博碩士論文 110521061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.135.190.224
姓名 顏崇益(Chung-Yi Yen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫之接觸金屬研究及鎂矽錫/鎂銀銻熱電模組製作
(Study of N-type Mg2(SiSn) Contact Electrode and Fabrication of Mg2(SiSn)/MgAgSb Thermoelectric Module)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於能源枯竭和環保意識的抬頭,發展可再生與循環持續使用的能源材料已成為當前的趨勢。熱電材料是功能性材料,能夠將熱能與電能互相轉換,在足夠的溫差下產生電能,具有廢熱回收的潛力,同時節能、零排碳和低汙染等特性值得研究。然而,單一的N型熱電塊材不足以滿足需求,需要將多對N型與P型熱電塊材串接,組成熱電元件和模組,使其在溫差下產生的電壓相加,以產生足夠的電能。然而,熱電模組在高溫環境中運作,因此熱電塊材與電極之間的接合技術和元素擴散的防止變得至關重要。
基於先前鎂矽錫熱電材料的基礎,為了更有效地生產更多鎂矽錫熱電塊材,我們改進了製程,提高了錳矽化合物在製程後的產量。同時,我們尋找了不同種類的金屬材料,這些材料必須具有低電阻率、高機械強度、良好的熱穩定性並且不與熱電試片產生過多反應。然後,通過冷壓的方式將金屬材料與鎂矽錫熱電材料表面接合,並進行400°C持溫48小時的退火處理後進行電性量測。為了在長時間退火後接合不同種類的金屬,我們進行了後段的低溫退火製程,嘗試使用固態擴散接合的方法將金屬片接合到試片上,然後進行電性量測和接合強度測試。根據測試結果,我們選擇了接觸金屬,並使用點焊、低溫退火等方法將其與P型鎂銀銻塊材搭配,製作熱電元件,通過電性量測比較出最佳的串接方法,並以此製作熱電模組,進行後續的電性量測。
摘要(英) In recent years, the depletion of energy resources and the increasing awareness of environmental issues have driven the development of renewable and recyclable energy materials, making it a prevailing trend. Thermoelectric materials, capable of directly converting electrical energy into thermal energy and vice versa, have emerged as functional materials with significant potential in waste heat recovery. They possess desirable characteristics such as energy efficiency, zero carbon emissions, and low pollution, making them a subject of extensive research. However, relying on a single N-type thermoelectric material is insufficient. The formation of thermoelectric devices and modules requires the series connection of multiple pairs of N-type and P-type thermoelectric materials. Moreover, considering the utilization of thermoelectric modules in high-temperature environments, the bonding technology between thermoelectric block materials and electrodes, as well as the prevention of element diffusion, holds paramount importance.
The focus of this study is the N-type Mg2(SiSn) thermoelectric material. To enhance the production of thermoelectric (TE) blocks, we have refined the manufacturing process to increase the yield of Mn5Si3. Simultaneously, it is crucial to identify contact metals with low resistivity, high mechanical strength, excellent thermal stability, and minimal reactivity with the thermoelectric samples. These metals were bonded to the surface of the thermoelectric materials through cold pressing, followed by annealing to ensure reliable bonding. Additionally, a low-temperature annealing process was conducted after extended annealing to facilitate the attachment of various metals to the samples using solid-state diffusion bonding. Subsequently, electrical measurements and bonding strength tests were carried out. Based on the outcomes obtained from testing different contact metals, the optimal series connection method was determined by combining them with P-type MgAgSb using techniques such as spot welding and low-temperature annealing. Consequently, thermoelectric devices were fabricated, and their performance was evaluated through electrical measurements. Furthermore, thermoelectric modules were assembled for subsequent electrical assessments.
