參考文獻 |
Al-Hammadi, M., Muhammad, G., Abdul, W., Alsulaiman, M., Bencherif, M. A., Alrayes, T. S., Mathkour, H., & Mekhtiche, M. A. (2020). Deep Learning-Based Approach for Sign Language Gesture Recognition With Efficient Hand Gesture Representation. IEEE Access, 8, 192527–192542. https://doi.org/10.1109/ACCESS.2020.3032140
Anand S., Sengar V., Kumar Y., & Chauhan A. (2022). Contactless ATM - Touch Free Banking Experience (SSRN Scholarly Paper No. 4157234). https://doi.org/10.2139/ssrn.4157234
Arora, R., Kazi, R. H., Kaufman, D. M., Li, W., & Singh, K. (2019). MagicalHands: Mid-Air Hand Gestures for Animating in VR. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 463–477. https://doi.org/10.1145/3332165.3347942
Asnani, S., Kunte, A., Hasan Charoliya, M., & Gupta, N. (2021). Temperature actuated non-touch automatic door. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), 669–675. https://doi.org/10.1109/ICOSEC51865.2021.9591951
Ayubi, S. A., Sudiharto, D. W., Jadied, E. M., & Aryanto, E. (2019). The Prototype of Hand Gesture Recognition for Elderly People to Control Connected Home Devices. Journal of Physics: Conference Series, 1201(1), 012042. https://doi.org/10.1088/1742-6596/1201/1/012042
Borghi, G., Vezzani, R., & Cucchiara, R. (2016). Fast gesture recognition with Multiple Stream Discrete HMMs on 3D skeletons. 2016 23rd International Conference on Pattern Recognition (ICPR), 997–1002. https://doi.org/10.1109/ICPR.2016.7899766
Caetano, C., Sena, J., Brémond, F., Dos Santos, J. A., & Schwartz, W. R. (2019). SkeleMotion: A New Representation of Skeleton Joint Sequences based on Motion Information for 3D Action Recognition. 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1–8. https://doi.org/10.1109/AVSS.2019.8909840
Chiang, P.-Y., Chen, C.-C., & Hsia, C.-H. (2019). A touchless interaction interface for observing medical imaging. Journal of Visual Communication and Image Representation, 58, 363–373. https://doi.org/10.1016/j.jvcir.2018.12.004
Coenen, J., Claes, S., & Moere, A. V. (2017). The concurrent use of touch and mid-air gestures or floor mat interaction on a public display. Proceedings of the 6th ACM International Symposium on Pervasive Displays, 1–9. https://doi.org/10.1145/3078810.3078819
Cronin, S., & Doherty, G. (2019). Touchless computer interfaces in hospitals: A review. Health Informatics Journal, 25(4), 1325–1342. https://doi.org/10.1177/1460458217748342
Dadhich, S., Dabre, P., Dabreo, R., & Raut, P. (2021). Contactless IoT Doorbell for Covid-safe Household. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 01–04. https://doi.org/10.1109/R10-HTC53172.2021.9641565
Fan, Y., Weng, S., Zhang, Y., Shi, B., & Zhang, Y. (2020). Context-Aware Cross-Attention for Skeleton-Based Human Action Recognition. IEEE Access, 8, 15280–15290. https://doi.org/10.1109/ACCESS.2020.2968054
Guo, Y., Yang, Z., Yuan, Y., Ma, H., & Liu, Y. Q. (2022). Contactless Services: A Survey of the Practices of Large Public Libraries in China. Information Technology and Libraries, 41(2), Article 2. https://doi.org/10.6017/ital.v41i2.14141
Hara, K., Kataoka, H., & Satoh, Y. (2018). Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet? 6546–6555. https://openaccess.thecvf.com/content_cvpr_2018/html/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.html
Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 34(5), Article 5. https://doi.org/10.1107/S0567739478001680
Kapitanov, A., Makhlyarchuk, A., & Kvanchiani, K. (2022). HaGRID - HAnd Gesture Recognition Image Dataset (arXiv:2206.08219; Version 1). arXiv. http://arxiv.org/abs/2206.08219
King, B., Chen, I.-F., Vaizman, Y., Liu, Y., Maas, R., Parthasarathi, S. H. K., & Hoffmeister, B. (2017). Robust Speech Recognition via Anchor Word Representations. Interspeech 2017, 2471–2475. https://doi.org/10.21437/Interspeech.2017-1570
