參考文獻 |
[1]K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The Evolution of Android Malware and Android Analysis Techniques,” ACM Comput. Surv., vol. 49, no. 4, p. 76:1-76:41, 13 2017, doi: 10.1145/3017427.
[2]J. Tang, R. Li, Y. Jiang, X. Gu, and Y. Li, “Android malware obfuscation variants detection method based on multi-granularity opcode features,” Future Generation Computer Systems, vol. 129, pp. 141–151, Apr. 2022, doi: 10.1016/j.future.2021.11.005.
[3]T. S. John, T. Thomas, and S. Emmanuel, “Graph Convolutional Networks for Android Malware Detection with System Call Graphs,” in 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Feb. 2020, pp. 162–170. doi: 10.1109/ISEA-ISAP49340.2020.235015.
[4]D. Carlin, P. O’Kane, and S. Sezer, “Dynamic Analysis of Malware Using Run-Time Opcodes,” in Data Analytics and Decision Support for Cybersecurity: Trends, Methodologies and Applications, I. Palomares Carrascosa, H. K. Kalutarage, and Y. Huang, Eds. Cham: Springer International Publishing, 2017, pp. 99–125. doi: 10.1007/978-3-319-59439-2_4.
[5]S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan, “PUMA: programmable UI-automation for large-scale dynamic analysis of mobile apps,” in Proceedings of the 12th annual international conference on Mobile systems, applications, and services, New York, NY, USA, Summer 2014, pp. 204–217. doi: 10.1145/2594368.2594390.
[6]洪千惠,2022,”結合系統呼叫序列關係與局部特徵計算之行動惡意程式檢測方法”,國立中央大學資訊管理研究所碩士論文。
[7]S. Kumar, D. Mishra, B. Panda, and S. K. Shukla, “DeepDetect: A Practical On-device Android Malware Detector,” in 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), Feb. 2021, pp. 40–51. doi: 10.1109/QRS54544.2021.00015.
[8]Z. Meng, Y. Xiong, W. Huang, F. Miao, and J. Huang, “AppAngio: Revealing Contextual Information of Android App Behaviors by API-Level Audit Logs,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1912–1927, 2021, doi: 10.1109/TIFS.2020.3044867.
[9]Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android Malware Familial Classification Based on DEX File Section Features,” IEEE Access, vol. 8, pp. 10614–10627, 2020, doi: 10.1109/ACCESS.2020.2965646.
[10]O. Mirzaei, G. Suarez-Tangil, J. M. de Fuentes, J. Tapiador, and G. Stringhini, “AndrEnsemble: Leveraging API Ensembles to Characterize Android Malware Families,” in Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, New York, NY, USA, Summer 2019, pp. 307–314. doi: 10.1145/3321705.3329854.
[11]S. Türker and A. B. Can, “AndMFC: Android Malware Family Classification Framework,” in 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), Sep. 2019, pp. 1–6. doi: 10.1109/PIMRCW.2019.8880840.
[12]“UI/Application Exerciser Monkey,” Android Developers. https://developer.android.com/studio/test/other-testing-tools/monkey (accessed Mar. 29, 2023).
[13]S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani, “Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning,” in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 515–522. doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094.
[14]D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” in Workshop on challenges in representation learning, ICML, vol. 3, 2013, p. 2.
[15]M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware detection using real devices,” Computers & Security, vol. 89, p. 101663, Feb. 2020, doi: 10.1016/j.cose.2019.101663.
[16]S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S. Alnumay, “DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network,” Future Generation Computer Systems, vol. 115, pp. 844–856, Feb. 2021, doi: 10.1016/j.future.2020.10.008.
[17]“Soot | Soot - A framework for analyzing and transforming Java and Android applications.” http://soot-oss.github.io/soot/
[18]S. Arzt et al., “FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259–269, 9 2014, doi: 10.1145/2666356.2594299.
[19]X. Zhang, X. Wang, R. Slavin, and J. Niu, “ConDySTA: Context-Aware Dynamic Supplement to Static Taint Analysis,” in 2021 IEEE Symposium on Security and Privacy (SP), May 2021, pp. 796–812. doi: 10.1109/SP40001.2021.00040.
[20]Z. Meng, Y. Xiong, W. Huang, F. Miao, and J. Huang, “AppAngio: Revealing Contextual Information of Android App Behaviors by API-Level Audit Logs,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1912–1927, 2021, doi: 10.1109/TIFS.2020.3044867.
[21]S. Dong et al., “Understanding android obfuscation techniques: A
large-scale investigation in the wild,” in International conference on security
and privacy in communication systems, 2018, pp. 172–192.
[22]S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk: An open-source black-box obfuscation tool for Android apps,” SoftwareX, vol. 11, p. 100403, Jan. 2020, doi: 10.1016/j.softx.2020.100403.
[23]“Java Obfuscator and Android App Optimizer | ProGuard.” https://www.guardsquare.com/proguard
[24]H. Cai, N. Meng, B. Ryder, and D. Yao, “DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019, doi: 10.1109/TIFS.2018.2879302.
[25]M. Ikram, P. Beaume, and M. A. Kaafar, “DaDiDroid: An Obfuscation Resilient Tool for Detecting Android Malware via Weighted Directed Call Graph Modelling.” arXiv, Aug. 21, 2019. doi: 10.48550/arXiv.1905.09136.
[26]“Android 中的權限 | Android Developers.”https://developer.android.com/guide/topics/permissions/overview?hl=zh-tw
[27]Martín, A., Lara-Cabrera, R., & Camacho, D. (2018). A new tool for static and dynamic Android malware analysis. In Data Science and Knowledge Engineering for Sensing Decision Support (pp. 509-516). World Scientific.
[28]V. Avdiienko et al., “Mining Apps for Abnormal Usage of Sensitive Data,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, May 2015, vol. 1, pp. 426–436. doi: 10.1109/ICSE.2015.61.
[29]“VirusShare.com.”
https://virusshare.com/
[30]“Androguard.”androguard, https://github.com/androguard/androguard
[31]L. Li et al., “AndroZoo++: Collecting Millions of Android Apps and Their Metadata for the Research Community.” arXiv, Sep. 15, 2017. doi: 10.48550/arXiv.1709.05281. |