博碩士論文 110326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.22.249.158
姓名 盧鈺雯(Yu-Wen Lu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以臭氧深度氧化NO之效率探討
(Evaluation of NO Conversion via Ozone Catalytic Oxidation)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 本研究開發臭氧結合觸媒之脫硝技術(Ozone catalytic oxidation, OZCO),利用臭氧強氧化之特性,可將煙氣中NO氧化為NO2與N2O5,此系統結合濕式洗滌塔,透過N2O5之高溶解特性有效的去除NOx,研究以TiO2及CeO2為觸媒載體,利用負載不同雙金屬觸媒氧化NO,比較觸媒之間的差異對NO氧化效率之影響。研究主要分為兩大部分探討脫硝技術開發,第一部分為摻雜金屬氧化物之TiO2及CeO2觸媒於NO氧化效率試驗,實驗結果顯示O3/NO比值、操作溫度及停留時間對NO氧化效率皆有重大影響。本研究以含浸法製備10 wt% FeMn/TiO2、CoMn/TiO2及FeMn/CeO2觸媒,FeMn/TiO2於100℃ N2O5產率為79±2.84%,FeMn/CeO2於100℃ N2O5產率為85±1.6%,當操作溫度上升至150℃時,因為動力學及熱力學的限制造成N2O5產率分別下降至48.9±1.03%及46.1±2.0%,此外,當停留時間由1.2 s上升至2.4 s時,未添加觸媒之N2O5產率由22.5±1.24%上升至57±0.62%,採用FeMn/CeO2觸媒之N2O5產率由53±1.9%上升至61±3.7%,由結果可知於較短之停留時間 (1.2 s)添加觸媒可顯著的提升N2O5產率,另外,測試觸媒及溫度對O3分解效率的影響,於未添加觸媒條件,臭氧分解效率隨溫度增加而上升,FeMn/TiO2、CoMn/TiO2及FeMn/CeO2觸媒於25℃~150℃皆展現100%的臭氧分解效率,研究結果顯示本研究製備之觸媒具優異的臭氧分解性能。本研究利用COMSOL Multiphysics軟體建立模型,結果顯示實驗數值與模擬數值整體趨勢接近,但N2O5及NO2之模擬數值略高於實驗數值,可能原因為氣相之N2O5及NO2較不穩定,容易沉積於管壁。最後,設計濕式洗滌塔並串聯臭氧氧化系統,研究不同濃度之N2O5氣流對NO去除效率之影響,以純水為洗滌液,分析出流水之組成分,結果顯示含有較高濃度之N2O5氣流展現接近100%之NOx去除率,且出流水之主要成分為硝酸。
摘要(英) Integration of ozone (O3) catalytic oxidation (OZCO) with wet scrubbing has a high potential for effective removal of NOx, due to the solubility enhancement from oxidation of NO to N2O5. This study focuses on the factors affecting NO oxidation, including the ratio of O3/NO, the operating temperature and the presence of catalyst. Fe, Co, and Mn loaded on TiO2 and CeO2 support material were prepared for experimental tests. The results indicate that the ratio of O3/NO has a critical effect on NO oxidation. When O3/NO ratio < 1, NO is converted to NO2. Meanwhile, NO2 is converted into N2O5 as O3/NO ratio exceeds 1. Notably, with O3/NO ratio of 1.7 and FeMn/CeO2 catalyst, the yield of N2O5 exceeds 80% at 100°C with 2.4 s of residence time, with no ozone leftover is detected. As the temperature is increased to 150℃, N2O5 starts to decompose into NO3 and NO2. In addition, the effects of catalyst and temperature on O3 decomposition efficiency are evaluated. In the absence of a catalyst, the ozone decomposition efficiency increases with increasing temperature. An FeMn/TiO2, CoMn/TiO2 and FeMn/CeO2 catalysts achieve 100% ozone decomposition efficiency within the temperature range of 25°C to 150°C. The results of kinetic model slightly overestimates due to N2O5 deposition on the reactor wall as confirmed by the presence of white powder. This paper demonstrates that the application of N2O5 in an absorption system can effectively reduce the usage of chemicals and water.
