博碩士論文 110223002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.133.127.147
姓名 陳柏均(Po-Chun Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以染料HBC-23為主敏化劑並以共敏化劑或共吸附劑組裝太陽能電池元件之組裝優化之研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-25以後開放)
摘要(中) 本研究針對實驗室所開發之釕錯合物錯合物染料 HBC-23 進行元件組裝條件優化,並使用紫質染料 YD-2 或本實驗室合成之染料BTI-7/POEt/JIA-SQ-1/DUY-1 做為共敏化劑,以提高所組裝電池的效率及穩定性。本研究也使用共吸附劑 CDCA 或後吸附劑 PVA、OPA、TMEA-TMOS、TEOS 等方法來組裝元件。結果顯示只以HBC-23 為敏化劑所組裝之元件的最高效率為 8.29%,與 HBC-23 搭配最良好的共敏化劑為 YD-2,以 HBC-23 為主敏化劑 YD-2 為共敏化劑所組裝之電池最高效率為 7.95%。電池之 IPCE 光譜顯示當主敏化劑為 HBC-23,共敏化劑為 YD-2 之電池在 650 nm ~ 700 nm 處之IPCE 值最高上升了約 15%,且主敏化劑為 HBC-23 共敏化劑為 YD2 所組裝之電池長時間穩定性較只以 HBC-23 為敏化劑所組裝之元件好。電池組裝完在大氣中之黑暗環境下置放 500 個小時後,有使用
YD-2 之電池仍維持 7.57%的效率(跌幅約 5%),而同樣條件下使用單一 HBC-23 染料組裝之電池效率則下降了 13%,其原因為當使用共敏化時,光電極上之總染料吸附量由 2.12 × 10-8 mole cm-2 µm-1上升至 2.94 × 10-8 mole cm-2 µm-1,使電解液內造成效率下降之離子IO3-較難吸附於覆蓋率較好的二氧化鈦表面上。
摘要(英) In this study, we focused on optimizing the device assembly conditions for the ruthenium complex dye HBC-23, developed in our laboratory. We also employed the commercial porphyrins dye YD-2 or the dyes developed in our lab BTI-7/POEt/JIA-SQ-1 as co-sensitizers to improve the cell efficiency and stability of DSC. Futhermore, co-adsorbents CDCA or postadsorbents PVA, OPA, TMEA-TMOS, and TEOS were also tested. The highest efficiency of DSC based on only HBC-23 sensitizer is 8.29%.While the best-performing of HBC-23 co-sensitizer with YD-2 resulted in
a maximum cell efficiency of 7.95%. The IPCE spectra of the cells revealed that the IPCE value at 650-700 nm increased by approximately 15% when HBC-23 was used as the main sensitizer and YD-2 as the co-sensitizer. The long-term stability test of the cells showed that when HBC-23 is the main sensitizer and YD-2 is the co-sensitizer, the cell maintained an efficiency of 7.57% (decreased by 5%) after being placed in a dark environment in the atmosphere for 500 hours. However, the efficiency of the cell assembled with HBC-23 dye decreased by 13% under the same conditions.
The reason is that when using the co-sensitizer YD-2, the total dye adsorption on the photoelectrode increased from 2.12 × 10-8 mole cm-2 µm1 to 2.94 × 10-8 mole cm-2 µm-1
. The increase of dyes absorbed on TiO2 makes it more difficult for the IO3- molecules , which is in electrolyte and is harmful to the efficiency of the cell , to adsorb onto the better-covered titanium dioxide surface. As a result, the stability of the cell that use YD-2 as co-sensitizer is improved.
