣殼固定土壤中鎘和銅之研究★ 職業噪音暴露對人體健康影響研究-以玻璃纖維工廠為例
★ 反向電透析(RED)產電效能評估 -以濃度、流速、膜對數及流道厚度為操作參數★ 以反向電透析(RED)系統產電並去除氨氮
★ 臺灣石門水庫及入庫河川表層水中微型塑膠時空分佈、組成與相關性調查★ Feasibility Study of Lanthanum-Modified Calcined Oyster Shells for Phosphorus Removal from Aquatic Environments
★ 氮改質煅燒牡蠣殼提升水中亞甲基藍染料 吸附和光催化降解之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 根據行政院農業委員會統計資料顯示,台灣每年約有16萬噸的廢棄牡蠣殼產出量,過去大部分的牡蠣殼被隨意棄置,在日照高溫下,散發惡臭味孳生蚊蠅,不僅占空間、破壞環境及漁村景觀,同時也危害附近居民的生活品質與健康。國內近年來大力推動廢棄牡蠣殼的回收計畫,此舉雖然有效改善廢棄物的問題,但是國內對牡蠣殼的應用開發仍侷限於飼料添加劑,其附加價值及使用率並不高。此外,隨著工業技術的進步和化學合成技術的開發,化學抗菌劑的使用已經變得普遍,甚至達到了濫用的程度,對人類和環境帶來了嚴重的威脅。為了解決上述問題,近年來,有許多學者致力於天然抗菌劑的研究,雖然已有文獻證實牡蠣殼經高溫煅燒後可製成高值化的新型抗菌劑,但對於抗菌機制眾說紛紜,普遍認為活性氧物種是主要的抗菌機制,而單線態氧(1O2)被視為具有高度活性的氧化劑,在抗菌過程中至關重要。本研究為首篇探討煅燒條件對於牡蠣殼中1O2生成之研究,並評估1O2含量與牡蠣殼抗菌能力的關係,另外,本研究亦建立更完整詳細的煅燒牡蠣殼之特性分析。本研究製備三種抗菌材料,分別是經過900°C和1000°C煅燒的牡蠣殼粉(900HOS(Heated oyster shell)、1000HOS),以及900°C下通氮氣煅燒的牡蠣殼粉(900N-HOS),並模擬大腸桿菌在生長的條件下,三種材料的抗菌效力,結果顯示,在1 g/L的劑量下,三種材料在60分鐘抗菌效果分別是0.87-log;0.74-log;0.63-log,抗菌能力大小順序為: 1000HOS > 900N-HOS > 900HOS,證實提升煅燒溫度和通入氮氣煅燒能夠有效提升牡蠣殼的抗菌能力,煅燒後的牡蠣殼展現出卓越的抗菌特性,1000HOS經過120分鐘後幾乎達到100%的抗菌效果(7.59-log);同樣地,900N-HOS和900HOS在240分鐘內達到完全的抗菌。為了更進一步確認抗菌的機制,本研究透過電子自旋共振光譜儀技術,檢測抗菌物種1O2之含量,分析結果顯示,1O2的含量與抗菌能力成正比,確定了1O2在抗菌機制中扮演著不可或缺的關鍵角色。綜合上述結果,期望本研究在廢棄牡蠣殼的應用上盡一份心力,同時實踐循環經濟的理念,促進廢棄牡蠣殼多元化的目標發展,並且創造漁業廢棄物的商業價值。
摘要(英) According to statistics from the Council of Agriculture, Executive Yuan, approximately 160,000 tons of discarded oyster shells are produced in Taiwan annually. In the past, most of the shells were dumped randomly. This improper disposal not only results in the occupation of space and environmental damage to the picturesque landscape of the fishing village but also poses a significant threat to the quality of life and the health of the neighboring residents. In recent years, Taiwan has actively promoted the recycling plan for discarded oyster shells. While this approach effectively addresses the waste issue, the domestic application and development of oyster shells remain limited to feed additives.
Furthermore, their added value and utilization rate are small. Again, chemical antiseptics have become increasingly widespread with the continuous advancement of industrial technology and the rapid development of chemical synthesis technology. Unfortunately, this general use has escalated to the point of abuse, posing a significant and imminent threat to human beings and the environment. Many scholars have been researching natural antibacterial agents to address these challenges in recent years. While previous literature has confirmed that oyster shells can be transformed into high-value antibacterial agents through high-temperature calcination, there are different perspectives on their antibacterial mechanisms. Reactive oxygen species (ROS) are generally considered the primary antibacterial mechanism, while singlet oxygen (1O2) is regarded as a highly reactive oxidant critical in the antibacterial process.
