參考文獻 |
1. Abercrombie, G., & Hovy, D. (2016, August). Putting sarcasm detection into context: The effects of class imbalance and manual labelling on supervised machine classification of twitter conversations. In Proceedings of the ACL 2016 student research workshop (pp. 107-113).
2. Akula, R., & Garibay, I. (2021). Interpretable multi-head self-attention architecture for sarcasm detection in social media. Entropy, 23(4), 394.
3. Amir, S., Wallace, B. C., Lyu, H., & Silva, P. C. M. J. (2016). Modelling context with user embeddings for sarcasm detection in social media. arXiv preprint arXiv:1607.00976.
4. Banerjee, A., Bhattacharjee, M., Ghosh, K., & Chatterjee, S. (2020). Synthetic minority oversampling in addressing imbalanced sarcasm detection in social media. Multimedia Tools and Applications, 79(47-48), 35995-36031.
5. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36, 105-139.
6. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5, 135-146.
7. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
8. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
9. Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural networks, 106, 249-259.
10. Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In Advances in Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok, Thailand, April 27-30, 2009 Proceedings 13 (pp. 475-482). Springer Berlin Heidelberg.
11. Chawla, N. V. (2010). Data mining for imbalanced datasets: An overview. Data mining and knowledge discovery handbook, 875-886.
12. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
13. Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
14. Choudhary, R., & Shukla, S. (2021). A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learning. Expert Systems with Applications, 164, 114041.
15. Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14, 241-258.
16. Du, H., Zhang, Y., Gang, K., Zhang, L., & Chen, Y. C. (2021). Online ensemble learning algorithm for imbalanced data stream. Applied Soft Computing, 107, 107378.
17. Farha, I. A., Oprea, S. V., Wilson, S., & Magdy, W. (2022, July). Semeval-2022 task 6: isarcasmeval, intended sarcasm detection in english and arabic. In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022) (pp. 802-814).
18. Feng, W., Huang, W., & Ren, J. (2018). Class imbalance ensemble learning based on the margin theory. Applied Sciences, 8(5), 815.
19. Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., Herrera, F., ... & Herrera, F. (2018). Cost-sensitive learning. Learning from Imbalanced Data Sets, 63-78.
20. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011). A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 463-484.
21. Ghosh, A., & Veale, T. (2016, June). Fracking sarcasm using neural network. In Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 161-169).
22. González, J. Á., Hurtado, L. F., & Pla, F. (2020). Transformer based contextualization of pre-trained word embeddings for irony detection in Twitter. Information Processing & Management, 57(4), 102262.
23. González-Ibánez, R., Muresan, S., & Wacholder, N. (2011, June). Identifying sarcasm in twitter: a closer look. In Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies (pp. 581-586).
24. Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings, Part I 1 (pp. 878-887). Springer Berlin Heidelberg.
25. Hazarika, D., Poria, S., Gorantla, S., Cambria, E., Zimmermann, R., & Mihalcea, R. (2018). CASCADE: Contextual Sarcasm Detection in Online Discussion Forums. In Proceedings of the 27th International Conference on Computational Linguistics (pp. 1837–1848).
26. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.
27. Hercig, T., & Lenc, L. (2017, September). The Impact of Figurative Language on Sentiment Analysis. In RANLP (pp. 301-308).
28. Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-Dossari, H., & Ahmad, S. (2018). An ensemble oversampling model for class imbalance problem in software defect prediction. IEEE access, 6, 24184-24195.
29. Jain, D., Kumar, A., & Garg, G. (2020). Sarcasm detection in mash-up language using soft-attention based bi-directional LSTM and feature-rich CNN. Applied Soft Computing, 91, 106198.
30. Joshi, A., Bhattacharyya, P., & Carman, M. J. (2017). Automatic sarcasm detection: A survey. ACM Computing Surveys (CSUR), 50(5), 1-22.
31. Kamal, A., & Abulaish, M. (2022). Cat-bigru: Convolution and attention with bi-directional gated recurrent unit for self-deprecating sarcasm detection. Cognitive computation, 1-19.