關鍵字(中) ★ 熱電材料
★ 熱電模組
★ 金屬電極
★ 鎂矽錫合金
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 熱電材料介紹 1
1-3 熱電模組架構 4
1-4 熱電效應實際應用 5
1-4-1 熱電致冷應用 5
1-4-2 熱電發電應用 6
1-5 研究動機與目的 12
第二章 熱電原理與實驗儀器 13
2-1 熱電效應概述 13
2-1-1 席貝克效應(Seebeck effect) 13
2-1-2 帕爾帖效應(Peltier effect) 15
2-1-3 湯姆森效應(Thomson effect) 16
2-1-4 熱電優值ZT(Figure of merit)與轉換效率(Conversion efficiency) 16
2-2 文獻回顧 18
2-2-1 鎂矽錫合金材料介紹 18
2-2-2 錳矽化合物介紹 21
2-2-3 金屬接觸與擴散阻障層材料介紹 22
2-2-4 鋁作為鎂矽錫合金之接面金屬 23
2-2-5 固液擴散接合製程 24
2-3 實驗儀器 25
2-3-1 電阻率量測 25
2-3-2 Seebeck係數量測 26
2-3-3 密度量測 27
2-3-4 熱擴散係數量測 28
2-3-5 比熱量測 29
2-3-6 熱導率 30
2-3-7 掃描式電子顯微鏡分析(SEM) 30
2-3-8 X射線繞射儀 31
2-3-9 模組輸出電性量測 32
第三章 實驗方法與製程 34
3-1 實驗前言 34
3-2 鎂矽錫塊材製作 35
3-2-1 N-type 矽粉摻雜 35
3-2-2 N-type Mn5Si3 粉末製作 36
3-2-3 鎂矽錫塊材製作 39
3-3 熱電材料之金屬接觸製作 40
3-4 熱電元件製作 41
3-5 熱電模組製作 42
第四章 結果討論 43
4-1 測試製程不同Mn5Si3之熱電試片特性 43
4-2 熱電試片與金屬薄片之電性結果 45
4-2-1 單層接觸金屬之電性 45
4-2-2 多層接觸金屬之電性結果 47
4-3 電極與焊料測試結果 51
4-3-1 中溫退火製程 51
4-3-2 低溫退火製程 53
4-4 Type改變之接觸金屬量測結果 55
4-5 熱電元件測試結果 57
4-6 熱電模組測試結果 59
第五章 結論與未來展望 67
參考文獻 69
參考文獻 [1] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11, p. 386, 1954.
[2] D. M. Rowe, CRC handbook of thermoelectrics. CRC press, 2018.
[3] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and Synergy in High-Efficiency Thermoelectric Materials," Adv Mater, vol. 29, no. 14, Apr 2017, doi: 10.1002/adma.201605884.
[4] 江明修,「脈衝雷射沉積高導電性之碲化鎵/碲週期排列奈米複合結構於熱電轉換之應用」,碩士,材料科學與工程學系,國立交通大學,新竹市,2012。[Online]. Available: https://hdl.handle.net/11296/834zp2
[5] M. Rull-Bravo, A. Moure, J. Fernández, and M. Martín-González, "Skutterudites as thermoelectric materials: revisited," Rsc Advances, vol. 5, no. 52, pp. 41653-41667, 2015.
[6] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg 2 Si 1− x Sn x solid solutions," Physical review letters, vol. 108, no. 16, p. 166601, 2012.
[7] T. Caillat, J.-P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3," J. Phys. Chem. Solids, vol. 58, no. 7, pp. 1119-1125, 1997.
[8] B. Yu et al., "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano letters, vol. 12, no. 4, pp. 2077-2082, 2012.
[9] A. F. May, E. Flage-Larsen, and G. J. Snyder, "Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4− z M z (M= Sb, Bi)," Physical Review B, vol. 81, no. 12, p. 125205, 2010.
[10] C. Fu et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature communications, vol. 6, no. 1, p. 8144, 2015.
[11] W. Liu, X. Yan, G. Chen, and Z. Ren, "Recent advances in thermoelectric nanocomposites," Nano Energy, vol. 1, no. 1, pp. 42-56, 2012, doi: 10.1016/j.nanoen.2011.10.001.
