參考文獻 |
[1] B. A. Salau, A. Rawal, and D. B. Rawat, “Recent Advances in Artificial Intelligence for Wireless Internet of Things and Cyber–Physical Systems: A Comprehensive Survey,” IEEE Internet of Things Journal, vol. 9, no. 15, pp. 12916–12930, Aug. 2022, doi: 10.1109/JIOT.2022.3170449.
[2] J. Wan, J. Li, M. Imran, D. Li, and Fazal-e-Amin, “A Blockchain-Based Solution for Enhancing Security and Privacy in Smart Factory,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3652–3660, Jun. 2019, doi: 10.1109/TII.2019.2894573.
[3] P. Ajay, B. Nagaraj, B. M. Pillai, J. Suthakorn, and M. Bradha, “Intelligent ecofriendly transport management system based on IoT in urban areas,” Environ Dev Sustain, Jan. 2022, doi: 10.1007/s10668-021-02010-x.
[4] Y. Yang, H. Wang, R. Jiang, X. Guo, J. Cheng, and Y. Chen, “A Review of IoT-Enabled Mobile Healthcare: Technologies, Challenges, and Future Trends,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9478–9502, Jun. 2022, doi: 10.1109/JIOT.2022.3144400.
[5] U. M. Malik, M. A. Javed, S. Zeadally, and S. ul Islam, “Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends and Future Opportunities,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14572–14594, Aug. 2022, doi: 10.1109/JIOT.2021.3068056.
[6] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, May 2020, doi: 10.1109/MNET.001.1900287.
[7] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G Networks: Use Cases and Technologies,” IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, Mar. 2020, doi: 10.1109/MCOM.001.1900411.
[8] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future Intelligent and Secure Vehicular Network Toward 6G: Machine-Learning Approaches,” Proceedings of the IEEE, vol. 108, no. 2, pp. 292–307, Feb. 2020, doi: 10.1109/JPROC.2019.2954595.
[9] H. Wang et al., “Attack of the Tails: Yes, You Really Can Backdoor Federated Learning,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2020, pp. 16070–16084. Accessed: Jun. 19, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
[10] J. Gao, B. Zhang, X. Guo, T. Baker, M. Li, and Z. Liu, “Secure Partial Aggregation: Making Federated Learning More Robust for Industry 4.0 Applications,” IEEE Trans. Ind. Inf., vol. 18, no. 9, pp. 6340–6348, Sep. 2022, doi: 10.1109/TII.2022.3145837.
[11] H. Li, X. Sun, and Z. Zheng, “Learning to Attack Federated Learning: A Model-based Reinforcement Learning Attack Framework,” Advances in Neural Information Processing Systems, vol. 35, pp. 35007–35020, Dec. 2022.
[12] S. Savazzi, M. Nicoli, and V. Rampa, “Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks,” IEEE Internet Things J., vol. 7, no. 5, pp. 4641–4654, May 2020, doi: 10.1109/JIOT.2020.2964162.
[13] C. Ma et al., “When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm,” IEEE Comput. Intell. Mag., vol. 17, no. 3, pp. 26–33, Aug. 2022, doi: 10.1109/MCI.2022.3180932.
[14] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, “FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive,” 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), pp. 151–159, Aug. 2019, doi: 10.1109/BIGCOM.2019.00030.
[15] Y. Zhang, Y. Liang, B. Jia, P. Wang, and X. Zhang, “A blockchain‐enabled learning model based on distributed deep learning architecture,” Int J of Intelligent Sys, vol. 37, no. 9, pp. 6577–6604, Sep. 2022, doi: 10.1002/int.22907.
[16] Y. Khazbak, T. Tan, and G. Cao, “MLGuard: Mitigating Poisoning Attacks in Privacy Preserving Distributed Collaborative Learning,” 2020 29th International Conference on Computer Communications and Networks (ICCCN), pp. 1–9, Aug. 2020, doi: 10.1109/ICCCN49398.2020.9209670.
[17] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning,” 2018 IEEE Symposium on Security and Privacy (SP), pp. 19–35, May 2018, doi: 10.1109/SP.2018.00057.
