參考文獻 |
[1] Loizou, P. C. (1998). Mimicking the human ear. IEEE signal processing magazine, 15(5), 101-130.
[2] Zeng, F. G., Rebscher, S., Harrison, W., Sun, X., & Feng, H. (2008). Cochlear implants: System design, integration, and evaluation. IEEE Reviews in Biomedical Engineering, 1, 115-142.
[3] Clark, G. M. (2008). Personal reflections on the multichannel cochlear implant and a view. Journal of Rehabilitation Research & Development, 45(58), 651-694.
[4] Clark, G. M. (2015). The multichannel cochlear implant: Multidisciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hearing Research, 322, 4-13.
[5] Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: Current designs and future possibilities. Journal of Rehabilitation Research and Development, 45(5), 695-730.
[6] Wilson, B. S. (2019). The remarkable cochlear implant and possibilities for the next large step forward. Acoustics Today, 15(1), 53-61.
[7] Carlyon, R. P., & Goehring, T. (2021). Cochlear implant research and development in the twenty-first century: A critical update. Journal of the Association for Research in Otolaryngology, 22(5), 481-508.
[8] Zeng, F. G. (2022). Celebrating the one millionth cochlear implant. JASA Express Letters, 2(7), 077201.
[9] Morton, C. C., & Nance, W. E. (2006). Newborn hearing screening—a silent revolution. New England Journal of Medicine, 354(20), 2151-2164.
[10] Lin, H.-C., Shu, M.-T., Chang, K.-C., & Bruna, S. M. (2002). A universal newborn hearing screening program in Taiwan. International Journal of Pediatric Otorhinolaryngology, 63(3), 209-218
[11] Lin, H.-C., Chang, H.-W., & Hsieh, W.-H. (2018). The past, present and future of universal newborn hearing screening in Taiwan. Journal of Early Hearing Detection and Intervention, 3(1), 54-56.
[12] Percy-Smith, L., Tønning, T. L., Josvassen, J. L., Mikkelsen, J. H., Nissen, L., Dieleman, E., ... & Cayé-Thomasen, P. (2018). Auditory verbal habilitation is associated with improved outcome for children with cochlear implant. Cochlear Implants International, 19(1), 38-45.
[13] Kral, A., Dorman, M. F., & Wilson, B. S. (2019). Neuronal development of hearing and language: Cochlear implants and critical periods. Annual Review of Neuroscience, 42, 47-65.
[14] Wilson, B. S., Finley, C. C., Lawson, D. T., Wolford, R. D., Eddington, D. K., & Rabinowitz, W. M. (1991). Better speech recognition with cochlear implants. Nature, 352(6332), 236-238.
[15] Vandali, A. E., Whitford, L. A., Plant, K. L., & Clark, G. M. (2000). Speech perception as a function of electrical stimulation rate: Using the Nucleus 24 cochlear implant system. Ear and Hearing, 21(6), 608-624.
[16] Taddei, A., López, E. A., & Reyes, R. A. R. (2021). Children with hearing disabilities during the pandemic: Challenges and perspectives of inclusion. Education Sciences & Society-Open Access, 12(1), 178–196.
[17] Perea Pérez, F., Hartley, D. E., Kitterick, P. T., & Wiggins, I. M. (2022). Perceived listening difficulties of adult cochlear implant users under measures introduced to combat the spread of COVID-19. Trends in Hearing, 26, 1–22.
[18] Wouters, J., McDermott, H. J., & Francart, T. (2015). Sound coding in cochlear implants: From electric pulses to hearing. IEEE Signal Processing Magazine, 32(2), 67-80.
[19] Dhanasingh, A., & Jolly, C. (2017). An overview of cochlear implant electrode array designs. Hearing Research, 356, 93-103.
[20] Jeschke, M., & Moser, T. (2015). Considering optogenetic stimulation for cochlear implants. Hearing Research, 322, 224-234.
[21] Dombrowski, T., Rankovic, V., & Moser, T. (2019). Toward the optical cochlear implant. Cold Spring Harbor Perspectives in Medicine, 9(8), a033225.
[22] Revuelta, M., Santaolalla, F., Arteaga, O., Alvarez, A., SánchezdelRey, A., & Hilario, E. (2017). Recent advances in cochlear hair cell regeneration—a promising opportunity for the treatment of agerelated hearing loss. Ageing research reviews, 36, 149-155.
[23] Chen, Y., Zhang, S., Chai, R., & Li, H. (2019). Hair cell regeneration. In H. Li & R. Chai (Eds.), Hearing Loss: Mechanisms, Prevention and Cure, 1-16, Springer, Singapore.
