博碩士論文 108083605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.217.4.250
姓名 帝莫科(Dwi Atmoko)  查詢紙本館藏   畢業系所 環境科技博士學位學程
論文名稱 基於多頻譜光學參數在海鹽氣膠識別及其對海洋輻射強迫和大氣可降水量的影響
(Sea Salt Aerosol Identification Based on Multispectral Optical Properties and Its Impact on Radiative Forcing and Precipitable Water Vapor Over Ocean)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用
★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用★ 應用衛星資料探討大台北地區都市熱島效應之時空分布
★ AERONET觀測資料在氣膠種類輻射參數之探討★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結
★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響
★ 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-31以後開放)
摘要(中) 摘要


海洋區域的海鹽氣膠 (SS)測量,需要利用大量衛星觀測反演的氣膠產品。 在本研究中,根據不同波長的氣膠光學厚度 (AOD) 計算 n 階光譜導數,用來分析檢驗海鹽氣膠和其他氣膠類型的光學本質參數,包含粒徑大小分佈和複數折射指數等重要的光學特性。藉由輻射傳送計算模式 (6S)理論的模擬,針對海鹽氣膠以及其他主要類型的氣膠,包括沙塵 (DS)、生質燃燒 (BB) 和人為污染物 (AP) 進行了多頻譜n階導數的特徵分析。 並利用正規化的一階和二階導數所對應的氣膠粒徑大小分佈(Angstrom Exponent,AE)和複數折射指數的本質參數進行氣膠種類的區分,最後應用於中級解析度成像分光輻射度計(MODIS) 以及氣膠觀測網 (AERONET) 的實際觀測資料。研究結果顯示本研究的方法可以有效地辨識海鹽氣膠SS並區分海洋地區的 DS、BB 和 AP,其中SS的粒徑為0.08±0.09,DS的AE為0.11±0.13,BB的粒徑為2.34±0.35,AP的AE為1.18±0.08,較小的 AE 值代表大粒徑氣膠為多數,而較大的 AE 則代表多數為小粒徑的氣膠。氣膠種類的辨識結果可應用於估算各類氣膠的短波輻射強迫及其效率,以評估其對天氣或氣候系統的影響。 而平均輻射強迫的數值則顯示,SS在大氣層頂的輻射強迫最大,為-36 W/m2,在大氣層頂產生最有效的輻射冷卻效果;而AP在底層大氣的絕對強度最大,但在大氣層中則最小,分別為-66.2和32.5 W/m2。 由於大氣氣膠粒子可提供凝結核,所有氣膠種類的氣膠光學厚度與正規化的可降水氣均呈現正相關,其中SS 在低、高、中層的大氣中,對於水氣的凝結是最有效的氣膠,相對於其他3種氣膠產生更多的可降水氣,而 DS 的效率是最低的。此外,SS 在低層大氣中雲量的增加是最有效的氣膠種類,而 AP 在中層和高層大氣中表現出最有效的氣膠種類,其次是 SS 和 DS。

關鍵詞:氣膠光學厚度、MODIS、CERES、氣溶膠類型、海鹽、輻射強迫、可降水氣.
摘要(英) Abstract


The ground-based measurement of sea salt (SS) aerosol over the ocean requires the massive utilization of satellite-derived aerosol products. In this study, n-order spectral derivatives of multispectral aerosol optical depths (AODs) were examined to characterize SS and other aerosol types in terms of their spectral dependence related to their optical properties such as particle size distributions and complex refractive index (absorption and scattering). Based on theoretical simulations from the second simulation of a satellite signal in the solar spectrum (6S) model, wavelength-dependent spectral derivatives of SS were characterized along with other major types including mineral dust (DS), biomass burning (BB), and anthropogenic pollutant (AP). The approach of partitioning aerosol types with intrinsic values of particle size distribution (Angstrom Exponent, AE) and complex refractive index from normalized first- and second-order derivatives was applied to the datasets from a moderate resolution imaging spectroradiometer (MODIS) as well as by the ground-based aerosol robotic network (AERONET). The results after implementation from multiple sources of data indicated that the proposed approach could be highly effective for identifying and segregating abundant SS from DS, BB, and AP, across an ocean. Consequently, each aerosol’s shortwave direct radiative forcing and its efficiency could be further estimated in order to predict its impact on the climate system. The particle size distribution of SS was 0.08 ± 0.09, together with DS with AE 0.11 ± 0.13, BB with the particle size 2.34 ± 0.35), and AP with AE 1.18 ± 0.08. Smaller magnitudes of AE refer to coarse-mode dominant particles while large AE represents fine-mode dominating aerosols. The averaged radiative forcing (RF) exhibited that the SS had the smallest magnitude at TOA, −36 W/m2, while AP had the lowest magnitude at the BOA but the highest in the atmosphere, with −66.2 and 32.5 W/m2, respectively. SS generated the most efficient radiative cooling effects at TOA of all aerosol types as indicated by its steepest slope in the linear best fit between RF and AOD055 μm. AOD055 μm and normalized precipitable water vapor depicted positive correlation. At low (surface to 680 mb) and middle (680 – 400 mb) atmosphere, SS posed the most efficient aerosol, having the steepest slope of the line of best-fit, and generated more precipitable water vapor than the other 3 aerosol species. DS was the least efficient of all. The highest efficiency of SS in PW was also tailed by the relationship between AOD055 μm and cloud amount. SS exhibited the most effective aerosol species in enhancing cloud amount in low (< 4 km) and high (> 8 km) atmosphere, while AP demonstrated the most efficient in the middle atmosphere (4 – 8 km), followed by SS and DS.