This study represents the primary investigation focusing on the impact of calcination conditions on the generation of 1O2 in oyster shells. Furthermore, the study aims to assess the correlation between the concentration of 1O2 and the antibacterial efficiency of oyster shells. Additionally, a comprehensive analysis of the characteristics of calcined oyster shells was conducted. Three types of antibacterial materials were prepared: oyster shell powder calcined at 900°C and 1000°C (represented as 900HOS and 1000HOS, respectively), and oyster shell powder calcined at 900°C under a nitrogen atmosphere (900N-HOS). The antibacterial ability of these materials against Escherichia coli was evaluated at different time points. The antibacterial efficacy of these three materials was evaluated under conditions simulating the growth of Escherichia coli.
The results demonstrated that at a dosage of 1 g/L, the antibacterial effects of the materials after 60 minutes were 0.87-log, 0.74-log, and 0.63-log for 1000HOS, 900N-HOS, and 900HOS, respectively. The antibacterial capacity followed the order: 1000HOS>900N-HOS> 900HOS, confirming that increasing the calcination temperature and conducting calcination under a nitrogen atmosphere effectively enhanced the antibacterial capability of oyster shells. The calcined oyster shells exhibited remarkable antibacterial properties, with 1000HOS achieving nearly 100% (7.59-log) antibacterial effect after 120 minutes, while 900N-HOS and 900HOS reached complete antibacterial efficacy within 240 minutes.
To further validate the antibacterial mechanism, electron spin resonance (ESR) spectrometer technology was employed to detect the content of the antibacterial species 1O2. The analysis showed a direct correlation between the 1O2 content and the antibacterial efficacy, thus confirming the crucial role of 1O2 in the antibacterial mechanism.
Based on the results above, this research is expected to contribute to the application of discarded oyster shells. At the same time, practice the circular economy concept, promote the diversification of discarded oyster shells, and create commercial value of fishery waste.
關鍵字(中) ★ 廢棄牡蠣殼
★ 氧化鈣
★ 抗菌能力
★ 活性氧物種(ROS)
★ 單線態氧(1O2)
關鍵字(英) ★ waste oyster shells
★ calcium oxide
★ antibacterial ability
★ reactive oxygen species (ROS)
★ singlet oxygen (1O2)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xii
第一章 研究緣起與目的 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究重要性與創新性 4
第二章 文獻回顧 5
2.1 廢棄牡蠣殼回收現況 5
2.2 牡蠣殼的特徵及應用 8
2.2.1 牡蠣殼的結構 8
2.2.2 廢棄牡蠣殼當前和潛在的用途 8
2.3 牡蠣殼抗菌材料的製備條件 11
2.3.1 鹼洗對牡蠣殼的型態影響 11
2.3.2 煅燒溫度及方式提升氧化鈣轉化率 11
2.4 牡蠣殼製備天然抗菌劑 12
2.4.1 天然抗菌劑的優勢 12
2.4.2 牡蠣殼的抗菌機制 13
2.4.3 氧化鈣的抗菌應用 15
2.4.4 抗菌劑的體外抗菌試驗方法 16
2.5 活性氧物種的檢測方法 19
2.5.1 螢光探針檢測 19
2.5.2 化學發光法 19
2.5.3 電子自旋共振(ESR)法 19
2.5.4 1O2定量技術 23
第三章 研究方法與材料 24
3.1 研究流程與架構 24
3.2 研究設備與藥品 25
3.2.1 實驗藥品 25
3.2.2 實驗儀器與設備 26
3.3 材料的製備 27
3.3.1 牡蠣殼粉的製備 27
3.3.2 不同煅燒溫度及方式製備牡蠣殼粉 27
3.4 抗菌材料的特性分析 28
3.4.1 pH 28
3.4.2 動態光散射(DLS) 28
3.4.3 比表面積及孔徑分佈分析(BET) 28
3.4.4 熱重損失(TGA) 29
3.4.5 衰減全反射傅立葉轉換紅外線光譜儀分析(ATR-FTIR) 29
3.4.6 X射線繞射儀(XRD) 29
3.4.7 X射線光電子能譜儀分析(XPS) 29
3.4.8 掃描式電子顯微鏡- X射線能譜儀分析(SEM-EDS) 30
3.5 菌種活化 30
3.6 平板計數及光學密度法(OD600)推估菌落數 32
3.7 抗菌能力測試 34
3.7.1 定性分析-瓊脂孔擴散法 34
3.7.2 定量分析-瓊脂稀釋法 34
3.8 單線態氧(1O2)的檢測方法 36
3.8.1 電子自旋共振(ESR)光譜法 36
3.8.2 ABDA法定量1O2 37
3.8.3 抗菌試驗差異性分析 37
第四章 結果與討論 38
4.1 藉由TGA結果選擇實驗材料 38
4.2 抗菌前置試驗 39
4.3 牡蠣殼抗菌材料之基本特性分析 40
4.3.1 動態光散射(DLS) 41
4.3.2 比表面積及孔徑分佈分析(BET) 41
4.3.3 X射線繞射儀(XRD) 45
4.3.4 衰減全反射傅立葉轉換紅外線光譜儀分析(ATR-FTIR) 46
4.3.5 掃描式電子顯微鏡- X射線能譜儀分析(SEM-EDS) 48
4.3.6 X射線光電子能譜儀分析(XPS) 53
4.4 抗菌實驗結果 58
4.4.1 定性分析-瓊脂孔擴散法 58
4.4.2 定量分析-瓊脂稀釋法 60
4.5 單線態氧(1O2)檢測結果 69
4.5.1 ESR定性分析 69
4.5.2 ABDA法定量1O2 76
第五章 結論與建議 78
5.1 結論 78
5.2 建議 80
參考文獻 81
附錄 91
附錄一 牡犡殼特性分析補充數據 91
附錄二 抗菌實驗結果照片(第三階段) 93
附錄三 牡犡殼抗菌實驗原始數據 94
參考文獻 Al-Nu’airat, J., B. Z. Dlugogorski, X. Gao, N. Zeinali, J. Skut, P. R. Westmoreland, I. Oluwoye and M. Altarawneh (2019). "Reaction of phenol with singlet oxygen." Physical Chemistry Chemical Physics 21(1): 171-183.
