參考文獻 |
[1] R. Xu, N. Baracaldo, and J. Joshi, “Privacy-Preserving Machine Learning: Methods, Challenges and Directions.” arXiv, Sep. 22, 2021. Accessed: Feb. 05, 2023. [Online]. Available: http://arxiv.org/abs/2108.04417
[2] S. Hardy et al., “Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption.” arXiv, Nov. 28, 2017. doi: 10.48550/arXiv.1711.10677.
[3] M. Abadi et al., “Deep Learning with Differential Privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna Austria: ACM, Oct. 2016, pp. 308–318. doi: 10.1145/2976749.2978318.
[4] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated Learning for Healthcare Informatics,” ArXiv191106270 Cs, Aug. 2020, Accessed: Dec. 10, 2021. [Online]. Available: http://arxiv.org/abs/1911.06270
[5] X. Cheng, F. Shi, Y. Liu, X. Liu, and L. Huang, “Wind turbine blade icing detection: a federated learning approach,” Energy, vol. 254, p. 124441, Sep. 2022, doi: 10.1016/j.energy.2022.124441.
[6] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy Efficient Federated Learning Over Wireless Communication Networks,” IEEE Trans. Wirel. Commun., vol. 20, no. 3, pp. 1935–1949, Mar. 2021, doi: 10.1109/TWC.2020.3037554.
[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges, Methods, and Future Directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020, doi: 10.1109/MSP.2020.2975749.
[8] X. Bai et al., “Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence,” Nat. Mach. Intell., vol. 3, no. 12, Art. no. 12, Dec. 2021, doi: 10.1038/s42256-021-00421-z.
[9] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards Personalized Federated Learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–17, 2022, doi: 10.1109/TNNLS.2022.3160699.
[10] Y. Huang et al., “Personalized Cross-Silo Federated Learning on Non-IID Data.” arXiv, Dec. 13, 2021. Accessed: Jun. 16, 2023. [Online]. Available: http://arxiv.org/abs/2007.03797
[11] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated Optimization in Heterogeneous Networks.” arXiv, Apr. 21, 2020. Accessed: Jun. 05, 2022. [Online]. Available: http://arxiv.org/abs/1812.06127
[12] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated Learning on Non-IID Features via Local Batch Normalization,” ArXiv210207623 Cs, May 2021, Accessed: Apr. 07, 2022. [Online]. Available: http://arxiv.org/abs/2102.07623
[13] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated Learning with Personalization Layers,” Dec. 2019, doi: 10.48550/arXiv.1912.00818.
[14] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parameterized Knowledge Transfer for Personalized Federated Learning,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2021, pp. 10092–10104. Accessed: Dec. 15, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
[15] Y. J. Cho, J. Wang, and G. Joshi, “Towards Understanding Biased Client Selection in Federated Learning,” in Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, PMLR, May 2022, pp. 10351–10375. Accessed: Mar. 19, 2023. [Online]. Available: https://proceedings.mlr.press/v151/jee-cho22a.html
[16] X. Wang, W. Chen, J. Xia, Z. Wen, R. Zhu, and T. Schreck, “HetVis: A Visual Analysis Approach for Identifying Data Heterogeneity in Horizontal Federated Learning,” IEEE Trans. Vis. Comput. Graph., vol. 29, no. 01, pp. 310–319, Jan. 2023, doi: 10.1109/TVCG.2022.3209347.
[17] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated Learning: Strategies for Improving Communication Efficiency,” arXiv, arXiv:1610.05492, Oct. 2017. doi: 10.48550/arXiv.1610.05492.
[18] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.
[19] “A Comprehensive Survey on Transfer Learning | IEEE Journals & Magazine | IEEE Xplore.” https://ieeexplore.ieee.org/abstract/document/9134370 (accessed Feb. 12, 2023).
[20] C.-W. Kao et al., “Accuracy of long-form data in the Taiwan cancer registry,” J. Formos. Med. Assoc., vol. 120, no. 11, pp. 2037–2041, Nov. 2021, doi: 10.1016/j.jfma.2021.04.022.
[21] C.-J. Chiang, S.-L. You, C.-J. Chen, Y.-W. Yang, W.-C. Lo, and M.-S. Lai, “Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review,” Jpn. J. Clin. Oncol., vol. 45, no. 3, pp. 291–296, Mar. 2015, doi: 10.1093/jjco/hyu211.
[22] 衛生福利部國民健康署 , “衛生福利部國民健康署 ,” 衛生福利部國民健康署 , Dec. 31, 2016. https://www.hpa.gov.tw/Home/Index.aspx (accessed Mar. 12, 2023).
[23] “Cancer today.” http://gco.iarc.fr/today/home (accessed Mar. 12, 2023).
[24] C. G. N. Demandante, D. A. Troyer, and T. P. Miles, “Multiple Primary Malignant Neoplasms: Case Report and a Comprehensive Review of the Literature,” Am. J. Clin. Oncol., vol. 26, no. 1, p. 79, Feb. 2003.
[25] “Definition of second primary cancer - NCI Dictionary of Cancer Terms - NCI,” Feb. 02, 2011. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/second-primary-cancer (accessed Mar. 11, 2023).
[26] “Multiple primary malignant tumors. A survey of the literature and a statistical study | Semantic Scholar.” https://www.semanticscholar.org/paper/Multiple-primary-malignant-tumors.-A-survey-of-the-Warren/db002e714d10e5dd14b81934601ddfbe2697c060 (accessed Mar. 11, 2023).