Keywords: Aerosol Optical Depth, MODIS, CERES, aerosol types, sea salt, radiative forcing, precipitable water vapor.
關鍵字(中) ★ 氣膠光學厚度
★ MODIS
★ CERES
★ 氣溶膠類型
★ 海鹽
★ 輻射強迫
關鍵字(英) ★ Aerosol Optical Depth
★ MODIS
★ CERES
★ aerosol types
★ sea salt
★ radiative forcing
論文目次 Table of Contents
摘要 i
Abstract iii
Table of Contents v
List of Figures vii
List of Tables x
Acknowledgment xi
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Objectives 9
1.3. Dissertation outline 9
Chapter 2. Literature Review 11
2.1. Sea salt aerosol production 11
2.2. Shortwave Direct Aerosol Radiative Forcing and Radiative Forcing Efficiency 12
Chapter 3. Identifying Sea Salt Aerosol Over Ocean Using MODIS Multispectral Aerosol Optical and its Impact on Radiative Forcing Effect 17
3.1. Background 17
3.2. Dataset and Methodology 22
3.2.1. Simulation of 6S Model 23
3.2.2. Spectral Derivatives of AOD 24
3.2.3. Shortwave Aerosol Direct Radiative Forcing and Efficiency 28
3.3. Measurement 22
3.3.1. In-situ Observations of Aerosol Optical Depth 28
3.3.2. Satellite Observation 29
3.4. Results and Discussions 31
3.4.1. Theoretical Spectral AOD Derivatives 31
3.4.2. In-situ Measurements for Spectral Derivatives of Aerosol Optical Depth 39
3.4.3. Measurements from Space Borne Sensors 40
3.5. Conclusions 51
Chapter 4. The Short-term Assessment of Relationship Between Aerosol Optical Depth and Precipitable Water Vapor Under Different Aerosol Types 53
4.1. Introduction 53
4.2. Study area 55
4.3. Materials 56
4.4. Methods 58
4.4.1. Aerosol Optical Depth Retrieval Simulation 58
4.4.2. Spectral Derivative of Aerosol Optical Depth 59
4.4.3. Normalizing Precipitable Water Vapor 61
4.5. Results and Discussion 62
4.5.1. Experiment of the 6S Simulation 62
4.5.2. Linking CALIPSO Aerosol Subtypes and MODIS Multispectral Aerosol Optical Depth. 66
4.5.3. Relationship Between Aerosol Optical Depth, Precipitable Water Vapor and Cloud Cover. 70
4.6. Conclusions 77
Chapter 5. Summary and Future Opportunities 79
5.1. Summary 79
5.2. Future Opportunities 81
REFERENCES 83
參考文獻 REFERENCES

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., & Welton, E. J. (2000). Reduction of Tropical Cloudiness by Soot. Science, 288(5468), 1042-1047. https://doi.org/doi:10.1126/science.288.5468.1042
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227-1230.
Almansa, A. F., Cuevas, E., Barreto, Á., Torres, B., García, O. E., Delia García, R., Velasco-Merino, C., Cachorro, V. E., Berjón, A., Mallorquín, M., López, C., Ramos, R., Guirado-Fuentes, C., Negrillo, R., & de Frutos, Á. M. (2020). Column Integrated Water Vapor and Aerosol Load Characterization with the New ZEN-R52 Radiometer. Remote Sensing, 12(9), 1424. https://www.mdpi.com/2072-4292/12/9/1424
Altaratz, O., Bar-Or, R. Z., Wollner, U., & Koren, I. (2013). Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environmental Research Letters, 8(3), 034025. https://doi.org/10.1088/1748-9326/8/3/034025
Andreae, M. (1995). World survey of climatology. Future Climates of the World, 16, 341-392.