[24] Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303-304.
[25] Dorman, M. F., Loizou, P. C., Spahr, A. J., & Maloff, E. (2002). A comparison of the speech understanding provided by acoustic models of fixedchannel and channelpicking signal processors for cochlear implants. Journal of Speech, Language, and Hearing Research, 45(4), 783-788.
[26] Moberly, A. C., Doerfer, K., & Harris, M. S. (2019). Does Cochlear implantation improve cognitive function?. The Laryngoscope, 129(10), 2208-2209.
[27] Almomani, F., AlMomani, M. O., Garadat, S., Alqudah, S., Kassab, M., Hamadneh, S., ... & Gans, R. (2021). Cognitive functioning in Deaf children using Cochlear implants. BMC pediatrics, 21(1), 1-13.
[28] McRackan, T. R., Bauschard, M., Hatch, J. L., FrankoTobin, E., Droghini, H. R., Nguyen,
S. A., & Dubno, J. R. (2018). Meta-analysis of quality-of-life improvement after cochlear implantation and associations with speech recognition abilities. The Laryngoscope, 128(4), 982-990.
[29] Haukedal, C. L., Lyxell, B., & Wie, O. B. (2020). Healthrelated quality of life with cochlear implants: The children’s perspective. Ear and Hearing, 41(2), 330343.
[30] Bond, M., Mealing, S., Anderson, R., Elston, J., Weiner, G., Taylor, R. S., ... & Stein, K. (2009). The effectiveness and cost-effectiveness of cochlear implants for severe to profound deafness in children and adults: A systematic review and economic model. Health Technology Assessment, 13(44), 1-330.
[31] Huang, E. H.-H., Wu, C.-M., & Lin, H.-C. (2019, Nov. 28) Simulation of three auditory physiology based CI sound coding strategies with Mandarin speech. Proc. 12th Asia Pacific Symposium on Cochlear Implant and Related Sciences (APSCI2019). Tokyo, Japan, pp. O2-2.
[32] Huang, E. H.-H., Wu, C.-M., & Lin, H.-C. (2021). Combination and comparison of sound coding strategies using cochlear implant simulation with Mandarin speech. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 2407-2416.
[33] Huang, E. H.-H., Hung, K.-H., Tsao, Y., & Wu, C.-M. (2019, Nov. 28) ElectrodeNet–Artificial intelligence based sound coding strategy for cochlear implants. Proc. 12th Asia Pacific Symposium on Cochlear Implant and Related Sciences (APSCI2019). Tokyo, Japan, pp. O2-5.
[34] Huang, E. H.-H., Chao, R., Tsao, Y., & Wu, C.-M. (2023). ElectrodeNet–A Deep Learning Based Sound Coding Strategy for Cochlear Implants. IEEE Transactions on Cognitive and Developmental Systems, Accepted, May 2, 2023.
[35] Henry, F., Glavin, M., & Jones, E. (2023). Noise reduction in cochlear implant signal processing: A review and recent developments. IEEE reviews in biomedical engineering, 16, 319331.
[36] Carlson, M. L., Neff, B. A., Link, M. J., Lane, J. I., Watson, R. E., McGee, K. P., ... & Driscoll, C. L. (2015). Magnetic resonance imaging with cochlear implant magnet in place: Safety and imaging quality. Otology & Neurotology, 36(6), 965971.
[37] Cochlear Implant HELP. (2022, December 12) Cochlear Implant Comparison Chart v12.3a, accessed June 2, 2023, from https://cochlearimplanthelp.com/cochlear-implant-comparison-chart/
[38] Pickles, J. (2012). An introduction to the physiology of hearing (4th ed.). Emerald Group Publishing
[39] Úlehlová, L., Voldřich, L., & Janisch, R. (1987). Correlative study of sensory cell density and cochlear length in humans. Hearing research, 28(23), 149-151.
[40] Hakizimana, P., & Fridberger, A. (2021). Inner hair cell stereocilia are embedded in the tectorial membrane. Nature Communications, 12(1), 2604.
[41] LopezPoveda, E. A. (2018). Olivocochlear efferents in animals and humans: From anatomy to clinical relevance. Frontiers in Neurology, 9, 197.
[42] Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences, 6(1), 37-46.
[43] Swanson, B. A. (2008). Pitch perception with cochlear implants. Ph.D. thesis. University of Melbourne, Australia.
[44] Saremi, A., Beutelmann, R., Dietz, M., Ashida, G., Kretzberg, J., & Verhulst, S. (2016). A comparative study of seven human cochlear filter models. The Journal of the Acoustical Society of America, 140(3), 1618-1634.