Alidoust, D., M. Kawahigashi, S. Yoshizawa, H. Sumida and M. Watanabe (2015). "Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells." Journal of Environmental Management 150: 103-110.
Alsohaimi, I. H., A. M. Nassar, T. A. Seaf Elnasr and B. a. Cheba (2020). "A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities." Journal of Cleaner Production 248.
Aranda, A., L. Sequedo, L. Tolosa, G. Quintas, E. Burello, J. Castell and L. Gombau (2013). "Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells." Toxicology in vitro 27(2): 954-963.
Asada, T., M. Omichi, T. Kimura and K. Oikawa (2001). "Bactericidal effect of calcium oxide and calcined shell calcium on Legionella pneumophila." Journal of health science 47(4): 414-418.
Bagreev, A., T. J. Bandosz and D. C. Locke (2001). "Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer." Carbon 39(13): 1971-1979.
Balouiri, M., M. Sadiki and S. K. Ibnsouda (2016). "Methods for in vitro evaluating antimicrobial activity: A review." Journal of Pharmaceutical Analysis 6(2): 71-79.
Bhattacharjee, S. (2016). "DLS and zeta potential – What they are and what they are not?" Journal of Controlled Release 235: 337-351.
Bi, D., G. Yuan, J. Wei, L. Xiao and L. Feng (2020). "Conversion of oyster shell waste to amendment for immobilising cadmium and arsenic in agricultural soil." Bulletin of Environmental Contamination and Toxicology 105(2): 277-282.
Boicko, A. L., D. Hotza and F. S. Sant’Anna (2004). "Utilização de conchas da ostra crassostrea gigas como carga para produtos de policloreto de vinila (PVC)." Anais IV Simpósio Internacional de Qualidade Ambiental 1: 1-8.
Bokare, A. D. and W. Choi (2015). "Singlet-Oxygen Generation in Alkaline Periodate Solution." Environ Sci Technol 49(24): 14392-14400.
Buettner, G. R. (1987). "Spin Trapping: ESR parameters of spin adducts 1474 1528V." Free Radical Biology and Medicine 3(4): 259-303.
Chabot, F., J. Mitchell, J. Gutteridge and T. Evans (1998). "Reactive oxygen species in acute lung injury." European Respiratory Journal 11(3): 745-757.
Chairopoulou, M. A., P. Garcia-Triñanes and U. Teipel (2022). "Oyster shell reuse: A particle engineering perspective for the use as emulsion stabilizers." Powder Technology 408: 117721.
Chang, L., Y. Feng, B. Wang, X. Huang, D. P. Yang and Y. Lu (2019). "Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification." RSC Adv 9(70): 41336-41344.
Checa, A. G., F. J. Esteban-Delgado and A. B. Rodríguez-Navarro (2007). "Crystallographic structure of the foliated calcite of bivalves." J Struct Biol 157(2): 393-402.
Chen, T.-y., H.-c. Huang, J.-l. Cao, Y.-j. Xin, W.-f. Luo and N.-j. Ao (2016). "Preparation and characterization of alginate/HACC/oyster shell powder biocomposite scaffolds for potential bone tissue engineering applications." RSC advances 6(42): 35577-35588.
Chiou, I., C. Chen and Y. Li (2014). "Using oyster-shell foamed bricks to neutralize the acidity of recycled rainwater." Construction and Building Materials 64: 480-487.
Chiou, I. J., C. H. Chen and Y. H. Li (2014). "Using oyster-shell foamed bricks to neutralize the acidity of recycled rainwater." Construction and Building Materials 64: 480-487.
Choi, U.-K., O.-H. Lee and Y.-C. Kim (2011). "Effect of Calcinated Oyster Shell Powder on Growth, Yield, Spawn Run, and Primordial Formation of King Oyster Mushroom (Pleurotus Eryngii)." Molecules 16(3): 2313-2322.