關鍵字(中) ★ 臭氧
★ 一氧化氮
★ 五氧化二氮
★ 臭氧催化氧化
關鍵字(英) ★ ozone
★ nitrogen oxides
★ nitrous pentoxide
★ ozone catalytic oxidation
論文目次 摘要 I
Abstract II
誌謝 III
表目錄 VII
圖目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氧化物之特性、危害及來源 3
2.1.1 氮氧化之特性及危害 3
2.1.2 氮氧化物的來源及控管 4
2.2 氮氧化物之生成機制 6
2.2.1 熱式氮氧化物(Thermal NOx) 6
2.2.2 燃料式氮氧化物(Fuel NOx) 7
2.2.3 瞬式氮氧化物(Prompt NOx) 8
2.3 氮氧化物之控制技術 9
2.3.1 燃燒前處理(Pre-combustion treatment) 9
2.3.2 燃燒修正(Combustion modification) 10
2.3.3 製程修改 11
2.3.4 燃燒後處理(Post-combustion removal) 11
2.4 NO氧化效率比較 15
2.5 溫度對NO氧化效率之影響 17
2.6 停留時間對NO氧化之影響 18
2.7 煙氣成分對NO氧化之影響 20
2.8 臭氧氧化NO之觸媒選擇 21
2.8.1 TiO2觸媒 21
2.8.2 CeO2觸媒 22
2.9 洗滌液 23
2.10 動力學模擬分析 24
第三章 研究方法 26
3.1 研究流程及架構 26
3.2 預備實驗 27
3.2.1 觸媒材料製備 27
3.2.2 觸媒材料之物化特性分析 29
3.3 實驗分析方法 31
3.3.1 檢量線製作 31
3.3.2 測試方法及實驗配置 32
3.4 COMSOL Multiphysics 模擬軟體 36
3.5 實驗結果計算 37
第四章 結果與討論 39
4.1 觸媒基本物化特性分析 39
4.1.1 X射線光電子能譜儀(XPS)分析結果 39
4.1.2 高解析度比表面積分析儀(BET)分析結果 44
4.1.3 X光粉末繞射儀(XRD)晶相鑑定 45
4.1.4 高解析掃描電子顯微鏡 (HRTEM)晶像分析 46
4.2 臭氧催化氧化效率測試 50
4.3 臭氧氧化NO之動力學模擬 61
4.4 洗滌塔之NOx去除效率 66
第五章 結論及建議 69
5.1 結論 69
5.2 建議 70
參考文獻 72
參考文獻 行政院環境保護署空氣污染排放清冊[TEDS 11.0版] (2021)
曾志富、郭麗雯、朱志忠、謝智林 (2019)。火力電廠SCR脫硝觸媒性能檢測與品質管理,台電工程月刊,頁91-109。
Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S., & Zaikov, G. E. (2014). Ozone decomposition. Interdisciplinary Toxicology, 7(2), 47.
Beer, J., Bowman, C., Chen, S., Corley, T., & De Soete, G. (1990). Pulverized-coal combustion: Pollutant Formation and Control, 1970-1980. Final Report.
Boningari, T., Ettireddy, P. R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C. A., & Smirniotis, P. G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 325, 145-155.
Boningari, T., & Smirniotis, P. G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering, 13, 133-141.
Bowman, C. T. (1992). Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International) on Combustion,
Chen, L., Li, J., & Ge, M. (2010). DRIFT study on cerium− tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3. Environmental Science & Technology, 44(24), 9590-9596.
Cooper, C. D., & Alley, F. C. (2010). Air Pollution Control: A Design Approach. Waveland Press.