[45] Baby, D., Van Den Broucke, A., & Verhulst, S. (2021). A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications. Nature Machine Intelligence, 3(2), 134143.
[46] Vecchi, A. O., Varnet, L., Carney, L. H., Dau, T., Bruce, I. C., Verhulst, S., & Majdak, P. (2022). A comparative study of eight human auditory models of monaural processing. Acta Acustica, 6, 17.
[47] Majdak, P., Hollomey, C., & Baumgartner, R. (2022). AMT 1. x: A toolbox for reproducible research in auditory modeling. Acta Acustica, 6, 19.
[48] Seligman, P. M., Patrick, J. F., Tong, Y. C., Clark, G. M., Dowell, R. C., & Crosby, P. A. (1984). A signal processor for a multiple-electrode hearing prosthesis. Acta Oto-Laryngologica, 98(sup411), 135-139.
[49] Blamey, P. J., Dowell, R. C., Clark, G. M., & Seligman, P. M. (1987). Acoustic parameters measured by a formant-estimating speech processor for a multiple-channel cochlear implant. The Journal of the Acoustical Society of America, 82(1), 38-47.
[50] Patrick, J. F., & Clark, G. M. (1991). The Nucleus 22channel cochlear implant system. Ear Hear, 12(4), 35-95.
[51] Eddington, D. K. (1980). Speech discrimination in deaf subjects with cochlear implants.
The Journal of the Acoustical Society of America, 68(3), 885891.
[52] Merzenich, M. M. (1985). UCSF cochlear implant device. In: R.A. Schindler and M.M. Merzenich (Eds.), Cochlear Implants, Raven Press, New York, 121-129.
[53] Kessler, D. K. (1999). The Clarion® Multi-strategy™ cochlear implant. Annals of Otology, Rhinology & Laryngology, 108, 8-16.
[54] Nogueira, W., Büchner, A., Lenarz, T., & Edler, B. (2005). A psychoacoustic "NofM" type speech coding strategy for cochlear implants. EURASIP Journal on Advances in Signal Processing, 2005(18), 3044-3059.
[55] Riss, D., Hamzavi, J. S., Selberherr, A., Kaider, A., Blineder, M., Starlinger, V., ... & Arnoldner, C. (2011). Envelope versus fine structure speech coding strategy: A crossover study. Otology & Neurotology, 32(7), 1094-1101.
[56] Brendel, M., Buechner, A., Krueger, B., Frohne-Buechner, C., & Lenarz, T. (2008). Evaluation of the Harmony soundprocessor in combination with the speech coding strategy HiRes 120. Otology & Neurotology, 29(2), 199-202.
[57] Firszt, J. B., Holden, L. K., Reeder, R. M., & Skinner, M. W. (2009). Speech recognition in cochlear implant recipients: Comparison of standard HiRes and HiRes 120 sound processing. Otology & Neurotology, 30(2), 146.
[58] Reynolds, S. M., & Gifford, R. H. (2019). Effect of signal processing strategy and stimulation type on speech and auditory perception in adult cochlear implant users. International Journal of Audiology, 58(6), 363372.
[59] Schramm, D., Chen, J., Morris, D. P., Shoman, N., Philippon, D., CayéThomasen, P., ... & Gnansia, D. (2020). Clinical efficiency and safety of the Oticon Medical Neuro cochlear implant system: A multicenter prospective longitudinal study. Expert Review of Medical Devices, 17(9), 959967.
[60] Swanson, B., Van Baelen, E., Janssens, M., Goorevich, M., Nygard, T., & Van Herck, K. (2007). Cochlear implant signal processing ICs. In IEEE Custom Integrated Circuits Conference (CICC) 437-442.
[61] Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-Time Signal Processing. (2nd ed.) Prentice-Hall.
[62] Nie, K., Stickney, G., & Zeng, F. G. (2005). Encoding frequency modulation to improve cochlear implant performance in noise. IEEE transactions on biomedical engineering, 52(1), 64-73.
[63] Laneau, J., Wouters, J., & Moonen, M. (2006). Improved music perception with explicit pitch coding in cochlear implants. Audiology and Neurotology, 11(1), 38-52.
[64] Milczynski, M., Wouters, J., & Van Wieringen, A. (2009). Improved fundamental frequency coding in cochlear implant signal processing. The Journal of the Acoustical Society of America, 125(4), 2260-2271.