32. Khodak, M., Saunshi, N., & Vodrahalli, K. (2017). A large self-annotated corpus for sarcasm. arXiv preprint arXiv:1704.05579.
33. Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A., Uddin, S., Luo, S., ... & Reyes, M. C. (2021). A comparative performance analysis of data resampling methods on imbalance medical data. IEEE Access, 9, 109960-109975.
34. Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets. Applied Soft Computing, 83, 105662.
35. Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221-232.
36. Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 1-30.
37. Li, Z., Fan, Y., Jiang, B., Lei, T., & Liu, W. (2019). A survey on sentiment analysis and opinion mining for social multimedia. Multimedia Tools and Applications, 78, 6939-6967.
38. Lim, P., Goh, C. K., & Tan, K. C. (2016). Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance learning. IEEE transactions on cybernetics, 47(9), 2850-2861.
39. Liu, P., Chen, W., Ou, G., Wang, T., Yang, D., & Lei, K. (2014). Sarcasm detection in social media based on imbalanced classification. In Web-Age Information Management: 15th International Conference, WAIM 2014, Macau, China, June 16-18, 2014. Proceedings 15 (pp. 459-471). Springer International Publishing.
40. Maynard, D. G., & Greenwood, M. A. (2014, March). Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis. In Lrec 2014 proceedings. ELRA.
41. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
42. Mosavi, A., Sajedi Hosseini, F., Choubin, B., Goodarzi, M., Dineva, A. A., & Rafiei Sardooi, E. (2021). Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resources Management, 35, 23-37.
43. Nikulin, V., McLachlan, G. J., & Ng, S. K. (2009). Ensemble approach for the classification of imbalanced data. In AI 2009: Advances in Artificial Intelligence: 22nd Australasian Joint Conference, Melbourne, Australia, December 1-4, 2009. Proceedings 22 (pp. 291-300). Springer Berlin Heidelberg.
44. Noble, W. S. (2006). What is a support vector machine?. Nature biotechnology, 24(12), 1565-1567.
45. Oza, N. C., & Russell, S. J. (2001, January). Online bagging and boosting. In International Workshop on Artificial Intelligence and Statistics (pp. 229-236). PMLR.
46. Palit, I., & Reddy, C. K. (2011). Scalable and parallel boosting with mapreduce. IEEE Transactions on Knowledge and Data Engineering, 24(10), 1904-1916.
47. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
48. Poria, S., Cambria, E., Hazarika, D., & Vij, P. (2016). A deeper look into sarcastic tweets using deep convolutional neural networks. arXiv preprint arXiv:1610.08815.
49. Ptáček, T., Habernal, I., & Hong, J. (2014, August). Sarcasm detection on czech and english twitter. In Proceedings of COLING 2014, the 25th international conference on computational linguistics: Technical papers (pp. 213-223).
50. Rajadesingan, A., Zafarani, R., & Liu, H. (2015, February). Sarcasm detection on twitter: A behavioral modeling approach. In Proceedings of the eighth ACM international conference on web search and data mining (pp. 97-106).
51. Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied soft computing, 86, 105837.
52. Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N., & Huang, R. (2013, October). Sarcasm as contrast between a positive sentiment and negative situation. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 704-714).
53. Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.
54. Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance in classification: Experimental evaluation. Information Sciences, 513, 429-441.
55. Tsur, O., Davidov, D., & Rappoport, A. (2010, May). ICWSM—a great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 4, No. 1, pp. 162-169).
56. Vyas, V., & Uma, V. (2019). Approaches to sentiment analysis on product reviews. In Sentiment Analysis and Knowledge Discovery in Contemporary Business (pp. 15-30). IGI global.
57. Wang, G., Sun, J., Ma, J., Xu, K., & Gu, J. (2014). Sentiment classification: The contribution of ensemble learning. Decision support systems, 57, 77-93.
58. Zhang, M., Zhang, Y., & Fu, G. (2016, December). Tweet sarcasm detection using deep neural network. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: technical papers (pp. 2449-2460). |