Damma, D., Ettireddy, P. R., Reddy, B. M., & Smirniotis, P. G. (2019). A review of low temperature NH3-SCR for removal of NOx. Catalysts, 9(4), 349.
Ding, J., Zhong, Q., & Zhang, S. (2015). A new insight into catalytic ozonation with nanosized Ce–Ti oxides for NOx removal: Confirmation of Ce–O–Ti for active sites. Industrial & Engineering Chemistry Research, 54(7), 2012-2022.
Dora, J. (2009). Parametric studies of the effectiveness of oxidation of NO by ozone. Chemical and Process Engineering, 30(4), 621-634.
Du, H., Han, Z., Wang, Q., Gao, Y., Gao, C., Dong, J., & Pan, X. (2020). Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research, 27(32), 40870-40881.
Einaga, H., Teraoka, Y., & Ogata, A. (2013). Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. Journal of Catalysis, 305, 227-237.
Erme, K., & Jõgi, I. (2019). Metal oxides as catalysts and adsorbents in ozone oxidation of NOx. Environmental Science & Technology, 53(9), 5266-5271.
Erme, K., Raud, J. r., & Jõgi, I. (2018). Adsorption of nitrogen oxides on TiO2 surface as a function of NO2 and N2O5 fraction in the gas phase. Langmuir, 34(22), 6338-6345.
Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236.
Garin, F. (2001). Mechanism of NOx decomposition. Applied Catalysis A: General, 222(1-2), 183-219.
Hong, Z., Wang, Z., & Li, X. (2017). Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview. Catalysis Science & Technology, 7(16), 3440-3452.
Hu, H., Cai, S., Li, H., Huang, L., Shi, L., & Zhang, D. (2015). Mechanistic aspects of deNOx processing over TiO2 supported Co–Mn oxide catalysts: structure–activity relationships and in situ DRIFTs analysis. ACS Catalysis, 5(10), 6069-6077.
Jõgi, I., Erme, K., Raud, J., & Laan, M. (2016). Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel, 173, 45-51.
Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science and Technology, 27(3), 035001.
Javed, M. T., Irfan, N., & Gibbs, B. (2007). Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Environmental Management, 83(3), 251-289.
Ji, R., Wang, J., Xu, W., Liu, X., Zhu, T., Yan, C., & Song, J. (2018). Study on the key factors of NO oxidation using O3: the oxidation product composition and oxidation selectivity. Industrial & Engineering Chemistry Research, 57(43), 14440-14447.
Kang, M. S., Shin, J., Yu, T. U., & Hwang, J. (2020). Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide. Chemical Engineering Journal, 381, 122601. https://doi.org/https://doi.org/10.1016/j.cej.2019.122601
Karagulian, F., & Rossi, M. J. (2005). The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates. Physical Chemistry Chemical Physics, 7(17), 3150-3162.
Li, Y., Che, D., Zhao, H., Yang, C., Zhao, T., Cheng, G., & Yao, M. (2020). Tributyl phosphate additive enhancing catalytic absorption of NO2 for simultaneous removal of SO2/NOx in wet desulfurization system. Journal of the Energy Institute, 93(2), 474-481. https://doi.org/https://doi.org/10.1016/j.joei.2019.07.004
Lietti, L., Ramis, G., Berti, F., Toledo, G., Robba, D., Busca, G., & Forzatti, P. (1998). Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catalysis Today, 42(1-2), 101-116.
Lin, F., Wang, Z., Ma, Q., He, Y., Whiddon, R., Zhu, Y., & Liu, J. (2016). N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process. Energy & Fuels, 30(6), 5101-5107.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017a). Catalyst tolerance to SO2 and water vapor of Mn based bimetallic oxides for NO deep oxidation by ozone. RSC advances, 7(40), 25132-25143.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017b). Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone. Chinese Journal of Catalysis, 38(7), 1270-1280.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. Chemical Engineering Journal, 382, 123030.