[65] Milczynski, M., Chang, J. E., Wouters, J., & Van Wieringen, A. (2012). Perception of Mandarin Chinese with cochlear implants using enhanced temporal pitch cues. Hearing Research, 285(12), 1-12.
[66] Francart, T., Osses, A., & Wouters, J. (2015). Speech perception with F0mod, a cochlear implant pitch coding strategy. International Journal of Audiology, 54(6), 424-432.
[67] Vandali, A. E., & van Hoesel, R. J. (2011). Development of a temporal fundamental frequency coding strategy for cochlear implants. The Journal of the Acoustical Society of America, 129(6), 4023-4036.
[68] Vandali, A. E., Dawson, P. W., & Arora, K. (2017). Results using the OPAL strategy in Mandarin speaking cochlear implant recipients. International Journal of Audiology, 56(sup2), S74-S85.
[69] Vandali, A., Dawson, P., Au, A., Yu, Y., Brown, M., Goorevich, M., & Cowan, R. (2019). Evaluation of the optimized pitch and language strategy in cochlear implant recipients. Ear and Hearing, 40(3), 555-567.
[70] Ping, L., Wang, N., Tang, G., Lu, T., Yin, L., Tu, W., & Fu, Q. J. (2017). Implementation and preliminary evaluation of ′C-tone′: A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users. Cochlear Implants International, 18(5), 240-249.
[71] Meng, Q., Zheng, N., & Li, X. (2015). A temporal limits encoder for cochlear implants. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5863-5867.
[72] Meng, Q., Zheng, N., & Li, X. (2016). Mandarin speech-in-noise and tone recognition using vocoder simulations of the temporal limits encoder for cochlear implants. The Journal of the Acoustical Society of America, 139(1), 301310.
[73] Kan, A., & Meng, Q. (2021). The temporal limits encoder as a sound coding strategy for bilateral cochlear implants. IEEE/ACM transactions on audio, speech, and language processing, 29, 265-273.
[74] Zhou, H., Kan, A., Yu, G., Guo, Z., Zheng, N., & Meng, Q. (2022). Pitch perception with the temporal limits encoder for cochlear implants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2528-2539.
[75] Ali, H., Hong, F., Hansen, J. H., & Tobey, E. (2014). Improving channel selection of sound coding algorithms in cochlear implants. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 905-909.
[76] Saba, J. N., Ali, H., & Hansen, J. H. (2018). Formant priority channel selection for an
"n-of-m" sound processing strategy for cochlear implants. The Journal of the Acoustical Society of America, 144(6), 3371-3380.
[77] Saba, J. N., Ali, H., & Hansen, J. H. (2023). The effects of estimation accuracy, estimation approach, and number of selected channels using formant-priority channel selection for an "n-of-m" sound processing strategy for cochlear implants. The Journal of the Acoustical
Society of America, 153(5), 3100-3100.
[78] Li, X., Nie, K., Imennov, N. S., Rubinstein, J. T., & Atlas, L. E. (2013). Improved perception of music with a harmonic based algorithm for cochlear implants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(4), 684-694.
[79] Geurts, L., & Wouters, J. (1999). Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. The Journal of the Acoustical Society of America, 105(4), 2476-2484.
[80] Koning, R., & Wouters, J. (2012). The potential of onset enhancement for increased speech intelligibility in auditory prostheses. The Journal of the Acoustical Society of America, 132(4), 2569-2581.
[81] Koning, R., & Wouters, J. (2016). Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users. Hearing Research, 342, 13-22.
[82] Nogueira, W., Rode, T., & Büchner, A. (2016). Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants. The Journal of the Acoustical Society of America, 139(2), 728-739.
[83] Lai, W. K., Dillier, N., & Killian, M. (2018). A neural excitability based coding strategy for cochlear implants. Journal of Biomedical Science and Engineering, 11(07), 159181.
[84] Tabibi, S., Kegel, A., Lai, W. K., & Dillier, N. (2020). A bioinspired coding (BIC) strategy for cochlear implants. Hearing Research, 388, 107885.
[85] LopezPoveda, E. A., EustaquioMartín, A., Stohl, J. S., Wolford, R. D., Schatzer, R., & Wilson, B. S. (2016). A binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing, 37(3), e138.
[86] LopezPoveda, E. A., & EustaquioMartín, A. (2018). Objective speech transmission improvements with a binaural cochlear implant sound-coding strategy inspired by the contralateral medial olivocochlear reflex. The Journal of the Acoustical Society of America, 143(4), 2217-2231.
[87] LopezPoveda, E. A., EustaquioMartín, A., Fumero, M. J., Gorospe, J. M., López, R. P., Revilla, M. A. G., ... & Stohl, J. S. (2020). Speech-in-noise recognition with more realistic implementations of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Ear and Hearing, 41(6), 1492.