Andreae, M. O., Jones, C. D., & Cox, P. M. (2005). Strong present-day aerosol cooling implies a hot future. Nature, 435(7046), 1187-1190. https://doi.org/10.1038/nature03671
Andreae, M. O., & Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1), 13-41. https://doi.org/https://doi.org/10.1016/j.earscirev.2008.03.001
Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16(1), 64-75. https://doi.org/10.3402/tellusa.v16i1.8885
Anguelova, M., Barber Jr, R. P., & Wu, J. (1999). Spume drops produced by the wind tearing of wave crests. Journal of Physical Oceanography, 29(6), 1156-1165.
Atmoko, D., & Lin, T.-H. (2022). Sea Salt Aerosol Identification Based on Multispectral Optical Properties and Its Impact on Radiative Forcing over the Ocean. Remote Sensing, 14(13), 3188. https://www.mdpi.com/2072-4292/14/13/3188
Balarabe, M. A., Abdullah, K., & Nawawi, M. N. M. (2016). Seasonal Variations of Aerosol Optical Properties and Identification of Different Aerosol Types Based on AERONET Data over Sub-Sahara West-Africa. Applied Categorical Structures, 6, 13-28.
Ban-Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. (2012). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate dynamics, 38, 897-911.
Bellouin, N., Boucher, O., Haywood, J., & Reddy, M. S. (2005). Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438(7071), 1138-1141. https://doi.org/10.1038/nature04348
Bilal, M., Qiu, Z., Campbell, J. R., Spak, S. N., Shen, X., & Nazeer, M. (2018). A New MODIS C6 Dark Target and Deep Blue Merged Aerosol Product on a 3 km Spatial Grid. Remote Sensing, 10(3), 463. https://www.mdpi.com/2072-4292/10/3/463
Boselli, A., Caggiano, R., Cornacchia, C., Madonna, F., Mona, L., Macchiato, M., Pappalardo, G., & Trippetta, S. (2012). Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site. Atmospheric Research, 104-105, 98-110. https://doi.org/https://doi.org/10.1016/j.atmosres.2011.08.002
Boucher, Randall, P., Artaxo, C., Bretherton, G., Feingold, P., Forster, V. M., & Zhang, X. Y. (2013). Clouds and Aerosols (Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Issue. C. Cambridge University Press , UK; New York, NY, USA, 2013.
Boucher, O. D., Randall, P., Artaxo, C., Bretherton, G., Feingold, P., Forster, V.-M., Kerminen, Y., Kondo, H., Liao, U., Lohmann, P., Rasch, S. K., Satheesh, S., Sherwood, B., Stevens, & Zhang, X. Y. (2013). Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C. Cambridge University Press, United Kingdom and New York, NY, USA.
Byrne, D. (2017). The Ocean′s Role in the Hydrological Cycle. In N. United (Ed.), The First Global Integrated Marine Assessment: World Ocean Assessment I (pp. 91-104). Cambridge University Press. https://doi.org/DOI: 10.1017/9781108186148.007
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate Forcing by Anthropogenic Aerosols. Science, 255(5043), 423-430. https://doi.org/doi:10.1126/science.255.5043.423
Chen, Y., Cheng, Y., Ma, N., Wei, C., Ran, L., Wolke, R., Größ, J., Wang, Q., Pozzer, A., Denier van der Gon, H. A. C., Spindler, G., Lelieveld, J., Tegen, I., Su, H., & Wiedensohler, A. (2020). Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. Atmos. Chem. Phys., 20(2), 771-786. https://doi.org/10.5194/acp-20-771-2020
Cheng, Y. F., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M., Ansmann, A., Wendisch, M., Su, H., Althausen, D., Herrmann, H., Gnauk, T., Brüggemann, E., Hu, M., & Zhang, Y. H. (2008). Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmospheric Environment, 42(25), 6373-6397. https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.04.009
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., & Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences, 59(3), 461-483. https://doi.org/https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
Chung, C., Lee, K., & Müller, D. (2012). Effect of internal mixture on black carbon radiative forcing. Tellus B: Chemical and Physical Meteorology, 64(1), 10925. https://doi.org/10.3402/tellusb.v64i0.10925
Collow, A., Buchard, V. J., Chin, M., Colarco, P. R., Darmenov, A. S., & Da Silva, A. M. (2022). Supplemental Documentation for GEOS Aerosol Products.