Liu, L., Shen, B., Si, M., & Lu, F. (2021). Performance and mechanism of MnOx/γ-Al2O3 for low-temperature NO catalytic oxidation with O3/NO ratio of 0.5. Fuel Processing Technology, 222, 106979.
Mahmoudi, S., Baeyens, J., & Seville, J. P. (2010). NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass and Bioenergy, 34(9), 1393-1409.
Meng, L., Wang, J., Sun, Z., Zhu, J., Li, H., Wang, J., & Shen, M. (2018). Active manganese oxide on MnOx–CeO2 catalysts for low-temperature NO oxidation: characterization and kinetics study. Journal of Rare Earths, 36(2), 142-147.
Mentel, T. F., Bleilebens, D., & Wahner, A. (1996). A study of nighttime nitrogen oxide oxidation in a large reaction chamber—The fate of NO2, N2O5, HNO3, and O3 at different humidities. Atmospheric Environment, 30(23), 4007-4020.
Mok, Y. S. (2004). Oxidation of NO to NO2 using the ozonization method for the improvement of selective catalytic reduction. Journal of Chemical Engineering of Japan, 37(11), 1337-1344.
Olsson, L., Sjövall, H., & Blint, R. J. (2009). Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, 87(3-4), 200-210.
Palash, S., Kalam, M., Masjuki, H., Masum, B., Fattah, I. R., & Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23, 473-490.
Pan, S., Luo, H., Li, L., Wei, Z., & Huang, B. (2013). H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. Journal of Molecular Catalysis A: Chemical, 377, 154-161.
Putluru, S. S. R., Schill, L., Jensen, A. D., Siret, B., Tabaries, F., & Fehrmann, R. (2015). Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental, 165, 628-635.
Qin, J., Long, Y., Wu, W., Zhang, W., Gao, Z., & Ma, J. (2019). Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. Journal of Catalysis, 371, 161-174.
Qiu, L., Wang, Y., Pang, D., Ouyang, F., Zhang, C., & Cao, G. (2016). Characterization and catalytic activity of Mn-Co/TiO2 catalysts for NO oxidation to NO2 at low temperature. Catalysts, 6(1), 9.
Rodriguez, J. A., Jirsak, T., Liu, G., Hrbek, J., Dvorak, J., & Maiti, A. (2001). Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2 (110) and NO2↔ O vacancy interactions. Journal of the American Chemical Society, 123(39), 9597-9605.
Roy, S., Hegde, M., & Madras, G. (2009). Catalysis for NOx abatement. Applied Energy, 86(11), 2283-2297.
Shao, J., Yang, Y., Whiddon, R., Wang, Z., Lin, F., He, Y., Kumar, S., & Cen, K. (2019). Investigation of NO removal with ozone deep oxidation in Na2CO3 solution. Energy & Fuels, 33(5), 4454-4461. https://doi.org/10.1021/acs.energyfuels.9b00519
Sharif, H. M. A., Mahmood, N., Wang, S., Hussain, I., Hou, Y.-N., Yang, L.-H., Zhao, X., & Yang, B. (2021). Recent advances in hybrid wet scrubbing techniques for NOx and SO2 removal: State of the art and future research. Chemosphere, 273, 129695.
Si, M., Shen, B., Zhang, H., Liu, L., Zhou, W., Liu, Z., Pan, Y., & Zhang, X. (2019). Comparative study of NO oxidation under a low O3/NO molar ratio using 15% Mn/TiO2, 15% Co/TiO2, and 15% Mn–Co (2: 1)/TiO2 catalysts. Industrial & Engineering Chemistry Research, 59(4), 1467-1476.
Siegel, R., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., & Gronsky, R. (1988). Synthesis, characterization, and properties of nanophase TiO2. Journal of Materials Research, 3(6), 1367-1372.
Sivachandiran, L., Thévenet, F., Gravejat, P., & Rousseau, A. (2013). Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature. Applied Catalysis B: Environmental, 142, 196-204.