Dai, Y., X. Wang, Q. Dai and D. Li (2012). "Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene." Applied Catalysis B: Environmental 111-112: 141-149.
Dalrymple, O. K., E. Stefanakos, M. A. Trotz and D. Y. Goswami (2010). "A review of the mechanisms and modeling of photocatalytic disinfection." Applied Catalysis B: Environmental 98(1): 27-38.
Dahlan, K., O. Togibasa and K. Dahlan (2021). "The Influence of Calcination Temperature to Calcium Content in the Mangrove Crab Shells (Scylla serrata) from Merauke." Journal of Physics: Conference Series 1940: 012024.
Das, K. and A. Roychoudhury (2014). "Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants." Frontiers in environmental science 2: 53.
Davies, M. J. (2003). "Singlet oxygen-mediated damage to proteins and its consequences." Biochemical and Biophysical Research Communications 305(3): 761-770.
Deneke, C. F. and N. I. Krinsky (1977). "Inhibition and enhancement of singlet oxygen (‘Ag) dimol chemiluminescence." Photochemistry and Photobiology 25(3): 299-304.
Diaz-Uribe, C. E., M. C. Daza, E. A. Páez-Mozo, F. Martínez O, C. L. B. Guedes and E. Di Mauro (2013). "Visible light singlet oxygen production with tetra(4-carboxyphenyl)porphyrin/SiO2." Journal of Photochemistry and Photobiology A: Chemistry 259: 47-52.
Didekhani, R., M. R. Sohrabi, E. Seyedjafari, M. Soleimani and H. Hanaee-Ahvaz (2018). "Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells." Biologicals 54: 33-38.
Dizaj, S. M., F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan and K. Adibkia (2014). "Antimicrobial activity of the metals and metal oxide nanoparticles." Materials Science and Engineering: C 44: 278-284.
Díaz-Uribe, C. E., W. A. Vallejo-Lozada and F. Martínez-Ortega (2014). "Photooxidation of anthracene under visible light with metallocarboxyphenylporphyrins." Revista Facultad de Ingeniería Universidad de Antioquia(73): 225-230.
El-Saber Batiha, G., D. E. Hussein, A. M. Algammal, T. T. George, P. Jeandet, A. E. Al-Snafi, A. Tiwari, J. P. Pagnossa, C. M. Lima, N. D. Thorat, M. Zahoor, M. El-Esawi, A. Dey, S. Alghamdi, H. F. Hetta and N. Cruz-Martins (2021). "Application of natural antimicrobials in food preservation: Recent views." Food Control 126: 108066.
Entradas, T., S. Waldron and M. Volk (2020). "The detection sensitivity of commonly used singlet oxygen probes in aqueous environments." J Photochem Photobiol B 204: 111787.
Fang, Q., B. Chen, Y. Lin and Y. Guan (2014). "Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups." Environmental science & technology 48(1): 279-288.
Faniyi, I., O. Fasakin, B. Olofinjana, A. Adekunle, T. Oluwasusi, M. Eleruja and E. Ajayi (2019). "The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches." SN Applied Sciences 1: 1-7.
Frank, C., D. Werber, J. P. Cramer, M. Askar, M. Faber, M. an der Heiden, H. Bernard, A. Fruth, R. Prager and A. Spode (2011). "Epidemic profile of Shiga-toxin–producing Escherichia coli O104: H4 outbreak in Germany." New England Journal of Medicine 365(19): 1771-1780.
Galván-Ruiz, M., J. Hernández, L. Baños, J. Noriega-Montes and E. Rodríguez-García Mario (2009). "Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction." Journal of Materials in Civil Engineering 21(11): 694-698.
Guéguen, M., J.-C. Amiard, N. Arnich, P.-M. Badot, D. Claisse, T. Guérin and J.-P. Vernoux (2011). "Shellfish and residual chemical contaminants: hazards, monitoring, and health risk assessment along French coasts." Reviews of Environmental Contamination and Toxicology Volume 213: 55-111.
Guo, Y., D.-P. Yang, M. Liu, X. Zhang, Y. Chen, J. Huang, Q. Li and R. Luque (2019). "Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst." Journal of Materials Chemistry A 7(15): 8832-8844.
H. Silva, T., J. Mesquita-Guimarães, B. Henriques, F. S. Silva and M. C. Fredel (2019). "The Potential Use of Oyster Shell Waste in New Value-Added By-Product." Resources 8(1): 13.
Han, S. K., T.-M. Hwang, Y. Yoon and J.-W. Kang (2011). "Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR)." Chemosphere 84(8): 1095-1101.
Hassan, A. M., A. M. Nassar, N. M. Ibrahim, A. M. Elsaman and M. M. Rashad (2013). "An easy synthesis of nanostructured magnetite-loaded functionalized carbon spheres and cobalt ferrite." Journal of Coordination Chemistry 66(24): 4387-4398.
