參考文獻 |
[1] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11, p. 386, 1954.
[2] D. M. Rowe, CRC handbook of thermoelectrics. CRC press, 2018.
[3] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and Synergy in High-Efficiency Thermoelectric Materials," Adv Mater, vol. 29, no. 14, Apr 2017, doi: 10.1002/adma.201605884.
[4] 江明修,「脈衝雷射沉積高導電性之碲化鎵/碲週期排列奈米複合結構於熱電轉換之應用」,碩士,材料科學與工程學系,國立交通大學,新竹市,2012。[Online]. Available: https://hdl.handle.net/11296/834zp2
[5] M. Rull-Bravo, A. Moure, J. Fernández, and M. Martín-González, "Skutterudites as thermoelectric materials: revisited," Rsc Advances, vol. 5, no. 52, pp. 41653-41667, 2015.
[6] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg 2 Si 1− x Sn x solid solutions," Physical review letters, vol. 108, no. 16, p. 166601, 2012.
[7] T. Caillat, J.-P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3," J. Phys. Chem. Solids, vol. 58, no. 7, pp. 1119-1125, 1997.
[8] B. Yu et al., "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano letters, vol. 12, no. 4, pp. 2077-2082, 2012.
[9] A. F. May, E. Flage-Larsen, and G. J. Snyder, "Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4− z M z (M= Sb, Bi)," Physical Review B, vol. 81, no. 12, p. 125205, 2010.
[10] C. Fu et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature communications, vol. 6, no. 1, p. 8144, 2015.
[11] W. Liu, X. Yan, G. Chen, and Z. Ren, "Recent advances in thermoelectric nanocomposites," Nano Energy, vol. 1, no. 1, pp. 42-56, 2012, doi: 10.1016/j.nanoen.2011.10.001.
[12] L.-L. Liao, M.-J. Dai, C.-K. Liu, and K.-N. Chiang, "Thermo-electric finite element analysis and characteristic of thermoelectric generator with intermetallic compound," Microelectronic Engineering, vol. 120, pp. 194-199, 2014, doi: 10.1016/j.mee.2013.09.014.
[13] L. Shen, F. Xiao, H. Chen, and S. Wang, "Investigation of a novel thermoelectric radiant air-conditioning system," Energy and Buildings, vol. 59, pp. 123-132, 2013, doi: 10.1016/j.enbuild.2012.12.041.
[14] 宋柏毅,陳光耀和林育立,「熱電發電技術應用現況與發展」,燃燒季刊,no. 87,pp. 26-37,2014。
[15] H. Kaibe, T. Kajihara, S. Fujimoto, K. Makino, and H. Hachiuma, "Recovery of plant waste heat by a thermoelectric generating system," Komatsu Technical Report, vol. 57, no. 164, pp. 26-30, 2011.
[16] D. Crane, C. Koripella, and V. Jovovic, "Validating steady-state and transient modeling tools for high-power-density thermoelectric generators," Journal of electronic materials, vol. 41, pp. 1524-1534, 2012.
[17] D. Crane et al., "TEG on-vehicle performance and model validation and what it means for further TEG development," Journal of electronic materials, vol. 42, pp. 1582-1591, 2013.
[18] D. Kraemer et al., "High-performance flat-panel solar thermoelectric generators with high thermal concentration," Nature materials, vol. 10, no. 7, pp. 532-538, 2011.
[19] P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang, and M. Niino, "Design of a concentration solar thermoelectric generator," Journal of electronic materials, vol. 39, pp. 1522-1530, 2010.
[20] R. G. Lange and W. P. Carroll, "Review of recent advances of radioisotope power systems," Energy Conversion and Management, vol. 49, no. 3, pp. 393-401, 2008.
[21] 葉建弦,楊侑穎,汪俊延和林育立,「中溫鎂矽合金塊材之製程及其熱電性質」,燃燒季刊,no. 99,pp. 29-40,2017。
[22] T. M. Tritt, "Thermoelectric Phenomena, Materials, and Applications," Annual Review of Materials Research, vol. 41, no. 1, pp. 433-448, 2011, doi: 10.1146/annurev-matsci-062910-100453.
[23] M. Wehbe, J. Dgheim, and E. Sassine, "House electrical generation using thermoelectric cinder block: Case study on Lebanese hollow block," Sustainable Energy Technologies and Assessments, vol. 50, p. 101815, 2022.
[24] M. Thakkar, "A report on" Peltier (thermoelectric) cooling module, no. February, 2016.
[25] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Annual review of materials research, vol. 41, pp. 399-431, 2011.
[26] C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, "Decoupling interrelated parameters for designing high performance thermoelectric materials," Acc Chem Res, vol. 47, no. 4, pp. 1287-95, Apr 15 2014, doi: 10.1021/ar400290f.