Costello, M. J., & Chaudhary, C. (2017). Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation. Current Biology, 27(11), R511-R527. https://doi.org/https://doi.org/10.1016/j.cub.2017.04.060
Derimian, Y., Dubovik, O., Huang, X., Lapyonok, T., Litvinov, P., Kostinski, A. B., Dubuisson, P., & Ducos, F. (2016). Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics. Atmospheric Chemistry and Physics, 16(9), 5763-5780.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O′Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349. https://doi.org/https://doi.org/10.1029/1999JD900923
Eck, T. F., Holben, B. N., Reid, J. S., Smirnov, A., Dubovik, O., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349. https://doi.org/https://doi.org/10.1029/1999JD900923
Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H., Chatenet, B., Li, Z., Singh, R. P., Tripathi, S. N., Reid, J. S., Giles, D. M., Dubovik, O., O′Neill, N. T., Smirnov, A., Wang, P., & Xia, X. (2010). Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. Journal of Geophysical Research: Atmospheres, 115(D19). https://doi.org/https://doi.org/10.1029/2010JD014002
Fairall, C., Banner, M., Peirson, W., Asher, W., & Morison, R. (2009). Investigation of the physical scaling of sea spray spume droplet production. Journal of Geophysical Research: Oceans, 114(C10).
Feingold, G., Eberhard, W. L., Veron, D. E., & Previdi, M. (2003). First measurements of the Twomey indirect effect using ground‐based remote sensors. Geophysical Research Letters, 30(6).
Frey, M. M., Norris, S. J., Brooks, I. M., Anderson, P. S., Nishimura, K., Yang, X., Jones, A. E., Nerentorp Mastromonaco, M. G., Jones, D. H., & Wolff, E. W. (2020). First direct observation of sea salt aerosol production from blowing snow above sea ice. Atmospheric Chemistry and Physics, 20, 2549-2578.
Gao, B. C., & Kaufman, Y. J. (2003). Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels. Journal of Geophysical Research: Atmospheres, 108(D13).
García, O. E., Díaz, J. P., Expósito, F. J., Díaz, A. M., Dubovik, O., Derimian, Y., Dubuisson, P., & Roger, J. C. (2012). Shortwave radiative forcing and efficiency of key aerosol types using AERONET data. Atmos. Chem. Phys., 12(11), 5129-5145. https://doi.org/10.5194/acp-12-5129-2012
Gassó, S., Hegg, D. A., Covert, D. S., Collins, D., Noone, K. J., Öström, E., Schmid, B., Russell, P. B., Livingston, J. M., Durkee, P. A., & Jonsson, H. (2000). Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2. Tellus B: Chemical and Physical Meteorology. https://doi.org/10.3402/tellusb.v52i2.16657
Ghahreman, R., Gong, W., Galí, M., Norman, A.-L., Beagley, S. R., Akingunola, A., Zheng, Q., Lupu, A., Lizotte, M., & Levasseur, M. (2019). Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer–a modelling study. Atmospheric Chemistry and Physics, 19(23), 14455-14476.
Hänel, G. (1976). The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air. In H. E. Landsberg & J. V. Mieghem (Eds.), Advances in Geophysics (Vol. 19, pp. 73-188). Elsevier. https://doi.org/https://doi.org/10.1016/S0065-2687(08)60142-9
Hansell, R. A., Tsay, S.-C., Pantina, P., Lewis, J. R., Ji, Q., & Herman, J. R. (2014). Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis. Journal of Geophysical Research: Atmospheres, 119(14), 8908-8924. https://doi.org/https://doi.org/10.1002/2013JD021423
Hansen, J., Sato, M., & Ruedy, R. (1997). Radiative forcing and climate response. Journal of Geophysical Research: Atmospheres, 102(D6), 6831-6864. https://doi.org/https://doi.org/10.1029/96JD03436
Hatfield, J. L., Togliatti, K., Sauer, T. J., & Prueger, J. H. (2022). Radiation Balance. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822974-3.00040-9
Houghton, J. T., Meira Filho, L., Bruce, J. P., Lee, H., Callander, B. A., & Haites, E. (1995). Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC 1992 IS92 emission scenarios. Cambridge University Press.