Huang, T., Y. Qian, J. Wei and C. Zhou (2019). "Polymeric Antimicrobial Food Packaging and Its Applications." Polymers 11(3): 560.
Huh, J.-H., Y.-H. Choi, H.-J. Lee, W. J. Choi, C. Ramakrishna, H.-W. Lee, S.-H. Lee and J.-W. Ahn (2016). "The Use of Oyster Shell Powders for Water Quality Improvement of Lakes by Algal Blooms Removal." J. Korean Ceram. Soc 53(1): 1-6.
Jack, J., J. Roeland, P. Albertus and A. Nico (2000). "Amorphous calcium carbonate stabilised by poly (propylene imine) dendrimers." Chemical Communications(19): 1937-1938.
Jeon, D. J. and S. H. Yeom (2009). "Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate." Bioresource technology 100(9): 2646-2649.
Jia, H., J. Liu, S. Zhong, F. Zhang, Z. Xu, X. Gong and C. Lu (2015). "Manganese oxide coated river sand for Mn(II) removal from groundwater." Journal of Chemical Technology & Biotechnology 90(9): 1727-1734.
Jin, H., S. Capareda, Z. Chang, J. Gao, Y. Xu and J. Zhang (2014). "Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation." Bioresource Technology 169: 622-629.
Jung, B.-M., S.-J. Jung and E.-S. Kim (2010). "Quality characteristics and storage properties of gat kimchi added with oyster shell powder and Salicornia herbacea powder." Korean journal of food and cookery science 26(2): 188-197.
Jung, S., N. S. Heo, E. J. Kim, S. Y. Oh, H. U. Lee, I. T. Kim, J. Hur, G.-W. Lee, Y.-C. Lee and Y. S. Huh (2016). "Feasibility test of waste oyster shell powder for water treatment." Process Safety and Environmental Protection 102: 129-139.
Kawasaki, K., J.-J. Yin, W. K. Subczynski, J. S. Hyde and A. Kusumi (2001). "Pulse EPR Detection of Lipid Exchange between Protein-Rich Raft and Bulk Domains in the Membrane: Methodology Development and Its Application to Studies of Influenza Viral Membrane." Biophysical Journal 80(2): 738-748.
Keiluweit, M., P. S. Nico, M. G. Johnson and M. Kleber (2010). "Dynamic molecular structure of plant biomass-derived black carbon (biochar)." Environmental science & technology 44(4): 1247-1253.
Kim, J., H. Lee, J.-Y. Lee, K.-H. Park, W. Kim, J. H. Lee, H.-J. Kang, S. W. Hong, H.-J. Park, S. Lee, J.-H. Lee, H.-D. Park, J. Y. Kim, Y. W. Jeong and J. Lee (2020). "Photosensitized Production of Singlet Oxygen via C60 Fullerene Covalently Attached to Functionalized Silica-coated Stainless-Steel Mesh: Remote Bacterial and Viral Inactivation." Applied Catalysis B: Environmental 270: 118862.
Kotake, Y. (1999). "Pharmacologic properties of phenyl N-tert-butylnitrone." Antioxidants & redox signaling 1(4): 481-499.
Kusuma, M. and G. T. Chandrappa (2019). "Effect of calcination temperature on characteristic properties of CaMoO4 nanoparticles." Journal of Science: Advanced Materials and Devices 4(1): 150-157.
Kwon, H.-B., C.-W. Lee, B.-S. Jun, J.-d. Yun, S.-Y. Weon and B. Koopman (2004). "Recycling waste oyster shells for eutrophication control." Resources, Conservation and Recycling 41(1): 75-82.
Lee, S.-W., Y.-N. Jang, K.-W. Ryu, S.-C. Chae, Y.-H. Lee and C.-W. Jeon (2011). "Mechanical characteristics and morphological effect of complex crossed structure in biomaterials: Fracture mechanics and microstructure of chalky layer in oyster shell." Micron 42(1): 60-70.
Lee, W.-D., D. Kothari, K.-M. Niu, J.-M. Lim, D.-H. Park, J. Ko, K. Eom and S.-K. Kim (2021). "Superiority of coarse eggshell as a calcium source over limestone, cockle shell, oyster shell, and fine eggshell in old laying hens." Scientific reports 11(1): 1-10.
Leng, L., Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li and H. Huang (2021). "An overview on engineering the surface area and porosity of biochar." Science of The Total Environment 763: 144204.
Li, Q., Y. Yin, D. Cao, Y. Wang, P. Luan, X. Sun, W. Liang and H. Zhu (2021). "Photocatalytic Rejuvenation Enabled Self-Sanitizing, Reusable, and Biodegradable Masks against COVID-19." ACS Nano.
Liang, X., Z. Guo, H. Wei, X. Liu, H. Lv and H. Xing (2018). "Selective photooxidation of sulfides mediated by singlet oxygen using visible-light-responsive coordination polymers." Chemical Communications 54(92): 13002-13005.