[12] L.-L. Liao, M.-J. Dai, C.-K. Liu, and K.-N. Chiang, "Thermo-electric finite element analysis and characteristic of thermoelectric generator with intermetallic compound," Microelectronic Engineering, vol. 120, pp. 194-199, 2014, doi: 10.1016/j.mee.2013.09.014.
[13] L. Shen, F. Xiao, H. Chen, and S. Wang, "Investigation of a novel thermoelectric radiant air-conditioning system," Energy and Buildings, vol. 59, pp. 123-132, 2013, doi: 10.1016/j.enbuild.2012.12.041.
[14] 宋柏毅,陳光耀和林育立,「熱電發電技術應用現況與發展」,燃燒季刊,no. 87,pp. 26-37,2014。
[15] H. Kaibe, T. Kajihara, S. Fujimoto, K. Makino, and H. Hachiuma, "Recovery of plant waste heat by a thermoelectric generating system," Komatsu Technical Report, vol. 57, no. 164, pp. 26-30, 2011.
[16] D. Crane, C. Koripella, and V. Jovovic, "Validating steady-state and transient modeling tools for high-power-density thermoelectric generators," Journal of electronic materials, vol. 41, pp. 1524-1534, 2012.
[17] D. Crane et al., "TEG on-vehicle performance and model validation and what it means for further TEG development," Journal of electronic materials, vol. 42, pp. 1582-1591, 2013.
[18] D. Kraemer et al., "High-performance flat-panel solar thermoelectric generators with high thermal concentration," Nature materials, vol. 10, no. 7, pp. 532-538, 2011.
[19] P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang, and M. Niino, "Design of a concentration solar thermoelectric generator," Journal of electronic materials, vol. 39, pp. 1522-1530, 2010.
[20] R. G. Lange and W. P. Carroll, "Review of recent advances of radioisotope power systems," Energy Conversion and Management, vol. 49, no. 3, pp. 393-401, 2008.
[21] 葉建弦,楊侑穎,汪俊延和林育立,「中溫鎂矽合金塊材之製程及其熱電性質」,燃燒季刊,no. 99,pp. 29-40,2017。
[22] T. M. Tritt, "Thermoelectric Phenomena, Materials, and Applications," Annual Review of Materials Research, vol. 41, no. 1, pp. 433-448, 2011, doi: 10.1146/annurev-matsci-062910-100453.
[23] M. Wehbe, J. Dgheim, and E. Sassine, "House electrical generation using thermoelectric cinder block: Case study on Lebanese hollow block," Sustainable Energy Technologies and Assessments, vol. 50, p. 101815, 2022.
[24] M. Thakkar, "A report on" Peltier (thermoelectric) cooling module, no. February, 2016.
[25] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Annual review of materials research, vol. 41, pp. 399-431, 2011.
[26] C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, "Decoupling interrelated parameters for designing high performance thermoelectric materials," Acc Chem Res, vol. 47, no. 4, pp. 1287-95, Apr 15 2014, doi: 10.1021/ar400290f.
[27] M. Søndergaard, M. Christensen, K. A. Borup, H. Yin, and B. B. Iversen, "Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4," Journal of Materials Science, vol. 48, no. 5, pp. 2002-2008, 2012, doi: 10.1007/s10853-012-6967-0.
[28] J.-Y. Jung and I.-H. Kim, "Synthesis and Thermoelectric Properties of n-Type Mg2Si," Electronic Materials Letters, vol. 6, no. 4, pp. 187-191, 2010, doi: 10.3365/eml.2010.12.187.
[29] Y. Hayatsu et al., "Fabrication of large sintered pellets of Sb-doped n-type Mg2Si using a plasma activated sintering method," Journal of Solid State Chemistry, vol. 193, pp. 161-165, 2012.
[30] T. Sakamoto et al., "Thermoelectric characteristics of a commercialized Mg 2 Si source doped with Al, Bi, Ag, and Cu," Journal of electronic materials, vol. 39, pp. 1708-1713, 2010.