關鍵字(中) ★ 染料敏化太陽能電池 關鍵字(英) ★ dye-sensitized solar cell
論文目次 中文摘要 I
Abstract II
圖摘要 III
謝誌 IV
目錄 V
圖目錄 XI
表目錄 XV
第一章、序論 1
1-1 前言 1
1-2 染料敏化太陽能電池工作原理 1
1-3 染料敏化太陽能電池構造 4
1-4 光電極(Photo electrode) 5
1-4-1 光電極中TiO2膜的作用 5
1-4-2染料(Dye) 5
1-4-3 共吸附劑(co- adsorbent) 13
1-4-4 後吸附劑(post- adsorbent) 14
1-5 對電極 17
1-6 電解質 18
1-6-1液態電解質中之氧化還原對 18
1-6-2電解質添加劑 19
1-7 研究動機 22
第二章、實驗方法 25
2-1 實驗藥品與儀器 25
2-2 染料敏化太陽能電池的組裝 28
2-2-1 光電極的製備 28
2-2-2 測量「染料吸附於二氧化鈦膜上吸收」之光電極製備 29
2-2-3 Pt 對電極的製備 29
2-2-4 染料溶液的配製 30
2-2-5 電解液的配製 30
2-2-6 太陽能電池組裝及效率量測 30
2-2-7 共吸附劑的使用方法 31
2-2-8 後吸附劑的使用方法 32
2-2-9 共敏化劑的使用方法 32
2-3 儀器分析與樣品製備 33
2-3-1 太陽光模擬器 (Solar Simulator, YSS-50A)及光電轉換效率測量 33
2-3-2太陽能電池外部量子效率量測(Incident Photon to Current Conversion Efficieny, IPCE, ENLI Technology Co. Ltd., EQE-R-3011) 34
2-3-3 交流阻抗分析儀(AC-Impedance analysis, Autolab PGSTAT30) 36
2-3-4光強度調制光電流/光電壓分析儀(Intensity modulated photocurrent spectroscopy (IMPS) / Intensity modulated photovoltage spectroscopy (IMVS));Charge extraction, LD80226) 38
2-3-5 探針式輪廓儀 (Surface Profiler ; Veeco Dektak 150) 39
2-3-6紫外光/可見光/近紅外光吸收光譜(UV/VIS/NIR Spectrometer, Bio CARY300) 40
2-3-7 分子體積與表面積分析 42
第三章、結果與討論 43
3-1 以 HBC-23 為敏化劑的太陽能電池之電解質添加劑濃度優化 43
3-1-1 電解質添加劑BMII濃度調整 43
3-1-2 電解質添加劑LiI濃度調變 44
3-1-3 電解質添加劑tBP濃度調變 46
3-1-4 電解質I2濃度調變 47
3-2 以 HBC-23 為敏化劑的太陽能電池之對電極燒結溫度之優化 48
3-2-1 對電極燒結溫度調變 48
3-3 以 HBC-23 為敏化劑的太陽能電池之染料溶液濃度之優化 51
3-4 以HBC-23為敏化劑的太陽能電池之二氧化鈦膜之製作流程優化 53
3-4-1 二氧化鈦膜厚的調變 53
3-5 以染料HBC-23為敏化劑,並使用共吸附劑或後吸附劑所組裝之元件的光電表現與吸光性質 55
3-5-1 以CDCA、PVA、OPA為共吸附劑所組裝之元件效率 55
3-5-2 以PVA、OPA、TEOS、TMEA-TMOS為後吸附劑所組裝之元件效率 58
3-5-3 HBC-23使用不同後吸附劑吸附於二氧化鈦之光學性質量測 64
3-6 以染料HBC-23為主敏化劑,並使用BTI-7、YD-2、POEt、JIA-SQ1、DUY-1做為共敏化劑的太陽能電池之優化 65
3-6-1以染料HBC-23為主敏化劑,並使用BTI-7為共敏化劑的太陽能電池之優化 66
3-6-2以染料HBC-23為主敏化劑,並使用POEt為共敏化劑的太陽能電池之優化 75
3-6-3 以HBC-23為主敏化劑,並使用DUY-1為共敏化劑之太陽能電池之優化 80
3-6-4 以HBC-23為主敏化劑,並使用JIA-SQ1為共敏化劑之太陽能電池之優化 83
3-6-5以染料HBC-23為主敏化劑,並使用YD-2為共敏化劑的太陽能電池之優化 86
3-7 HBC-23、DUY-1、YD-2、BTI-7、POEt、JIA-SQ-1之吸光性質與在二氧化鈦上之吸附情形 102
3-7-1 HBC-23與其它染料之溶液UV-Vis圖比較 102
3-7-2 HBC-23與YD-2共敏化之光學性質與在二氧化鈦上之吸附量探討 103
3-8 以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23或YD-2所組裝之元件的光電表現 108
3-8-1 以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23所組裝之元件之內部電阻探討 108
3-8-2 以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23所組裝之元件的二氧化鈦膜上之電子生命期 110
3-8-3 以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23所組裝之元件之二氧化鈦膜上的擴散係數 112
3-8-4以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23或YD-2所組裝之元件長時間穩定性 114
3-8-5以染料HBC-23為主敏化劑,並使用YD-2做為共敏化劑及以單一敏化劑HBC-23所組裝之元件的元件效率的再現性 118
3-9 當使用共敏化劑時元件效率下降原因 121
第四章、結論 123
結論圖 124
參考文獻 125
附錄 131
參考文獻 [1] T. Ahmad, D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far.”, Energy Reports, 2020, 6, 1973-1991.