[88] Meddis, R., Clark, N.R., Lecluyse, W., and Jürgens, T. (2013). BioAid-Ein biologisch inspiriertes hörgerät (BioAidA biologically inspired hearing aid),"Zeitschrift der Audiologie/Audiological Acoustics, 52, 148-152.
[89] Jürgens, T., Clark, N. R., Lecluyse, W., & Meddis, R. (2016). Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing. International Journal of Audiology, 55(6), 346-357.
[90] Langner, F., & Jürgens, T. (2016). Forward-masked frequency selectivity improvements in simulated and actual cochlear implant users using a preprocessing algorithm. Trends in Hearing, 20, 1-14.
[91] Clark, N. R., Lecluyse, W., & Jürgens, T. (2018). Analysis of compressive properties of the BioAid hearing aid algorithm. International Journal of Audiology, 57(sup3), S130-S138.
[92] Ernst, S. M., Kortlang, S., Grimm, G., Bisitz, T., Kollmeier, B., & Ewert, S. D. (2018). Binaural model-based dynamic-range compression. International Journal of Audiology, 57(sup3), S31-S42.
[93] Lopez-Poveda, E. A., & Meddis, R. (2001). A human nonlinear cochlear filterbank. The Journal of the Acoustical Society of America, 110(6), 3107-3118.
[94] Clark, N. (2012) The biologically inspired hearing aid, accessed June 6, 2023, from http:// bioaid.org.uk/
[95] Moore, B. C., & Carlyon, R. P. (2005). Perception of pitch by people with cochlear hearing loss and by cochlear implant users. Pitch: Neural coding and perception, 234–277. Springer.
[96] Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd Edition). Pearson.
[97] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354-359.
[98] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pretraining.
[99] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[100] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[101] Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In Proceedings of the 10th IFIP Conference, New York City, (pp. 762-770).
[102] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366.
[103] Bolner, F., Goehring, T., Monaghan, J., Van Dijk, B., Wouters, J., & Bleeck, S. (2016). Speech enhancement based on neural networks applied to cochlear implant coding strategies. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6520-6524).
[104] Goehring, T., Bolner, F., Monaghan, J. J., Van Dijk, B., Zarowski, A., & Bleeck, S. (2017). Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users. Hearing Research, 344, 183-194.
[105] Lai, Y. H., Chen, F., Wang, S. S., Lu, X., Tsao, Y., & Lee, C. H. (2017). A deep denoising autoencoder approach to improving the intelligibility of vocoded speech in cochlear implant simulation. IEEE Transactions on Biomedical Engineering, 64(7), 1568-1578.
[106] Lai, Y. H., Tsao, Y., Lu, X., Chen, F., Su, Y. T., Chen, K. C., ... & Lee, C. H. (2018). Deep
learning–based noise reduction approach to improve speech intelligibility for cochlear implant recipients. Ear and Hearing, 39(4), 795-809.
[107] LeCun, Y. (1989). Generalization and network design strategies. Technical Report CRG-TR894, 1–19.
[108] Mamun, N., Khorram, S., & Hansen, J. H. (2019). Convolutional neural network-based speech enhancement for cochlear implant recipients. In Interspeech, pp. 4265–4269.
[109] Wang, N. Y. H., Wang, H. L. S., Wang, T. W., Fu, S. W., Lu, X., Wang, H. M., & Tsao, Y. (2021). Improving the intelligibility of speech for simulated electric and acoustic stimulation using fully convolutional neural networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 184-195.
[110] Tseng, R. Y., Wang, T. W., Fu, S. W., Lee, C. Y., & Tsao, Y. (2020). A study of joint effect on denoising techniques and visual cues to improve speech intelligibility in cochlear implant simulation. IEEE Transactions on Cognitive and Developmental Systems, 13(4), 984-994.
[111] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
Hochreiter, S., & Schmidhuber, J. (1997). Long shortterm memory. Neural Computation, 9(8), 1735-1780.
[113] Nogueira, W., Gajecki, T., Krüger, B., Janer Mestres, J., & Büchner, A. (2016). Development of a sound coding strategy based on a deep recurrent neural network for monaural source separation in cochlear implants. In Proc. 12th ITG Conference on Speech Communication.
[114] Goehring, T., Keshavarzi, M., Carlyon, R. P., & Moore, B. C. (2019). Using recurrent neural networks to improve the perception of speech in nonstationary noise by people with cochlear implants. The Journal of the Acoustical Society of America, 146(1), 705-718.