[31] R. J. LaBotz, D. R. Mason, and D. F. O′Kane, "The thermoelectric properties of mixed crystals of Mg2Ge x Si1− x," Journal of the Electrochemical Society, vol. 110, no. 2, p. 127, 1963.
[32] J. Mao et al., "Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system," Acta Materialia, vol. 103, pp. 633-642, 2016.
[33] V. K. Zaitsev et al., "Highly effectiveMg2Si1−xSnxthermoelectrics," Physical Review B, vol. 74, no. 4, 2006, doi: 10.1103/PhysRevB.74.045207.
[34] W. Liu et al., "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions," Phys Rev Lett, vol. 108, no. 16, p. 166601, Apr 20 2012, doi: 10.1103/PhysRevLett.108.166601.
[35] X. J. Tan, W. Liu, H. J. Liu, J. Shi, X. F. Tang, and C. Uher, "Multiscale calculations of thermoelectric properties ofn-type Mg2Si1−xSnxsolid solutions," Physical Review B, vol. 85, no. 20, 2012, doi: 10.1103/PhysRevB.85.205212.
[36] X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, "Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping," Applied Physics Letters, vol. 103, no. 6, 2013, doi: 10.1063/1.4816971.
[37] W.-D. Liu et al., "Effectively restricting MnSi precipitates for simultaneously enhancing the Seebeck coefficient and electrical conductivity in higher manganese silicide," Journal of Materials Chemistry C, vol. 7, no. 24, pp. 7212-7218, 2019, doi: 10.1039/c9tc01937e.
[38] R. F. Luccas, G. Sánchez-Santolino, A. Correa-Orellana, F. J. Mompean, M. García-Hernández, and H. Suderow, "Magnetic phase diagram, magnetotransport and inverse magnetocaloric effect in the noncollinear antiferromagnet Mn5Si3," Journal of Magnetism and Magnetic Materials, vol. 489, 2019, doi: 10.1016/j.jmmm.2019.165451.
[39] 李文浩,贺跃辉和康建刚,「Mn-Si 金属间化合物多孔材料的制备」,中国有色金属学报,vol. 9,2018。
[40] 張友競,「中高溫熱電模組之擴散阻障層研究」,材料科學與工程學研究所,國立臺灣大學,2016年。
[41] S. A. Malik and N. Van Nong, "Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy," Materials Today: Proceedings, vol. 8, pp. 625-631, 2019.
[42] B. Zhang et al., "Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si," Journal of Alloys and Compounds, vol. 699, pp. 1134-1139, 2017.
[43] J. M. Park et al., "Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer," Journal of Alloys and Compounds, vol. 884, p. 161119, 2021.
[44] J. Camut et al., "Aluminum as promising electrode for Mg2(Si,Sn)-based thermoelectric devices," Materials Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.2021.100718.
[45] R. Zybala, K. Wojciechowski, M. Schmidt, and R. Mania, "Junctions and diffusion barriers for high temperature thermoelectric modules," Mater. Ceram. Ceram. Mater, vol. 62, pp. 481-485, 2010.
[46] 莊東漢,「擴散軟銲技術在電子封裝之應用」,電子月刊,vol. 52,pp. 118-125,1999。
[47] N. H. Pham et al., "Ni and Ag electrodes for magnesium silicide based thermoelectric generators," Materials Today Energy, vol. 11, pp. 97-105, 2019, doi: 10.1016/j.mtener.2018.10.016.
[48] S. Ayachi et al., "On the relevance of point defects for the selection of contacting electrodes: Ag as an example for Mg2(Si,Sn)-based thermoelectric generators," Materials Today Physics, vol. 16, 2021, doi: 10.1016/j.mtphys.2020.100309.
[49] 何匡哲,「N型鎂矽錫之接觸金屬研究及鎂矽錫/鎂銀銻熱電元件製作」,碩士,電機工程學系,國立中央大學,桃園縣,2022。[Online]. Available: https://hdl.handle.net/11296/q55fv8
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明