[2] M. Green, E. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis, “Solar cell efficiency tables (version 62).”, Prog. Photovolt. Res. Appl, 2023, 28, 629-638.
[3] D. Devadiga, M. Selvakumar, P. Shetty, “Recent progress in dye sensitized solar cell materials and photo-supercapacitors: A review.”, Journal of Power Sources, 2021, 493, 229698.
[4] D. Zhang, M. Stojanovic, Y. Ren, Y. Cao, F. T. Eickemeyer, E. Socie, N. Vlachopoulos, J. E. Moser, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, “A molecular photosensitizer achieves a V oc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper (II/I)-based electrolyte.”, Nature Communications, 2021, 12, 1777.
[5] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
[6] F. Labat, T. L. Bahers, I. Ciofini, C. Adamo, “First-principles modeling of dye-sensitized solar cells: challenges and perspectives.”, Accounts of Chemical Research, 2012, 45, 1268-1277.
[7] M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, F. Elsehrawy, J. Halme, S. Ahmad, S. G. Hashmi, “Advanced research trends in dye-sensitized solar cells.”, Journal of Materials Chemistry A, 2021, 17, 10527-10545.
[8] L. Paul, C. Pascal, S. Zakeeruddin, P. Nazeeruddin, M. Khaja, M. Grätzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode.”, Chemical Communications, 2006, 38, 4004-4006.
[9] M. Dhonde, K. Sahu, M. Das, A. Yadav, P. Ghosh, “Recent advancements in dye-sensitized solar cells; from photoelectrode to counter electrode.”, Journal of The Electrochemical Society, 2022, 169, 066507.


[10] S. S. Rakhunde, K. M. Gadave, D. R. Shinde, P. K. Bhujbal, “Effect of dye absorption time on the performance of a novel 2-HNDBA sensitized ZnO photo anode based dye-sensitized solar cell.”, Engineered Science, 2020, 12, 117-124.
[11] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%.”, Thin Solid Films, 2008, 516, 4613-4619.
[12] M. J. Jeng, Y. L. Wung, L. B. Chang, L. Chow, “Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells.”, International Journal of Photoenergy, 2013, 1-9.
[13] M. Akhtaruzzaman, M. Shahiduzzaman, V. Selvanathan, K. Sopian, M. I. Hossain, N. Amin, A. K. M. Hasan, “Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review.”, Applied Materials Today, 2021, 25, 101204.
[14] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.”, ACS Nano, 2010, 4, 6032-6038.
[15] S. Ananthakumar, J. R. Kumar, S. M. Babu, “Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells.”, SN Applied Sciences, 2019, 1, 1-46.
[16] L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, M. Gratzel, “A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells.”, Physical Chemistry Chemical Physics, 2012, 14, 16182-16186.
[17] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells.”, Chemical Reviews, 2010, 110, 6595-6663.
[18] T. D. Nguyen, Y. P. Lan, C. G. Wu, “High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells.”, Inorg. Chem, 2018, 57, 1527-1534.
[19] J. Wiley, S. Hoboken, “The organometallic chemistry of the transition metals.”, Inorg. Chem. 2014, 56, 252-260.
[20] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, “High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.”, ACS Nano, 2010, 4, 6032-6038.


[21] N. V. Krishna, J. Venkata, S. Krishna, M. Mrinalini, S. Prasanthkumar, L. Giribabu, “Role of co‐sensitizers in dye‐sensitized solar cells.”, ChemSusChem, 2017, 10, 4668-4689.
[22] C. P. Lee, R. Y. Linab, L. Y. Linc, C. T. Lia, T. C. Chua, S. Sun, J. T. Lin, K. C. Ho, “Recent progress in organic sensitizers for dye-sensitized solar cells.”, RSC Advances, 2015, 5, 23810-23825.
[23] Y. S. Yen, H. H. Chou, Y. C. Chen, C. Y. Hsu, J, T. Lin, “Recent developments in molecule-based organic materials for dye-sensitized solar cells.”, Journal of Materials Chemistry, 2012, 22, 8734-8747.
[24] Y. Ren, D. Zhang, J. Suo, Y. Cao, N. Vlachopoulos, M. Grätzel, “Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells.”, Nature, 2023, 613, 60-65.