Skalska, K., Miller, J. S., & Ledakowicz, S. (2011). Kinetic model of NOx ozonation and its experimental verification. Chemical Engineering Science, 66(14), 3386-3391.
Song, Z., Wang, B., Yang, W., Chen, T., Ma, C., & Sun, L. (2020). Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2. 5M0. 5O4 (M= Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chemical Engineering Journal, 386, 123883.
Sun, B., Dong, K., Zhao, W., Wang, J., Chu, G., Zhang, L., Zou, H., & Chen, J.-F. (2019). Simultaneous absorption of NOx and SO2 into Na2SO3 solution in a rotating packed bed with preoxidation by ozone. Industrial & Engineering Chemistry Research, 58(19), 8332-8341.
Talebizadeh, P., Babaie, M., Brown, R., Rahimzadeh, H., Ristovski, Z., & Arai, M. (2014). The role of non-thermal plasma technique in NOx treatment: A review. Renewable and Sustainable Energy Reviews, 40, 886-901.
Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206.
Varatharajan, K., & Cheralathan, M. (2012). Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renewable and Sustainable Energy Reviews, 16(6), 3702-3710.
Wang, B., Su, H., & Yao, S. (2020). Oxidation of NO with O3 under different conditions and the effects of SO2 and H2O vapor. Process Safety and Environmental Protection, 133, 216-223.
Wang, L., Meng, F., Li, K., & Lu, F. (2013). Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Applied Surface Science, 286, 269-274.
Wang, W., Guo, R., Pan, W., & Hu, G. (2018). Low temperature catalytic oxidation of NO over different-shaped CeO2. Journal of Rare Earths, 36(6), 588-593.
Wei, L., Zhou, J., Wang, Z., & Cen, K. (2007). Kinetic modeling of homogeneous low-temperature multi-pollutant oxidation by ozone. Ozone: Science and Engineering, 29(3), 207-214.
Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., & Forastiere, F. (2010). Short-term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environmental Health Perspectives, 118(4), 449-457.
Wendt, J. O., Linak, W. P., Groff, P. W., & Srivastava, R. K. (2001). Hybrid SNCR‐SCR technologies for NOx control: Modeling and experiment. AIChE Journal, 47(11), 2603-2617.
Xie, S., Li, L., Jin, L., Wu, Y., Liu, H., Qin, Q., Wei, X., Liu, J., Dong, L., & Li, B. (2020). Low temperature high activity of M (M= Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science, 515, 146014.
Xie, X., Li, Y., Liu, Z., Haruta, M., & Shen, W. (2009). Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 458(7239), 746-749. https://doi.org/10.1038/nature07877
Xu, J., Lu, G., Guo, Y., Guo, Y., & Gong, X. (2017). A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx storage capacity. Applied Catalysis A: General, 535, 1-8.
Yang, N., Guo, R., Pan, W., Chen, Q., Wang, Q., & Lu, C. (2016). The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3. Fuel, 169, 87-92. https://doi.org/https://doi.org/10.1016/j.fuel.2015.12.009
Zhang, X., Zhao, H., Song, Z., Liu, W., Zhao, J., Zhao, M., & Xing, Y. (2019). Insight into the effect of oxygen species and Mn chemical valence over MnOx on the catalytic oxidation of toluene. Applied Surface Science, 493, 9-17.
Zhang, Z., Zhou, S., Xi, H. Y., & Shreka, M. (2020). A Prospective Method for Absorbing NO2 by the Addition of NaHSO3 to Na2SO3-Based Absorbents for Ship NOx Wet Absorption. Energy & Fuels, 34(2), 2055-2063. https://doi.org/10.1021/acs.energyfuels.9b03617
Zhou, Y., Ren, S., Wang, M., Yang, J., Chen, Z., & Chen, L. (2021). Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO. Journal of the Energy Institute, 99, 97-104.
指導教授 張木彬(Moo-Been Chang) 審核日期 2023-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明