[18] C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating Sybils in Federated Learning Poisoning,” ArXiv, Aug. 2018, Accessed: Jun. 19, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Mitigating-Sybils-in-Federated-Learning-Poisoning-Fung-Yoon/333420606f059a7d5574a6fb9e35591346d3f957
[19] X. Qiao, Y. Huang, S. Dustdar, and J. Chen, “6G Vision: An AI-Driven Decentralized Network and Service Architecture,” IEEE Internet Comput., vol. 24, no. 4, pp. 33–40, Jul. 2020, doi: 10.1109/MIC.2020.2987738.
[20] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends,” 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557–564, Jun. 2017, doi: 10.1109/BigDataCongress.2017.85.
[21] V. Buterin, “A next-generation smart contract and decentralized application platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.
[22] M. Swan, “Blockchain: Blueprint for a New Economy,” 2015.
[23] F. Victor and B. K. Lüders, “Measuring Ethereum-Based ERC20 Token Networks,” in Financial Cryptography and Data Security, I. Goldberg and T. Moore, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019, pp. 113–129. doi: 10.1007/978-3-030-32101-7_8.
[24] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint arXiv:1407.3561, 2014.
[25] A. Galakatos, A. Crotty, and T. Kraska, “Distributed Machine Learning,” in Encyclopedia of Database Systems, L. Liu and M. T. Özsu, Eds., New York, NY: Springer, 2018, pp. 1196–1201. doi: 10.1007/978-1-4614-8265-9_80647.
[26] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A Survey on Distributed Machine Learning,” ACM Comput. Surv., vol. 53, no. 2, p. 30:1-30:33, Mar. 2020, doi: 10.1145/3377454.
[27] P. Richtárik and M. Takáč, “Distributed coordinate descent method for learning with big data,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2657–2681, Jan. 2016.
[28] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69, Jul. 2006, doi: 10.1109/MSP.2006.1657817.
[29] S. Fan et al., “DAPPLE: a pipelined data parallel approach for training large models,” in Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, in PPoPP ’21. New York, NY, USA: Association for Computing Machinery, Feb. 2021, pp. 431–445. doi: 10.1145/3437801.3441593.
[30] J. Du et al., “Model Parallelism Optimization for Distributed Inference via Decoupled CNN Structure,” IEEE Trans. Parallel Distrib. Syst., pp. 1–1, 2020, doi: 10.1109/TPDS.2020.3041474.
[31] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning: Concept and Applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, p. 12:1-12:19, Jan. 2019, doi: 10.1145/3298981.
[32] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. Suresh, and D. Bacon, “Federated Learning: Strategies for Improving Communication Efficiency,” ArXiv, Oct. 2016, Accessed: Mar. 16, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Federated-Learning%3A-Strategies-for-Improving-Konecn%C3%BD-McMahan/7fcb90f68529cbfab49f471b54719ded7528d0ef
[33] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, in CCS ’15. New York, NY, USA: Association for Computing Machinery, Oct. 2015, pp. 1310–1321. doi: 10.1145/2810103.2813687.
[34] J. Yuan and S. Yu, “Privacy Preserving Back-Propagation Neural Network Learning Made Practical with Cloud Computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 212–221, Jan. 2014, doi: 10.1109/TPDS.2013.18.
[35] P. Kairouz et al., “Advances and Open Problems in Federated Learning,” FNT in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021, doi: 10.1561/2200000083.
[36] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip Learning as a Decentralized Alternative to Federated Learning,” in Distributed Applications and Interoperable Systems, J. Pereira and L. Ricci, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019, pp. 74–90. doi: 10.1007/978-3-030-22496-7_5.
[37] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To Backdoor Federated Learning,” in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR, Jun. 2020, pp. 2938–2948. Accessed: Mar. 21, 2023. [Online]. Available: https://proceedings.mlr.press/v108/bagdasaryan20a.html
[38] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting Unintended Feature Leakage in Collaborative Learning,” 2019 IEEE Symposium on Security and Privacy (SP), pp. 691–706, May 2019, doi: 10.1109/SP.2019.00029.
[39] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning Differentially Private Recurrent Language Models,” presented at the International Conference on Learning Representations, Oct. 2017. Accessed: Mar. 20, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Learning-Differentially-Private-Recurrent-Language-McMahan-Ramage/ed46493d568030b42f0154d9e5bf39bbd07962b3
[40] B. Et-taibi, M. R. Abid, I. Boumhidi, and D. Benhaddou, “Smart Agriculture as a Cyber Physical System: A Real-World Deployment,” in 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), Oct. 2020, pp. 1–7. doi: 10.1109/ICDS50568.2020.9268734.