[115] Chu, K., Collins, L., & Mainsah, B. (2021). A causal deep learning framework for classifying phonemes in cochlear implants. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6498-6502.
[116] Lesica, N. A., Mehta, N., Manjaly, J. G., Deng, L., Wilson, B. S., & Zeng, F. G. (2021). Harnessing the power of artificial intelligence to transform hearing healthcare and research. Nature Machine Intelligence, 3(10), 840-849.
[117] Crowson, M. G., Lin, V., Chen, J. M., & Chan, T. C. (2020). Machine learning and cochlear implantation—a structured review of opportunities and challenges. Otology & Neurotology, 41(1), e36-e45.
[118] GuerraJiménez, G., De Miguel, Á. R., González, J. C. F., Barreiro, S. B., Plasencia, D. P., & Macías, Á. R. (2016). Cochlear implant evaluation: Prognosis estimation by data mining system. The Journal of International Advanced Otology, 12(1), 1-7.
[119] Gao, X., Grayden, D. B., & McDonnell, M. D. (2016). Modeling electrode place discrimination in cochlear implant stimulation. IEEE Transactions on Biomedical Engineering, 64(9), 22192229.
[120] Pile, J., Wanna, G. B., & Simaan, N. (2017). Robotassisted perception augmentation for online detection of insertion failure during cochlear implant surgery. Robotica, 1598-1615.
[121] Meeuws, M., Pascoal, D., Bermejo, I., Artaso, M., De Ceulaer, G., & Govaerts, P. J. (2017). Computer-assisted CI fitting: Is the learning capacity of the intelligent agent FOX beneficial for speech understanding?. Cochlear Implants International, 18(4), 198-206.
[122] Desmond, J. M., Collins, L. M., & Throckmorton, C. S. (2013). Using channelspecific statistical models to detect reverberation in cochlear implant stimuli. The Journal of the Acoustical Society of America, 134(2), 1112-1120.
Chu, K., Throckmorton, C., Collins, L., & Mainsah, B. (2018). Using machine learning to mitigate the effects of reverberation and noise in cochlear implants. In Proceedings of Meetings on Acoustics 33(1), 1–13.
[124] Pons, J., Janer, J., Rode, T., & Nogueira, W. (2016). Remixing music using source separation algorithms to improve the musical experience of cochlear implant users. The Journal of the Acoustical Society of America, 140(6), 4338-4349.
[125] Gajęcki, T., & Nogueira, W. (2018). Deep learning models to remix music for cochlear implant users. The Journal of the Acoustical Society of America, 143(6), 36023615.
[126] Nogueira, W., Nagathil, A., & Martin, R. (2019). Making music more accessible for cochlear implant listeners: Recent developments. IEEE Signal Processing Magazine, 36(1), 115-127.
[127] Tahmasebi, S., Gajȩcki, T., & Nogueira, W. (2020). Design and evaluation of a realtime audio source separation algorithm to remix music for cochlear implant users. Frontiers in Neuroscience, 14, 434.
[128] Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S., & Deledalle, C. A. (2019). Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society of America, 146(5), 3590-3628.
[129] Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S. Y., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 206-219.
[130] Wang, D. (2017). Deep learning reinvents the hearing aid. IEEE spectrum, 54(3), 32-37.
Beck, D. (2021). Hearing, listening and deep neural networks in hearing aids. Journal of Otolaryngology, 13(1), 58.
[132] Vandali, A. E., Sucher, C., Tsang, D. J., McKay, C. M., Chew, J. W., & McDermott,
H. J. (2005). Pitch ranking ability of cochlear implant recipients: A comparison of soundprocessing strategies. The Journal of the Acoustical Society of America, 117(5), 31263138.
[133] Morton, K. D., Torrione Jr, P. A., Throckmorton, C. S., & Collins, L. M. (2008). Mandarin Chinese tone identification in cochlear implants: Predictions from acoustic models. Hearing Research, 244(12), 6676.
[134] Swanson, B., & Mauch, H. (2006). Nucleus Matlab Toolbox 4.20 software user manual, Cochlear Ltd, Lane Cove NSW, Australia.
[135] Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML (Vol. 30, No. 1, p. 3).
[136] Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proc. ICLR, May 2015.
[137] PyTorch. (2023) TORCH.TOPK, accessed June 6, 2023, from https://pytorch.org/docs/ stable/generated/torch.topk.html
[138] Wu, C.-M., Huang, K.-Y., & Lin, H.-C. (2009). Effects of channel number, stimulation rate, and electroacoustic stimulation of cochlear implant simulation on Chinese speech recognition in noise. Proc. 7th Asia Pacific Symposium on Cochlear Implant and Related Sciences (APSCI2009). Singapore, pp. RS2B7.