[27] L. B. Travis, “The Epidemiology of Second Primary Cancers,” Cancer Epidemiol. Biomarkers Prev., vol. 15, no. 11, pp. 2020–2026, Nov. 2006, doi: 10.1158/1055-9965.EPI-06-0414.
[28] I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective,” Artif. Intell. Med., vol. 23, no. 1, pp. 89–109, Aug. 2001, doi: 10.1016/S0933-3657(01)00077-X.
[29] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,” J. Big Data, vol. 6, no. 1, p. 54, Jun. 2019, doi: 10.1186/s40537-019-0217-0.
[30] R. S. Antunes, C. André da Costa, A. Küderle, I. A. Yari, and B. Eskofier, “Federated Learning for Healthcare: Systematic Review and Architecture Proposal,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 4, p. 54:1-54:23, May 2022, doi: 10.1145/3501813.
[31] Y. Kumar and R. Singla, “Federated Learning Systems for Healthcare: Perspective and Recent Progress,” in Federated Learning Systems: Towards Next-Generation AI, M. H. ur Rehman and M. M. Gaber, Eds., in Studies in Computational Intelligence. Cham: Springer International Publishing, 2021, pp. 141–156. doi: 10.1007/978-3-030-70604-3_6.
[32] N. Mehta and A. Pandit, “Concurrence of big data analytics and healthcare: A systematic review,” Int. J. Med. Inf., vol. 114, pp. 57–65, Jun. 2018, doi: 10.1016/j.ijmedinf.2018.03.013.
[33] S. Hindocha et al., “A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models,” eBioMedicine, vol. 77, p. 103911, Mar. 2022, doi: 10.1016/j.ebiom.2022.103911.
[34] P. Liu, K. Jin, Y. Jiao, M. He, and S. Fei, “Prediction of Second Primary Lung Cancer Patient’s Survivability Based on Improved Eigenvector Centrality-Based Feature Selection,” IEEE Access, vol. 9, pp. 55663–55672, 2021, doi: 10.1109/ACCESS.2021.3063944.
[35] C.-C. Chang and S.-H. Chen, “Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors,” Front. Genet., vol. 10, 2019, Accessed: Jun. 06, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fgene.2019.00848
[36] C.-C. Chang et al., “Developing a Stacked Ensemble-Based Classification Scheme to Predict Second Primary Cancers in Head and Neck Cancer Survivors,” Int. J. Environ. Res. Public. Health, vol. 18, no. 23, p. 12499, Nov. 2021, doi: 10.3390/ijerph182312499.
[37] I. Dayan et al., “Federated learning for predicting clinical outcomes in patients with COVID-19,” Nat. Med., vol. 27, no. 10, pp. 1735–1743, Oct. 2021, doi: 10.1038/s41591-021-01506-3.
[38] M. J. Sheller et al., “Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data,” Sci. Rep., vol. 10, no. 1, p. 12598, Jul. 2020, doi: 10.1038/s41598-020-69250-1.
[39] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, “Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,” Med. Image Anal., vol. 65, p. 101794, Oct. 2020, doi: 10.1016/j.media.2020.101794.
[40] S. Basu, S. Mitra, and N. Saha, “Deep Learning for Screening COVID-19 using Chest X-Ray Images,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Feb. 2020, pp. 2521–2527. doi: 10.1109/SSCI47803.2020.9308571.
[41] V. V. Danilov et al., “Automatic scoring of COVID-19 severity in X-ray imaging based on a novel deep learning workflow,” Sci. Rep., vol. 12, no. 1, Art. no. 1, Jul. 2022, doi: 10.1038/s41598-022-15013-z.
[42] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare,” IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, Jul. 2020, doi: 10.1109/MIS.2020.2988604.
[43] Y. Chen, W. Lu, J. Wang, and X. Qin, “FedHealth 2: Weighted Federated Transfer Learning via Batch Normalization for Personalized Healthcare,” Jun. 2021, doi: 10.48550/arXiv.2106.01009.
[44] 蔡昌赫 and Cai C.-H., “整合聚類與分類機器學習方法 建立原發性肺癌二次癌症預測
模型 ;Integrating Clustering and Classification Machine Learning Methods to Build a Second Primary Cancer Prediction Model in Lung Cancer Survivors,” thesis, 國立中央大
學 , 2022. Accessed: Mar. 18, 2023. [Online]. Available: http://ir.lib.ncu.edu.tw/handle/987654321/89802#.ZBVnSXZBxD8
[45] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” ArXiv160205629 Cs, Feb. 2017, Accessed: Mar. 10, 2022. [Online]. Available: http://arxiv.org/abs/1602.05629
[46] D. J. Beutel et al., “Flower: A Friendly Federated Learning Research Framework,” arXiv, arXiv:2007.14390, Mar. 2022. doi: 10.48550/arXiv.2007.14390.
[47] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” arXiv, arXiv:1708.02002, Feb. 2018. doi: 10.48550/arXiv.1708.02002.
[48] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Mar. 12, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
[49] T. K. Dang, K. C. Tan, M. Choo, N. Lim, J. Weng, and M. Feng, “Building ICU In-hospital Mortality Prediction Model with Federated Learning,” in Federated Learning: Privacy and Incentive, Q. Yang, L. Fan, and H. Yu, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 255–268. doi: 10.1007/978-3-030-63076-8_18. |