[41] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 718–752, Apr. 2021, doi: 10.1109/JAS.2021.1003925.
[42] V. Udutalapally, S. P. Mohanty, V. Pallagani, and V. Khandelwal, “sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17525–17538, Aug. 2021, doi: 10.1109/JSEN.2020.3032438.
[43] G. White, A. Zink, L. Codecá, and S. Clarke, “A digital twin smart city for citizen feedback,” Cities, vol. 110, p. 103064, Mar. 2021, doi: 10.1016/j.cities.2020.103064.
[44] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F. Tasgetiren, “Future Trends and Current State of Smart City Concepts: A Survey,” IEEE Access, vol. 8, pp. 86448–86467, 2020, doi: 10.1109/ACCESS.2020.2992441.
[45] P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities,” Journal of Big Data, vol. 2, no. 1, p. 25, Nov. 2015, doi: 10.1186/s40537-015-0034-z.
[46] W. Wang, Y. Zhang, J. Gu, and J. Wang, “A Proactive Manufacturing Resources Assignment Method Based on Production Performance Prediction for the Smart Factory,” IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 46–55, Jan. 2022, doi: 10.1109/TII.2021.3073404.
[47] A. Napoleone, E. Negri, M. Macchi, and A. Pozzetti, “How the technologies underlying cyber-physical systems support the reconfigurability capability in manufacturing: a literature review,” International Journal of Production Research, vol. 61, no. 9, pp. 3122–3144, May 2023, doi: 10.1080/00207543.2022.2074323.
[48] M. A. Ferrag and L. Maglaras, “DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids,” IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 1285–1297, Jan. 2020, doi: 10.1109/TEM.2019.2922936.
[49] A. Yazdinejad, A. Dehghantanha, R. M. Parizi, M. Hammoudeh, H. Karimipour, and G. Srivastava, “Block Hunter: Federated Learning for Cyber Threat Hunting in Blockchain-Based IIoT Networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 8356–8366, Jan. 2022, doi: 10.1109/TII.2022.3168011.
[50] C. Dwork, “Differential Privacy,” in Automata, Languages and Programming, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 1–12. doi: 10.1007/11787006_1.
[51] Y. Liu, J. Peng, J. Kang, A. M. Iliyasu, D. Niyato, and A. A. A. El-Latif, “A Secure Federated Learning Framework for 5G Networks,” IEEE Wireless Communications, vol. 27, no. 4, pp. 24–31, Aug. 2020, doi: 10.1109/MWC.01.1900525.
[52] C. Dwork, “Differential Privacy: A Survey of Results,” in Theory and Applications of Models of Computation, M. Agrawal, D. Du, Z. Duan, and A. Li, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 1–19. doi: 10.1007/978-3-540-79228-4_1.
[53] M. Abadi et al., “Deep Learning with Differential Privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, in CCS ’16. New York, NY, USA: Association for Computing Machinery, Oct. 2016, pp. 308–318. doi: 10.1145/2976749.2978318.
[54] M. Du, K. Wang, Z. Xia, and Y. Zhang, “Differential Privacy Preserving of Training Model in Wireless Big Data with Edge Computing,” IEEE Transactions on Big Data, vol. 6, no. 2, pp. 283–295, Jun. 2020, doi: 10.1109/TBDATA.2018.2829886.
[55] P. Kairouz, S. Oh, and P. Viswanath, “Extremal Mechanisms for Local Differential Privacy,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., Curran Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
[56] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang, “Privacy at Scale: Local Differential Privacy in Practice,” in Proceedings of the 2018 International Conference on Management of Data, in SIGMOD ’18. New York, NY, USA: Association for Computing Machinery, May 2018, pp. 1655–1658. doi: 10.1145/3183713.3197390.
[57] A. S. Kittur and A. R. Pais, “Batch verification of Digital Signatures: Approaches and challenges,” Journal of Information Security and Applications, vol. 37, pp. 15–27, Dec. 2017, doi: 10.1016/j.jisa.2017.09.005.
[58] A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen, “Practical Short Signature Batch Verification,” in Topics in Cryptology – CT-RSA 2009, M. Fischlin, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 309–324. doi: 10.1007/978-3-642-00862-7_21.