Huang, H., Gu, Y., Xue, Y., Jiang, J., & Zhao, B. (2019). Assessing aerosol indirect effect on clouds and regional climate of East/South Asia and West Africa using NCEP GFS. Clim Dyn, 52(9-10), 5759-5774. https://doi.org/10.1007/s00382-018-4476-9
Huang, X., Song, Y., Zhao, C., Li, M., Zhu, T., Zhang, Q., & Zhang, X. (2014). Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China. Journal of Geophysical Research: Atmospheres, 119(24), 14,165-114,179. https://doi.org/https://doi.org/10.1002/2014JD022301
Huang, Y., Dickinson, R. E., & Chameides, W. L. (2006). Impact of aerosol indirect effect on surface temperature over East Asia. Proceedings of the National Academy of Sciences, 103(12), 4371-4376. https://doi.org/doi:10.1073/pnas.0504428103
Huete, A. R. (2004). 11 - REMOTE SENSING FOR ENVIRONMENTAL MONITORING. In J. F. Artiola, I. L. Pepper, & M. L. Brusseau (Eds.), Environmental Monitoring and Characterization (pp. 183-206). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012064477-3/50013-8
IPCC. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. C. Cambridge University Press, United Kingdom and New York, NY, USA.
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley, Eds.). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
Jain, S. K., & Singh, V. P. (2003). Chapter 3 - Emerging Techniques for Data Acquisition and Systems Modeling. In S. K. Jain & V. P. Singh (Eds.), Developments in Water Science (Vol. 51, pp. 123-205). Elsevier. https://doi.org/https://doi.org/10.1016/S0167-5648(03)80057-6
Jo, D. S., Park, R. J., Jeong, J. I., Curci, G., Lee, H. M., & Kim, S. W. (2017). Key factors affecting single scattering albedo calculation: Implications for aerosol climate forcing. Atmos. Chem. Phys. Discuss., 2017, 1-44. https://doi.org/10.5194/acp-2017-1104
Kalapureddy, M. C. R., Kaskaoutis, D. G., Ernest Raj, P., Devara, P. C. S., Kambezidis, H. D., Kosmopoulos, P. G., & Nastos, P. T. (2009). Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). Journal of Geophysical Research: Atmospheres, 114(D17). https://doi.org/https://doi.org/10.1029/2009JD011826
Kiehl, J. T., & Trenberth, K. E. (1997). Earth′s Annual Global Mean Energy Budget. Bulletin of the American Meteorological Society, 78(2), 197-208. https://doi.org/https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
Kim, B. G., Miller, M. A., Schwartz, S. E., Liu, Y., & Min, Q. (2008). The role of adiabaticity in the aerosol first indirect effect. Journal of Geophysical Research: Atmospheres, 113(D5).
Kim, M. H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., & Magill, B. E. (2018). The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmos Meas Tech, 11(11), 6107-6135. https://doi.org/10.5194/amt-11-6107-2018
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Bo-Cai, G., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., & Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 442-458. https://doi.org/10.1109/TGRS.2002.808226
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B.-C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., & Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 442-458.
Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1(3), 155-159. https://doi.org/https://doi.org/10.1016/S0034-4257(70)80021-9
Kokhanovsky, A. (2008). Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere. Springer Praxis.
Kotchenova, S. Y., & Vermote, E. F. (2007). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Applied Optics, 46(20), 4455-4464. https://doi.org/10.1364/AO.46.004455
Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm, J. F. J. (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics, 45(26), 6762-6774. https://doi.org/10.1364/AO.45.006762
Lee, J., Kim, J., Song, C. H., Kim, S. B., Chun, Y., Sohn, B. J., & Holben, B. N. (2010). Characteristics of aerosol types from AERONET sunphotometer measurements. Atmospheric Environment, 44(26), 3110-3117. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.05.035
Levy, R., & Hsu, C., et al. (2015). MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6(11), 2989-3034. https://doi.org/10.5194/amt-6-2989-2013
Levy, R. C., Mattoo, S., Sawyer, V., Shi, Y., Colarco, P. R., Lyapustin, A. I., Wang, Y., & Remer, L. A. (2018). Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmos. Meas. Tech., 11(7), 4073-4092. https://doi.org/10.5194/amt-11-4073-2018
