參考文獻 |
Bibliography
[1] W. Abdulla, Mask r-cnn for object detection and instance segmentation on keras
and tensorflow, https://github.com/matterport/Mask_RCNN, 2017.
[2] K. Arulkumaran, A. Cully, and J. Togelius, “AlphaStar,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, ACM, 2019.
DOI: 10.1145/3319619.3321894. [Online]. Available: https://doi.
org/10.1145%2F3319619.3321i894.
[3] M. Bellver, X. Giro-i Nieto, F. Marques, and J. Torres, Hierarchical object
detection with deep reinforcement learning, 2016. DOI: 10.48550/ARXIV.
1611.03718. [Online]. Available: https://arxiv.org/abs/1611.
03718.
[4] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, Yolov4: Optimal speed and
accuracy of object detection, 2020. arXiv: 2004.10934 [cs.CV].
[5] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, Learning combinatorial
optimization algorithms over graphs, 2018. arXiv: 1704.01665 [cs.LG].
[6] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, Yolox: Exceeding yolo series in 2021,
2021. arXiv: 2107.08430 [cs.CV].
[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial
networks, 2014. arXiv: 1406.2661 [stat.ML].
[8] D. Jia, Y. Yuan, H. He, et al., “Detrs with hybrid matching,” arXiv preprint
arXiv:2207.13080, 2022.
[9] F. Li, A. Zeng, S. Liu, et al., “Lite detr: An interleaved multi-scale encoder
for efficient detr,” arXiv preprint arXiv:2303.07335, 2023.
[10] F. Li, H. Zhang, S. Liu, J. Guo, L. M. Ni, and L. Zhang, “Dn-detr: Accelerate
detr training by introducing query denoising,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 13 619–13 627.
[11] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense
object detection, 2018. arXiv: 1708.02002 [cs.CV].
[12] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in
context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014,
pp. 740–755, ISBN: 978-3-319-10602-1.
30
[13] S. Liu, F. Li, H. Zhang, et al., “DAB-DETR: Dynamic anchor boxes are better
queries for DETR,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?
id=oMI9PjOb9Jl.
[14] D. Meng, X. Chen, Z. Fan, et al., Conditional detr for fast training convergence,
2021. arXiv: 2108.06152 [cs.CV].
[15] G. S. N. U. A. K. Nicolas Carion Francisco Massa and S. Zagoruyko, “Endto-
end object detection with transformers,” in European conference on computer
vision, 2020.
[16] D. Pfau and O. Vinyals, Connecting generative adversarial networks and actorcritic
methods, 2017. arXiv: 1610.01945 [cs.LG].
[17] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv
preprint arXiv:1612.08242, 2016.
[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Advances in Neural Information
Processing Systems (NIPS), 2015.
[19] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354–359, Oct. 2017. DOI:
10.1038/nature24270.
[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.
[21] Z. Tian, C. Shen, H. Chen, and T. He, Fcos: Fully convolutional one-stage
object detection, 2019. arXiv: 1904.01355 [cs.CV].
[22] B. Uzkent, C. Yeh, and S. Ermon, “Efficient object detection in large images
using deep reinforcement learning,” in The IEEE Winter Conference on
Applications of Computer Vision, 2020, pp. 1824–1833.
[23] Z. Yao, J. Ai, B. Li, and C. Zhang, Efficient detr: Improving end-to-end object
detector with dense prior, 2021. arXiv: 2104.01318 [cs.CV].
[24] H. Zhang, F. Li, S. Liu, et al., Dino: Detr with improved denoising anchor boxes
for end-to-end object detection, 2022. arXiv: 2203.03605 [cs.CV].
[25] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr:
Deformable transformers for end-to-end object detection,” arXiv preprint
arXiv:2010.04159, 2020. |