[59] C. Zhang, R. Lu, X. Lin, P.-H. Ho, and X. Shen, “An Efficient Identity-Based Batch Verification Scheme for Vehicular Sensor Networks,” in IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, Apr. 2008, pp. 246–250. doi: 10.1109/INFOCOM.2008.58.
[60] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The Hidden Vulnerability of Distributed Learning in Byzantium,” in Proceedings of the 35th International Conference on Machine Learning, PMLR, Jul. 2018, pp. 3521–3530. Accessed: Jun. 14, 2023. [Online]. Available: https://proceedings.mlr.press/v80/mhamdi18a.html
[61] L. Chen, H. Wang, Z. B. Charles, and D. Papailiopoulos, “DRACO: Byzantine-resilient Distributed Training via Redundant Gradients,” presented at the International Conference on Machine Learning, Mar. 2018. Accessed: Jun. 13, 2023. [Online]. Available: https://www.semanticscholar.org/paper/DRACO%3A-Byzantine-resilient-Distributed-Training-via-Chen-Wang/31f8806397907e197ca1d3676f598fd197087ad6
[62] “Practical Byzantine fault tolerance | Proceedings of the third symposium on Operating systems design and implementation.” https://dl.acm.org/doi/10.5555/296806.296824 (accessed Jun. 13, 2023).
[63] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent,” presented at the NIPS, Dec. 2017. Accessed: Mar. 21, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Machine-Learning-with-Adversaries%3A-Byzantine-Blanchard-Mhamdi/9583ac53a19cdf0db81fef6eb0b63e66adbe2324
[64] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensitivity in Private Data Analysis,” in Theory of Cryptography, S. Halevi and T. Rabin, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 265–284. doi: 10.1007/11681878_14.
[65] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil Pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2001, pp. 514–532. doi: 10.1007/3-540-45682-1_30.
[66] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, Apr. 2017, pp. 1273–1282. Accessed: Jun. 17, 2023. [Online]. Available: https://proceedings.mlr.press/v54/mcmahan17a.html
[67] X. Cao, Z. Zhang, J. Jia, and N. Z. Gong, “FLCert: Provably Secure Federated Learning Against Poisoning Attacks,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 3691–3705, 2022, doi: 10.1109/TIFS.2022.3212174.
[68] P. Zhao, Z. Cao, J. Jiang, and F. Gao, “Practical Private Aggregation in Federated Learning Against Inference Attack,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 318–329, Jan. 2023, doi: 10.1109/JIOT.2022.3201231.
[69] H. Liao et al., “Blockchain and Semi-Distributed Learning-Based Secure and Low-Latency Computation Offloading in Space-Air-Ground-Integrated Power IoT,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 3, pp. 381–394, Apr. 2022, doi: 10.1109/JSTSP.2021.3135751.
[70] Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving blockchain-based federated learning for traffic flow prediction,” Future Generation Computer Systems, vol. 117, pp. 328–337, Apr. 2021, doi: 10.1016/j.future.2020.12.003.
[71] M. Xu, Z. Zou, Y. Cheng, Q. Hu, D. Yu, and X. Cheng, “SPDL: A Blockchain-Enabled Secure and Privacy-Preserving Decentralized Learning System,” IEEE Transactions on Computers, vol. 72, no. 2, pp. 548–558, Feb. 2023, doi: 10.1109/TC.2022.3169436.
[72] L. Deng, “The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, Jan. 2012, doi: 10.1109/MSP.2012.2211477.
[73] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”.
[74] A. P. Kalapaaking, I. Khalil, M. S. Rahman, M. Atiquzzaman, X. Yi, and M. Almashor, “Blockchain-Based Federated Learning With Secure Aggregation in Trusted Execution Environment for Internet-of-Things,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1703–1714, Feb. 2023, doi: 10.1109/TII.2022.3170348.
[75] Y. Zhao et al., “Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1817–1829, Feb. 2021, doi: 10.1109/JIOT.2020.3017377.
[76] P. Kumar, S. Kumari, V. Sharma, X. Li, A. K. Sangaiah, and S. H. Islam, “Secure CLS and CL-AS schemes designed for VANETs,” J Supercomput, vol. 75, no. 6, pp. 3076–3098, Jun. 2019, doi: 10.1007/s11227-018-2312-y. |