[27] M. Søndergaard, M. Christensen, K. A. Borup, H. Yin, and B. B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, no. 5, pp. 2002-2008, 2012, doi: 10.1007/s10853-012-6967-0.
[28] J.-Y. Jung and I.-H. Kim, "Synthesis and Thermoelectric Properties of n-Type Mg2Si," Electronic Materials Letters, vol. 6, no. 4, pp. 187-191, 2010, doi: 10.3365/eml.2010.12.187.
[29] Y. Hayatsu et al., "Fabrication of large sintered pellets of Sb-doped n-type Mg2Si using a plasma activated sintering method," Journal of Solid State Chemistry, vol. 193, pp. 161-165, 2012.
[30] T. Sakamoto et al., "Thermoelectric characteristics of a commercialized Mg 2 Si source doped with Al, Bi, Ag, and Cu," Journal of electronic materials, vol. 39, pp. 1708-1713, 2010.
[31] R. J. LaBotz, D. R. Mason, and D. F. O′Kane, "The thermoelectric properties of mixed crystals of Mg2Ge x Si1− x," Journal of the Electrochemical Society, vol. 110, no. 2, p. 127, 1963.
[32] J. Mao et al., "Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system," Acta Materialia, vol. 103, pp. 633-642, 2016.
[33] V. K. Zaitsev et al., "Highly effectiveMg2Si1−xSnxthermoelectrics," Physical Review B, vol. 74, no. 4, 2006, doi: 10.1103/PhysRevB.74.045207.
[34] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Phys Rev Lett, vol. 108, no. 16, p. 166601, Apr 20 2012, doi: 10.1103/PhysRevLett.108.166601.
[35] X. J. Tan, W. Liu, H. J. Liu, J. Shi, X. F. Tang, and C. Uher, "Multiscale calculations of thermoelectric properties ofn-type Mg2Si1−xSnxsolid solutions," Physical Review B, vol. 85, no. 20, 2012, doi: 10.1103/PhysRevB.85.205212.
[36] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, no. 6, 2013, doi: 10.1063/1.4816971.
[37] W.-D. Liu et al., "Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide," Journal of Materials Chemistry C, vol. 7, no. 24, pp. 7212-7218, 2019, doi: 10.1039/c9tc01937e.
[38] R. F. Luccas, G. Sánchez-Santolino, A. Correa-Orellana, F. J. Mompean, M. García-Hernández, and H. Suderow, "Magnetic phase diagram, magnetotransport and inverse magnetocaloric effect in the noncollinear antiferromagnet Mn5Si3," Journal of Magnetism and Magnetic Materials, vol. 489, 2019, doi: 10.1016/j.jmmm.2019.165451.
[39] 李文浩,贺跃辉和康建刚,「Mn-Si 金属间化合物多孔材料的制备」,中国有色金属学报,vol. 9,2018。
[40] 張友競,「中高溫熱電模組之擴散阻障層研究」,材料科學與工程學研究所,國立臺灣大學,2016年。
[41] S. A. Malik and N. Van Nong, "Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy," Materials Today: Proceedings, vol. 8, pp. 625-631, 2019.
[42] B. Zhang et al., "Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si," Journal of Alloys and Compounds, vol. 699, pp. 1134-1139, 2017.
[43] J. M. Park et al., "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer," Journal of Alloys and Compounds, vol. 884, p. 161119, 2021.
[44] J. Camut et al., "Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices," Materials Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.2021.100718.
[45] R. Zybala, K. Wojciechowski, M. Schmidt, and R. Mania, "Junctions and diffusion barriers for high temperature thermoelectric modules," Mater. Ceram. Ceram. Mater, vol. 62, pp. 481-485, 2010.
[46] 莊東漢,「擴散軟銲技術在電子封裝之應用」,電子月刊,vol. 52,pp. 118-125,1999。
[47] N. H. Pham et al., "Ni and Ag electrodes for magnesium silicide based thermoelectric generators," Materials Today Energy, vol. 11, pp. 97-105, 2019, doi: 10.1016/j.mtener.2018.10.016.
[48] S. Ayachi et al., "On the relevance of point defects for the selection of contacting electrodes: Ag as an example for Mg2(Si,Sn)-based thermoelectric generators," Materials Today Physics, vol. 16, 2021, doi: 10.1016/j.mtphys.2020.100309.
[49] 何匡哲,「N型鎂矽錫之接觸金屬研究及鎂矽錫/鎂銀銻熱電元件製作」,碩士,電機工程學系,國立中央大學,桃園縣,2022。[Online]. Available: https://hdl.handle.net/11296/q55fv8 |