Liou, G.-Y. and P. Storz (2010). "Reactive oxygen species in cancer." Free radical research 44(5): 479-496.
Liu, C., S.-H. Chen, C.-H. Yang-Zhou, Q.-G. Zhang and R. N. Michael (2021). "Application of Nano-Hydroxyapatite Derived from Oyster Shell in Fabricating Superhydrophobic Sponge for Efficient Oil/Water Separation." Molecules 26(12): 3703.
Lu, J., Z. Lu, X. Li, H. Xu and X. Li (2015). "Recycling of shell wastes into nanosized calcium carbonate powders with different phase compositions." Journal of Cleaner Production 92: 223-229.
Lu, W.-C., C.-S. Chiu, C.-W. Hsieh, Y.-J. Chan, Z.-C. Liang, C.-C. R. Wang, A. T. Mulio, D. H. T. Le and P.-H. Li (2022). "Calcined Oyster Shell Powder as a Natural Preservative for Maintaining Quality of White Shrimp (Litopenaeus vannamei)." Biology 11(2): 334.
Møller, I. M., P. E. Jensen and A. Hansson (2007). "Oxidative modifications to cellular components in plants." Annu. Rev. Plant Biol. 58: 459-481.
Ma, M.-G., L.-H. Fu, S.-M. Li, X.-M. Zhang, R.-C. Sun and Y.-D. Dai (2012). "Hydrothermal synthesis and characterization of wood powder/CaCO3 composites." Carbohydrate polymers 88(4): 1470-1475.
Magaldi, S., S. Mata-Essayag, C. H. De Capriles, C. Pérez, M. Colella, C. Olaizola and Y. Ontiveros (2004). "Well diffusion for antifungal susceptibility testing." International journal of infectious diseases 8(1): 39-45.
Martin‐Neto, L., D. Milori, W. Da Silva and M. Simões (2009). "EPR, FTIR, Raman, UV–Visible absorption, and fluorescence spectroscopies in studies of NOM." Biophysico‐Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems: 651-727.
Mirghiasi, Z., F. Bakhtiari, E. Darezereshki and E. Esmaeilzadeh (2014). "Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method." Journal of Industrial and Engineering Chemistry 20(1): 113-117.
Mohamed, R., M. Rashad, F. Haraz and W. Sigmund (2010). "Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method." Journal of Magnetism and Magnetic Materials 322(14): 2058-2064.
Morton, J. (1964). "Electron spin resonance spectra of oriented radicals." Chemical Reviews 64(4): 453-471.
Myers, J. A., B. S. Curtis and W. R. Curtis (2013). "Improving accuracy of cell and chromophore concentration measurements using optical density." BMC biophysics 6(1): 1-16.
Nath, D., K. Jangid, A. Susaniya, R. Kumar and R. Vaish (2021). "Eggshell derived CaO-Portland cement antibacterial composites." Composites Part C: Open Access 5.
Oikawa, K., T. Asada, K. Yamamoto, H. Wakabayashi, M. Sasaki, M. Sato and J. Matsuda (2000). "Antibacterial activity of calcined shell calcium prepared from wild surf clam." Journal of Health Science 46(2): 98-103.
Ok, Y. S., J. E. Lim and D. H. Moon (2011). "Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells." Environmental Geochemistry and Health 33(1): 83-91.
Ok, Y. S., S.-E. Oh, M. Ahmad, S. Hyun, K.-R. Kim, D. H. Moon, S. S. Lee, K. J. Lim, W.-T. Jeon and J. E. Yang (2010). "Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils." Environmental Earth Sciences 61(6): 1301-1308.
Paris, J. M., J. G. Roessler, C. C. Ferraro, H. D. DeFord and T. G. Townsend (2016). "A review of waste products utilized as supplements to Portland cement in concrete." Journal of Cleaner Production 121: 1-18.
Park, W. and C. Polprasert (2008). "Roles of oyster shells in an integrated constructed wetland system designed for P removal." Ecological Engineering 34(1): 50-56.
Piao, M. J., K. A. Kang, I. K. Lee, H. S. Kim, S. Kim, J. Y. Choi, J. Choi and J. W. Hyun (2011). "Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis." Toxicology letters 201(1): 92-100.
Price, M., J. J. Reiners, A. M. Santiago and D. Kessel (2009). "Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy." Photochemistry and photobiology 85(5): 1177-1181.
Regmi, P., J. L. Garcia Moscoso, S. Kumar, X. Cao, J. Mao and G. Schafran (2012). "Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process." Journal of Environmental Management 109: 61-69.
Rodriguez-Navarro, C., E. Ruiz-Agudo, A. Luque, A. B. Rodriguez-Navarro and M. Ortega-Huertas (2009). "Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals." American Mineralogist 94(4): 578-593.