Kopinski, T., Eberwein, J., Geisler, S., & Handmann, U. (2016). Touch versus mid-air gesture interfaces in road scenarios—Measuring driver performance degradation. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 661–666. https://doi.org/10.1109/ITSC.2016.7795624
Köpüklü, O., Kose, N., Gunduz, A., & Rigoll, G. (2021). Resource Efficient 3D Convolutional Neural Networks (arXiv:1904.02422). arXiv. http://arxiv.org/abs/1904.02422
Kraljević, L., Russo, M., Pauković, M., & Šarić, M. (2020). A Dynamic Gesture Recognition Interface for Smart Home Control based on Croatian Sign Language. Applied Sciences, 10(7), Article 7. https://doi.org/10.3390/app10072300
Lee, J., & Ahn, B. (2020). Real-Time Human Action Recognition with a Low-Cost RGB Camera and Mobile Robot Platform. Sensors, 20(10), Article 10. https://doi.org/10.3390/s20102886
Li, M., Yin, D., Qiu, H., & Bai, B. (2022). Examining the effects of AI contactless services on customer psychological safety, perceived value, and hospitality service quality during the COVID‐19 pandemic. Journal of Hospitality Marketing & Management, 31(1), 24–48. https://doi.org/10.1080/19368623.2021.1934932
Liu, J., Wang, G., Duan, L.-Y., Abdiyeva, K., & Kot, A. C. (2018). Skeleton-Based Human Action Recognition With Global Context-Aware Attention LSTM Networks. IEEE Transactions on Image Processing, 27(4), 1586–1599. https://doi.org/10.1109/TIP.2017.2785279
Ma, N., Zhang, X., Zheng, H.-T., & Sun, J. (2018). ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. 116–131. https://openaccess.thecvf.com/content_ECCV_2018/html/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.html
MediaPipe. (n.d.). Retrieved March 15, 2023, from https://mediapipe.dev/
Nguyen, T.-T., Pham, D.-T., Vu, H., & Le, T.-L. (2022). A robust and efficient method for skeleton-based human action recognition and its application for cross-dataset evaluation. IET Computer Vision, 16(8), 709–726. https://doi.org/10.1049/cvi2.12119
Nie, W., Wang, W., & Huang, X. (2019). SRNet: Structured Relevance Feature Learning Network From Skeleton Data for Human Action Recognition. Ieee Access, 7, 132161–132172. https://doi.org/10.1109/ACCESS.2019.2940281
Pantano, E., & Vannucci, V. (2019). Who is innovating? An exploratory research of digital technologies diffusion in retail industry. Journal of Retailing and Consumer Services, 49, 297–304. https://doi.org/10.1016/j.jretconser.2019.01.019
Pumarola, A., Sanchez, J., Choi, G. P. T., Sanfeliu, A., & Moreno, F. (2019). 3DPeople: Modeling the Geometry of Dressed Humans. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2242–2251. https://doi.org/10.1109/ICCV.2019.00233
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks (arXiv:1801.04381). arXiv. https://doi.org/10.48550/arXiv.1801.04381
Smedt Q. D., Wannous H., Vandeborre J.-P., Guerry J., Saux B. L., & Filliat D. (2017). 3D Hand Gesture Recognition Using a Depth and Skeletal Dataset. The Eurographics Association. https://doi.org/10.2312/3dor.20171049
Surale, H. B., Matulic, F., & Vogel, D. (2019). Experimental Analysis of Barehand Mid-air Mode-Switching Techniques in Virtual Reality. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3290605.3300426
Vogiatzidakis, P., & Koutsabasis, P. (2020). Mid-Air Gesture Control of Multiple Home Devices in Spatial Augmented Reality Prototype. Multimodal Technologies and Interaction, 4(3), 61. https://doi.org/10.3390/mti4030061
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (arXiv:2207.02696). arXiv. https://doi.org/10.48550/arXiv.2207.02696
Zhao, Y., & Bacao, F. (2021). How Does the Pandemic Facilitate Mobile Payment? An Investigation on Users’ Perspective under the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18(3), 1016. https://doi.org/10.3390/ijerph18031016
Zhu, K., Wang, R., Zhao, Q., Cheng, J., & Tao, D. (2020). A Cuboid CNN Model With an Attention Mechanism for Skeleton-Based Action Recognition. IEEE Transactions on Multimedia, 22(11), Article 11. https://doi.org/10.1109/TMM.2019.2962304 |