Li, L., Li, Z., Chang, W., Ou, Y., Goloub, P., Li, C., Li, K., Hu, Q., Wang, J., & Wendisch, M. (2020). Aerosol solar radiative forcing near the Taklimakan Desert based on radiative transfer and regional meteorological simulations during the Dust Aerosol Observation-Kashi campaign. Atmos. Chem. Phys., 20(18), 10845-10864. https://doi.org/10.5194/acp-20-10845-2020
Liao, H., & Seinfeld, J. H. (2005). Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. Journal of Geophysical Research: Atmospheres, 110(D18). https://doi.org/https://doi.org/10.1029/2005JD005907
Lin, T.-H., Tsay, S.-C., Lien, W.-H., Lin, N.-H., & Hsiao, T.-C. (2021). Spectral Derivatives of Optical Depth for Partitioning Aerosol Type and Loading. Remote Sensing, 13(8), 1544. https://www.mdpi.com/2072-4292/13/8/1544
Liu, D., He, C., Schwarz, J. P., & Wang, X. (2020). Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. npj Climate and Atmospheric Science, 3(1), 40. https://doi.org/10.1038/s41612-020-00145-8
Liu, S., Aiken, A. C., Arata, C., Dubey, M. K., Stockwell, C. E., Yokelson, R. J., Stone, E. A., Jayarathne, T., Robinson, A. L., DeMott, P. J., & Kreidenweis, S. M. (2014). Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. Geophysical Research Letters, 41(2), 742-748. https://doi.org/https://doi.org/10.1002/2013GL058392
Liu, S., Liu, C.-C., Froyd, K. D., Schill, G. P., Murphy, D. M., Bui, T. P., Dean-Day, J. M., Weinzierl, B., Dollner, M., Diskin, G. S., Chen, G., & Gao, R.-S. (2021). Sea spray aerosol concentration modulated by sea surface temperature. Proceedings of the National Academy of Sciences, 118(9), e2020583118. https://doi.org/doi:10.1073/pnas.2020583118
Liu, S., Liu, C. C., Froyd, K. D., Schill, G. P., Murphy, D. M., Bui, T. P., Dean-Day, J. M., Weinzierl, B., Dollner, M., Diskin, G. S., Chen, G., & Gao, R. S. (2021). Sea spray aerosol concentration modulated by sea surface temperature. Proc Natl Acad Sci U S A, 118(9). https://doi.org/10.1073/pnas.2020583118
Loeb, N. G., & Manalo-Smith, N. (2005). Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations. Journal of Climate, 18(17), 3506-3526. https://doi.org/https://doi.org/10.1175/JCLI3504.1
Lowe, D., Archer-Nicholls, S., Morgan, W., Allan, J., Utembe, S., Ouyang, B., Aruffo, E., Le Breton, M., Zaveri, R. A., Di Carlo, P., Percival, C., Coe, H., Jones, R., & McFiggans, G. (2015). WRF-Chem model predictions of the regional impacts of N<sub>2</sub>O<sub>5</sub> heterogeneous processes on night-time chemistry over north-western Europe. Atmos. Chem. Phys., 15(3), 1385-1409. https://doi.org/10.5194/acp-15-1385-2015
McCluney, R. (2003). Radiometry and Photometry. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition) (pp. 731-758). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00648-7
Metzger, S., Mihalopoulos, N., & Lelieveld, J. (2006). Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmos. Chem. Phys., 6(9), 2549-2567. https://doi.org/10.5194/acp-6-2549-2006
Monahan, E. C., Staniec, A., & Vlahos, P. (2017). Spume Drops: Their Potential Role in Air-Sea Gas Exchange. Journal of Geophysical Research: Oceans, 122(12), 9500-9517. https://doi.org/https://doi.org/10.1002/2017JC013293
Montilla, E., Mogo, S., Cachorro, V., Lopez, J., & de Frutos, A. (2011). Absorption, scattering and single scattering albedo of aerosols obtained from in situ measurements in the subarctic coastal region of Norway. Atmos. Chem. Phys. Discuss., 2011, 2161-2182. https://doi.org/10.5194/acpd-11-2161-2011
Moosmüller, H., & Sorensen, C. M. (2018). Single scattering albedo of homogeneous, spherical particles in the transition regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 333-338. https://doi.org/https://doi.org/10.1016/j.jqsrt.2018.08.015
Moteki, N. (2023). Climate-relevant properties of black carbon aerosols revealed by in situ measurements: a review. Progress in Earth and Planetary Science, 10(1), 12. https://doi.org/10.1186/s40645-023-00544-4
Myhre, G., Myhre, C. E. L., Samset, B. H., & Storelvmo, T. (2013). Aerosols and their Relation to Global Climate and Climate Sensitivity. Nature Education Knowledge 4(5):7.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., & Mendoza, B. e. a. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical ScienceBasis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; (pp. pp. 659–740.). ; Cambridge University Press.