Rohim, R., R. Ahmad, N. Ibrahim, N. Hamidin and C. Z. A. Abidin (2014). "Characterization of calcium oxide catalyst from eggshell waste." Advances in Environmental Biology 8: 35-38.
Ronsse, F., S. Van Hecke, D. Dickinson and W. Prins (2013). "Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions." Gcb Bioenergy 5(2): 104-115.
Rujitanapanich, S., P. Kumpapan and P. Wanjanoi (2014). "Synthesis of Hydroxyapatite from Oyster Shell via Precipitation." Energy Procedia 56: 112-117.
Sadeghi, K., K. Park and J. Seo (2019). "Oyster Shell Disposal: Potential as a Novel Ecofriendly Antimicrobial Agent for Packaging : a Mini Review." Korean Journal of Packaging Science and Technology 25(2): 57-62.
Sadeghi, K., S. Thanakkasaranee, I. J. Lim and J. Seo (2020). "Calcined marine coral powders as a novel ecofriendly antimicrobial agent." Mater Sci Eng C Mater Biol Appl 107: 110193.
Sang, M., F. Ma, J. Xie, X. B. Chen, K. B. Wang, X. C. Qin, W. D. Wang, J. Q. Zhao, L. B. Li, J. P. Zhang and T. Y. Kuang (2010). "High-light induced singlet oxygen formation in cytochrome b(6)f complex from Bryopsis corticulans as detected by EPR spectroscopy." Biophys Chem 146(1): 7-12.
Sawai, J., H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu (1995). "Effect of Ceramic Powder Slurry on Spores of Bacillus subtilis." Journal of Chemical Engineering of Japan - J CHEM ENG JPN 28: 556-561.
Sawai, J., H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu (1995). "Evaluation of Growth Inhibitory Effect of Ceramics Powder Slurry on Bacteria by Conductance Method." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 28(3): 288-293.
Sawai, J., H. Shiga and H. Kojima (2001). "Kinetic analysis of death of bacteria in CaO powder slurry." International biodeterioration & biodegradation 47(1): 23-26.
Sawai, J., H. Shiga and H. Kojima (2001). "Kinetic analysis of the bactericidal action of heated scallop-shell powder." International journal of food microbiology 71(2-3): 211-218.
Schweiger, A. and G. Jeschke (2001). Principles of pulse electron paramagnetic resonance, Oxford University Press on Demand.
Shah, A. H. and M. A. Rather (2021). "Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method." Materials Today: Proceedings 44: 482-488.
Shiga, H. (1999). "Utilization of heated shell powder in biocontrol." Trans. Mater. Res. Soc. Jpn. 24: 557-560.
Shumway, S. E. (2011). Shellfish aquaculture and the environment, John Wiley & Sons.
Soisuwan, S., J. Phommachant, W. Wisaijorn and P. Praserthdam (2014). "The Characteristics of Green Calcium Oxide Derived from Aquatic Materials." Procedia Chemistry 9: 53-61.
Su, Y., H. Song and Y. Lv (2019). "Recent advances in chemiluminescence for reactive oxygen species sensing and imaging analysis." Microchemical Journal 146: 83-97.
Suwannasingha, N., A. Kantavong, S. Tunkijjanukij, C. Aenglong, H.-B. Liu and W. Klaypradit (2022). "Effect of calcination temperature on structure and characteristics of calcium oxide powder derived from marine shell waste." Journal of Saudi Chemical Society 26(2): 101441.
Tanpure, S., V. Ghanwat, B. Shinde, K. Tanpure and S. Lawande (2020). "The Eggshell Waste Transformed Green and Efficient Synthesis of K-Ca(OH)2 Catalyst for Room Temperature Synthesis of Chalcones." Polycyclic Aromatic Compounds 42(4): 1322-1340.
Tanpure, S., V. Ghanwat, B. Shinde, K. Tanpure and S. Lawande (2022). "The eggshell waste transformed green and efficient synthesis of K-Ca (OH) 2 catalyst for room temperature synthesis of chalcones." Polycyclic Aromatic Compounds 42(4): 1322-1340.
Thenepalli, T., C. Ramakrishna and J. W. Ahn (2017). "Environmental effect of the coffee waste and anti-microbial property of oyster shell waste treatment." Journal of Energy Engineering 26(2): 39-49.
Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. Sing (2015). "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)." Pure and applied chemistry 87(9-10): 1051-1069.
Tsai, H.-C., S.-L. Lo and J. Kuo (2011). "Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater." Bioresource Technology 102(17): 7802-7806.
Tsou, C.-H., C.-S. Wu, W.-S. Hung, M. R. De Guzman, C. Gao, R.-Y. Wang, J. Chen, N. Wan, Y.-J. Peng and M.-C. Suen (2019). "Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder." Polymer 160: 265-271.
Upadhyay, A., V. Thiyagarajan and Y. Tong (2016). "Proteomic characterization of oyster shell organic matrix proteins (OMP)." Bioinformation 12(5): 266.