[139] Wong, L. L., Soli, S. D., Liu, S., Han, N., & Huang, M. W. (2007). Development of the Mandarin hearing in noise test (MHINT). Ear and Hearing, 28(2), 70S-74S.
[140] Yang, H.-M., & Wu, J.-L. (2005). Mandarin lexical neighborhood test (MLNT) for pre school children: Development of test and its validation. Journal of Taiwan Otolaryngology Head and Neck Surgery, 40, 1-12.
[141] Nissen, S. L., Harris, R. W., & Dukes, A. (2008). Word recognition materials for native speakers of Taiwan Mandarin. American Journal of Audiology, 17(1), 6879.
[142] Nissen, S. L., Harris, R. W., & Slade, K. B. (2007). Development of speech reception threshold materials for speakers of Taiwan Mandarin. International Journal of Audiology, 46(8), 449-458.
[143] Cheng, W.-J. (2006). Effects of speech recognition to Chinese-speaking cochlear implant patients combined with acoustic hearing. Master’s thesis. National Central University, Taiwan.
[144] Dong, S.-H. (2007). Modeling advanced combination encoder combined acoustic hearing for Chinese speaking patients using cochlear implants. Master’s thesis. National Central University, Taiwan.
[145] Huang, G.-Y. (2009). Effects of channel number, stimulation rate, and electroacoustic stimulation of cochlear implant simulation on Chinese speech recognition in noise. Master’s thesis. National Central University, Taiwan.
[146] Tsai, W.-L. (2011). Preprocessing with microphone array and noise reduction for electroacoustic stimulation of cochlear implant simulation on Chinese speech recognition in noise. Master’s thesis. National Central University, Taiwan.
[147] Nisa, H. K. (2021). Speech dereverberation based on HELM framework for cochlear implant coding strategy. Master’s thesis. National Central University, Taiwan.
[148] Pratiwi, E. W. (2021). Temporal and spectral analysis of children song perception with different simulated cochlear implant coding strategies. Master’s thesis. National Central University, Taiwan.
[149] Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., & Dahlgren, N. L. (1993). DARPA TIMIT acoustic-phonetic continuous speech corpus CDROM NASA STI/Recon Technical Report N, vol. 93, no. 27403.
[150] Karpagavalli, S., & Chandra, E. (2016). A review on automatic speech recognition architecture and approaches. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(4), 393404.
[151] Pandey, A., & Wang, D. (2020). On cross-corpus generalization of deep learning based speech enhancement. IEEE/ACM transactions on audio, speech, and language processing, 28, 24892499.
[152] Monson, B. B., & Buss, E. (2022). On the use of the TIMIT, QuickSIN, NU-6, and other widely used bandlimited speech materials for speech perception experiments. The Journal of the Acoustical Society of America, 152(3), 16391645.
[153] King, S. E., Firszt, J. B., Reeder, R. M., Holden, L. K., & Strube, M. (2012). Evaluation of TIMIT sentence list equivalency with adult cochlear implant recipients. Journal of the American Academy of Audiology, 23(05), 313-331.
[154] Gifford, R. H., Loiselle, L., Natale, S., Sheffield, S. W., Sunderhaus, L. W., S. Dietrich, M., & Dorman, M. F. (2018). Speech understanding in noise for adults with cochlear implants: Effects of hearing configuration, source location certainty, and head movement. Journal of Speech, Language, and Hearing Research, 61(5), 1306-1321.
[155] Chen, F., & Hu, Y. (2019). Segmental contributions to cochlear implant speech perception. Speech Communication, 106, 79-84.
[156] Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25–45.
[157] Spearman, C. (1904). The Proof and Measurement of Association between Two Things.
The American Journal of Psychology, 15(1), 72–101.
[158] Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617628.
[159] Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish journal of emergency medicine, 18(3), 91-93.
[160] Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2011). An algorithm for intelligibility prediction of time–frequency weighted noisy speech. IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 2125-2136.
[161] Holube, I., & Kollmeier, B. (1996). Speech intelligibility prediction in hearing‐impaired listeners based on a psychoacoustically motivated perception model. The Journal of the Acoustical Society of America, 100(3), 1703-1716.
[162] Goldsworthy, R. L., & Greenberg, J. E. (2004). Analysis of speech-based speech transmission index methods with implications for nonlinear operations. The Journal of the Acoustical Society of America, 116(6), 3679-3689.