NASA. (2023). What aerosol properties would we like to measure? Goddard Earth Sciences Division Projects. Retrieved June 7, 2023 from https://earth.gsfc.nasa.gov/climate/data/deep-blue/science
Owen, A. J. (2000). Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy.
Pilinis, C., Seinfeld, J. H., & Grosjean, D. (1989). Water content of atmospheric aerosols. Atmospheric Environment (1967), 23(7), 1601-1606. https://doi.org/https://doi.org/10.1016/0004-6981(89)90419-8
Quinn, P. K., Bates, T. S., Miller, T. L., Coffman, D. J., Johnson, J. E., Harris, J. M., Ogren, J. A., Forbes, G., Anderson, T. L., Covert, D. S., & Rood, M. J. (2000). Surface submicron aerosol chemical composition: What fraction is not sulfate? Journal of Geophysical Research: Atmospheres, 105(D5), 6785-6805. https://doi.org/https://doi.org/10.1029/1999JD901034
Quinn, P. K., Coffman, D. J., Kapustin, V. N., Bates, T. S., & Covert, D. S. (1998). Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties. Journal of Geophysical Research: Atmospheres, 103(D13), 16547-16563. https://doi.org/https://doi.org/10.1029/97JD02345
Raj, E. P., Devara, P. C. S., Maheskumar, R. S., Pandithurai, G., Dani, K. K., Saha, S. K., Sonbawne, S. M., & Tiwari, Y. K. (2004). Results of Sun Photometer–Derived Precipitable Water Content over a Tropical Indian Station. Journal of Applied Meteorology, 43(10), 1452-1459. https://doi.org/https://doi.org/10.1175/JAM2149.1
Ramachandran, S., & Srivastava, R. (2013). Influences of external vs. core–shell mixing on aerosol optical properties at various relative humidities [10.1039/C3EM30975D]. Environmental Science: Processes & Impacts, 15(5), 1070-1077. https://doi.org/10.1039/C3EM30975D
Raptis, I.-P., Kazadzis, S., Eleftheratos, K., Amiridis, V., & Fountoulakis, I. (2018). Single Scattering Albedo’s Spectral Dependence Effect on UV Irradiance. Atmosphere, 9(9), 364. https://www.mdpi.com/2073-4433/9/9/364
Rose, F. G., Rutan, D. A., Charlock, T., Smith, G. L., & Kato, S. (2013). An Algorithm for the Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-Atmosphere Irradiance. Journal of Atmospheric and Oceanic Technology, 30(6), 1091-1106. https://doi.org/https://doi.org/10.1175/JTECH-D-12-00058.1
Rubin, J. I., Reid, J. S., Xian, P., Selman, C. M., & Eck, T. F. (2023). A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data. Atmos. Chem. Phys., 23(7), 4059-4090. https://doi.org/10.5194/acp-23-4059-2023
Russell, L. M., Moore, R. H., Burrows, S. M., & Quinn, P. K. (2023). Ocean flux of salt, sulfate, and organic components to atmospheric aerosol. Earth-Science Reviews, 239, 104364. https://doi.org/https://doi.org/10.1016/j.earscirev.2023.104364
Satheesh, S., & Moorthy, K. K. (2005). Radiative effects of natural aerosols: A review. Atmospheric Environment, 39(11), 2089-2110.
Schiffer, J. M., Mael, L. E., Prather, K. A., Amaro, R. E., & Grassian, V. H. (2018). Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. ACS Central Science, 4(12), 1617-1623. https://doi.org/10.1021/acscentsci.8b00674
Schulz, M., de Leeuw, G., & Balkanski, Y. (2004, 2004//). Sea-salt aerosol source functions and emissions. Emissions of Atmospheric Trace Compounds, Dordrecht.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics : from air pollution to climate change (Third edition ed.). John Wiley & Sons, Inc.
Smirnov, A., Holben, B. N., Giles, D. M., Slutsker, I., O′Neill, N. T., Eck, T. F., Macke, A., Croot, P., Courcoux, Y., Sakerin, S. M., Smyth, T. J., Zielinski, T., Zibordi, G., Goes, J. I., Harvey, M. J., Quinn, P. K., Nelson, N. B., Radionov, V. F., Duarte, C. M., . . . Diehl, T. L. (2011). Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmos. Meas. Tech., 4(3), 583-597. https://doi.org/10.5194/amt-4-583-2011
Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F., Slutsker, I., Pietras, C., & Halthore, R. N. (2002). Optical Properties of Atmospheric Aerosol in Maritime Environments. Journal of the Atmospheric Sciences, 59(3), 501-523. https://doi.org/https://doi.org/10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2
Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research: Atmospheres, 104(D8), 9423-9444.