Varhen, C., S. Carrillo and G. Ruiz (2017). "Experimental investigation of Peruvian scallop used as fine aggregate in concrete." Construction and Building Materials 136: 533-540.
Verziu, M., S. M. Coman, R. Richards and V. I. Parvulescu (2011). "Transesterification of vegetable oils over CaO catalysts." Catalysis Today 167(1): 64-70.
Wang, Z., W. Ma, C. Chen, H. Ji and J. Zhao (2011). "Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—A mini review." Chemical Engineering Journal 170(2-3): 353-362.
Wu, C. S., D. Y. Wu and S. S. Wang (2019). "Antibacterial Properties of Biobased Polyester Composites Achieved through Modification with a Thermally Treated Waste Scallop Shell." ACS Appl Bio Mater 2(5): 2262-2270.
Wu, Q., J. Chen, M. Clark and Y. Yu (2014). "Adsorption of copper to different biogenic oyster shell structures." Applied Surface Science 311: 264-272.
Wu, S.-C., H.-C. Hsu, S.-K. Hsu, C.-P. Tseng and W.-F. Ho (2017). "Preparation and characterization of hydroxyapatite synthesized from oyster shell powders." Advanced Powder Technology 28(4): 1154-1158.
Xing, R., Y. Qin, X. Guan, S. Liu, H. Yu and P. Li (2013). "Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products." The Egyptian Journal of Aquatic Research 39(2): 83-90.
Xu, X., X. Liu, M. Oh and J. Park (2019). "Oyster shell as a low-cost adsorbent for removing heavy metal ions from wastewater." Pol. J. Environ. Stud 28(4): 2949-2959.
Yan, Z., Z. Fang, Z. Ma, J. Deng, S. Li, L. Xie and R. Zhang (2007). "Biomineralization: functions of calmodulin-like protein in the shell formation of pearl oyster." Biochimica et Biophysica Acta (BBA)-General Subjects 1770(9): 1338-1344.
Yang, E.-I., S.-T. Yi and Y.-M. Leem (2005). "Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties." Cement and Concrete Research 35(11): 2175-2182.
Yen, L.-T., C.-H. Weng, N. A. T. Than, J.-H. Tzeng, A. R. Jacobson, K. Iamsaard, V. D. Dang and Y.-T. Lin (2022). "Mode of inactivation of Staphylococcus aureus and Escherichia coli by heated oyster-shell powder." Chemical Engineering Journal 432.
Yin, J.-J., J. Liu, M. Ehrenshaft, J. E. Roberts, P. P. Fu, R. P. Mason and B. Zhao (2012). "Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage." Toxicology and applied pharmacology 263(1): 81-88.
Yoon, G.-L., B.-T. Kim, B.-O. Kim and S.-H. Han (2003). "Chemical–mechanical characteristics of crushed oyster-shell." Waste Management 23(9): 825-834.
You, K., W. Yang, P. Song, L. Fan, S. Xu, B. Li and L. Feng (2022). "Lanthanum-modified magnetic oyster shell and its use for enhancing phosphate removal from water." Colloids and Surfaces A: Physicochemical and Engineering Aspects 633: 127897.
You, Y. (2018). "Chemical tools for the generation and detection of singlet oxygen." Organic & biomolecular chemistry 16(22): 4044-4060.
Yu, J., C.-H. Hsu, C.-C. Huang and P.-Y. Chang (2015). "Development of Therapeutic Au–Methylene Blue Nanoparticles for Targeted Photodynamic Therapy of Cervical Cancer Cells." ACS Applied Materials & Interfaces 7(1): 432-441.
Yu, J., C. H. Hsu, C. C. Huang and P. Y. Chang (2015). "Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells." ACS Appl Mater Interfaces 7(1): 432-441.
Żamojć, K., M. Zdrowowicz, P. B. Rudnicki-Velasquez, K. Krzymiński, B. Zaborowski, P. Niedziałkowski, D. Jacewicz and L. Chmurzyński (2017). "The development of 1, 3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide." Free radical research 51(1): 38-46.
曾彥儒,「以Fenton法探討自由基與有機物之反應機制」,國立雲林科技大學,2015。
台灣糖業公司,「台糖化牡蠣殼為生技材料,點殼成金邁向資源全循環、零廢棄」,2022。
行政院農業委員會,「綠色國民所得帳農業固體廢棄物」,2021。https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx。
范繼中;藍惠玲;楊涵婷;吳純衡,「煅燒溫度對貝殼結晶構型之影響」,水產研究,19 (2): 93-101,2011。
黃亘亘,「近中秋逢蚵螺肆虐嘉義東石牡蠣產量大減五成」,2022。
黃聖中,「Shewanella oneidensis MR-1於生長遲滯狀態下胞外還原二價汞之機制」,國立中央大學,2022。
指導教授 林伯勳(Po-Hsun Lin) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明