[163] Chen, F., & Loizou, P. C. (2011). Predicting the intelligibility of vocoded and wideband Mandarin Chinese. The Journal of the Acoustical Society of America, 129(5), 3281-3290.
[164] Santos, J. F., Cosentino, S., Hazrati, O., Loizou, P. C., & Falk, T. H. (2013). Objective speech intelligibility measurement for cochlear implant users in complex listening environments. Speech Communication, 55(78), 815-824.
[165] Falk, T. H., Parsa, V., Santos, J. F., Arehart, K., Hazrati, O., Huber, R., ... & Scollie,
S. (2015). Objective quality and intelligibility prediction for users of assistive listening devices: Advantages and limitations of existing tools. IEEE signal processing magazine, 32(2), 114-124.
[166] Watkins, G. D., Swanson, B. A., & Suaning, G. J. (2018). An evaluation of output signal to noise ratio as a predictor of cochlear implant speech intelligibility. Ear and Hearing, 39(5), 958-968.
[167] Kates, J. M., & Arehart, K. H. (2015). The hearingaid audio quality index (HAAQI).
IEEE/ACM transactions on audio, speech, and language processing, 24(2), 354-365.
[168] Tahmasebi, S., SegoviaMartinez, M., & Nogueira, W. (2023). Optimization of Sound Coding Strategies to Make Singing Music More Accessible for Cochlear Implant Users. Trends in Hearing, 27, 118.
[169] Hu, H., Lutman, M. E., Ewert, S. D., Li, G., & Bleeck, S. (2015). Sparse nonnegative matrix factorization strategy for cochlear implants. Trends in Hearing, 19, 1–16.
[170] Mourão, G. L., Costa, M. H., & Paul, S. (2020). Speech intelligibility for cochlear implant users with the MMSE noise-reduction time-frequency mask. Biomedical Signal Processing and Control, 60, 101982.
[171] Langner, F., Büchner, A., & Nogueira, W. (2020). Evaluation of an adaptive dynamic compensation system in cochlear implant listeners. Trends in Hearing, 24, 1–13.
[172] Loizou, P. C., & Poroy, O. (2001). Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners. The Journal of the Acoustical Society of America, 110(3), 1619-1627.
[173] Moore, B. C. (2003). Speech processing for the hearing-impaired: successes, failures, and implications for speech mechanisms. Speech communication, 41(1), 81-91.
[174] Green, T., Faulkner, A., & Rosen, S. (2002). Spectral and temporal cues to pitch in noise excited vocoder simulations of continuousinterleavedsampling cochlear implants. The Journal of the Acoustical Society of America, 112(5), 2155-2164.
[175] Laneau, J., Moonen, M., & Wouters, J. (2006). Factors affecting the use of noiseband vocoders as acoustic models for pitch perception in cochlear implants. The Journal of the Acoustical Society of America, 119(1), 491-506.
[176] Price, M., Glass, J., & Chandrakasan, A. P. (2017, February). 14.4 A scalable speech recognizer with deepneuralnetwork acoustic models and voiceactivated power gating. In IEEE International SolidState Circuits Conference (ISSCC) (pp. 244-245)
[177] Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 16551674.
[178] Litovsky, R. Y., Goupell, M. J., Kan, A., & Landsberger, D. M. (2017). Use of research interfaces for psychophysical studies with cochlearimplant users. Trends in Hearing, 21, 1–15.
[179] Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99120.
[180] Wasmann, J. W. A., Lanting, C. P., Huinck, W. J., Mylanus, E. A., van der Laak, J. W., Govaerts, P. J., ... & Barbour, D. L. (2021). Computational audiology: New approaches to advance hearing health care in the digital age. Ear and Hearing, 42(6), 1499-1507.
[181] Sadjadi, S. O., & Hansen, J. H. (2010). Assessment of singlechannel speech enhancement techniques for speaker identification under mismatched conditions. In INTERSPEECH (pp. 2138–2142).
[182] Fujimoto, M., & Kawai, H. (2019). One-pass single-channel noisy speech recognition using a combination of noisy and enhanced features. In INTERSPEECH (pp. 486-490).
[183] Sato, H., Ochiai, T., Delcroix, M., Kinoshita, K., Kamo, N., & Moriya, T. (2022). Learning to enhance or not: Neural networkbased switching of enhanced and observed signals for overlapping speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6287-6291).
[184] Kaufmann, T. B., Foroogozar, M., Liss, J., & Berisha, V. (2023). Requirements for Mass Adoption of Assistive Listening Technology by the General Public. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). |