Struthers, H., Ekman, A. M. L., Glantz, P., Iversen, T., Kirkevåg, A., Seland, Ø., Mårtensson, E. M., Noone, K., & Nilsson, E. D. (2013). Climate-induced changes in sea salt aerosol number emissions: 1870 to 2100. Journal of Geophysical Research: Atmospheres, 118(2), 670-682. https://doi.org/https://doi.org/10.1002/jgrd.50129
Takemura, T., Nakajima, T., Dubovik, O., Holben, B. N., & Kinne, S. (2002). Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model. Journal of Climate, 15(4), 333-352. https://doi.org/https://doi.org/10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2
Tanré, D., Kaufman, Y. J., Herman, M., & Mattoo, S. (1997). Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14), 16971-16988. https://doi.org/https://doi.org/10.1029/96JD03437
Thorsen, T. J., Ferrare, R. A., Kato, S., & Winker, D. M. (2020). Aerosol Direct Radiative Effect Sensitivity Analysis. Journal of Climate, 33(14), 6119-6139. https://doi.org/https://doi.org/10.1175/JCLI-D-19-0669.1
Topping, D. O., McFiggans, G. B., & Coe, H. (2005). A curved multi-component aerosol hygroscopicity model framework: Part 2 – Including organic compounds. Atmos. Chem. Phys., 5(5), 1223-1242. https://doi.org/10.5194/acp-5-1223-2005
Trenberth, K. E., Fasullo, J. T., & Kiehl, J. (2009). Earth′s Global Energy Budget. Bulletin of the American Meteorological Society, 90(3), 311-324. https://doi.org/https://doi.org/10.1175/2008BAMS2634.1
Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment (1967), 8(12), 1251-1256. https://doi.org/https://doi.org/10.1016/0004-6981(74)90004-3
Twomey, S. (1977). The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the Atmospheric Sciences, 34, 1149-1152.
Veron, F., Hopkins, C., Harrison, E., & Mueller, J. (2012). Sea spray spume droplet production in high wind speeds. Geophysical Research Letters, 39(16).
Weng, H., Lin, J., Martin, R., Millet, D. B., Jaeglé, L., Ridley, D., Keller, C., Li, C., Du, M., & Meng, J. (2020). Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Scientific Data, 7(1), 148. https://doi.org/10.1038/s41597-020-0488-5
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., & König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate dynamics, 40, 3107-3134.
Winker, D. M., Pelon, J., Coakley, J. A., Jr., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Le Treut, H., McCormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., & Wielicki, B. A. (2010). The CALIPSO mission: A global 3D view of aerosols and clouds. Bulletin of the American Meteorological Society, 91(9), 1211-1229. https://doi.org/10.1175/2010BAMS3009.1
Winter, B., & Chylex, P. (1997). Contribution of sea salt aerosol to the planetary clear-sky albedo. Tellus B, 49(1), 72-79. https://doi.org/https://doi.org/10.1034/j.1600-0889.49.issue1.5.x
Xu, L., & Penner, J. E. (2012). Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys., 12(20), 9479-9504. https://doi.org/10.5194/acp-12-9479-2012
Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C., Huang, R.-J., O′Dowd, C., & Ceburnis, D. (2020). Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses. Atmospheric Chemistry and Physics, 20(6), 3777-3791.
Xue, Z., Kuze, H., & Irie, H. (2021). Retrieval of Aerosol Optical Thickness with Custom Aerosol Model Using SKYNET Data over the Chiba Area. Atmosphere, 12(9), 1144. https://www.mdpi.com/2073-4433/12/9/1144
Zhang, L., Li, J., Jiang, Z., Dong, Y., Ying, T., & Zhang, Z. (2022). Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Vertical Distribution Based on CMIP6 Models. Journal of Climate, 35(10), 3021-3035. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0480.1
Zhou, Y., Levy, R. C., Remer, L. A., Mattoo, S., Shi, Y., & Wang, C. (2020). Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark-Target Algorithm: 1. Dust Detection. Earth and Space Science, 7(10), e2020EA001221. https://doi.org/https://doi.org/10.1029/2020EA001221
Zo, I.-S., & Shin, S.-K. (2019). A Short Note on the Potential of Utilization of Spectral AERONET-Derived Depolarization Ratios for Aerosol Classification. Atmosphere, 10(3), 143. https://www.mdpi.com/2073-4433/10/3/143
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明