[25] L. H. Nguyen, H. K. Mulmudi, D. Sabba, S. A. Kulkarni, M. Gratzel, “A selective co-sensitization approach to increase photon conversion efficiency and electron lifetime in dye-sensitized solar cells.”, Physical Chemistry Chemical Physics, 2012, 14, 16182-16186.
[26] S. Chang, Hongda Wang, Lawrence Tien, Lin Lee, Xunjin Zhu, Wai-Yeung Wong, “Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells.”, Materials Chemistry C, 2014, 2, 3531.
[27] X. Jiang, T. Marinado, E. Gabrielsson, D. P. Hagberg, L. Sun, A. Hagfeldt, “Structural modification of organic dyes for efficient coadsorbent-free dye-sensitized solar cells.”, Physical Chemistry C, 2010, 114, 2799-2805.
[28] A. S. Najm, N. A. Ludin, N. H. Hamid, M. A. Ibrahim, M. Teridi, K. Sopian, H. Moria, A. M. Holi, A. zahrani, H. S. Naeem, “Effect of chenodeoxycholic acid on the performance of dye-sensitized solar cells utilizing pinang palm (Areca catechu) dye.”, Sains Malaysiana, 2020, 49.12, 2971-2982.
[29] J. Chang, C. P. Lee, D. Kumar, P. Chen, L. Y. Lin, K.R. Thomas, K. C. Ho, “Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye.” Journal of Power Sources, 2013, 240, 779-785.
[30] R. Cisneros, M. Beley, F. Lapicque, “study of the impact of co-adsorbents on DSSC electron transfer processes: anti-π-stacking vs. shield effect.”, Physical Chemistry Chemical Physics, 2016, 18, 9645-9651.

[31] G. Anantharaj, N. Lakshminarasimhan, “Interfacial Modification of Photoanode|Electrolyte Interface Using Oleic Acid Enhancing the Efficiency of Dye-Sensitized Solar Cells.”, ACS Omega, 2018, 3, 18285-18294.
[32] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, M. Hanaya, “An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell.”, Chemical Communications, 2014, 50, 6379.
[33] G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, H. Bönnemann, “Catalytic platinum layers for dye solar cells: a comparative study.”, Thin Solid Films, 2006, 511, 342-348.
[34] Z. Tang, J. Wu, M. Zheng, J. Huo, Z. Lan, “A microporous platinum counter electrode used in dye-sensitized solar cells.”, Nano Energy, 2013, 2, 622-627.
[35] Q. Liu, Q. S. Li, G. Q. Lu, “Theoretical study on the adsorption mechanism of iodine molecule on platinum surface in dye-sensitized solar cells.”, Theoretical Chemistry Accounts, 2014, 133, 1-8.
[36] C. E. Richards, A. Y. Anderson, S. Martiniani, C. Law, B. C. Regan, “The mechanism of iodine reduction by TiO2 electrons and the kinetics of recombination in dye-sensitized solar cells.”, J. Phys. Chem. Lett., 2012, 3, 1980-1984.
[37] Y. Bai, J. Zhang, Y. Wang, M. Zhang, P. Wang, “Lithium-modulated conduction band edge shifts and charge-transfer dynamics in dye-sensitized solar cells based on a dicyanamide ionic liquid.”, Langmuir, 2011, 27, 4749-4755.
[38] Y. Shi, Y. Wang, M. Zhang, X. Dong, “Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium.”, Phys. Chem, 2011, 13, 14590-14597.
[39] J. Y. Kim, J. Y. Kim, D. K. Lee, B. Kim, H. Kim, M. J. Ko, “Importance of 4-tert-butylpyridine in electrolyte for dye-sensitized solar cells employing SnO2 electrode.”, The Journal of Physical Chemistry C, 2012,116, 22759-22766.
[40] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson, E. Johansson, “Experimental and Theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells.”, ACS Appl. Mater. Interfaces, 2018, 10, 11572-11579.


[41] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, “Photoelectrochemical effects of guanidinium thiocyanate on dye-Sensitized solar cell performance and stability.”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[42] 黃柏程. “含聯噻吩之環釕金屬染料”, 國立中央大學 109年碩士論文.
[43] K. Narayanaswamy, T. Swetha, G. Kapil, S. S. Pandey, S. Hayase, S. P. Singh, “Simple metal-free dyes derived from triphenylamine for DSSC: A comparative study of two different anchoring group.”, Electrochimica Acta, 2015,169, 256-263.
[44] H. Choi, C. Nahm, J. Kim, J. Moon, S. Nam, D. R. Jung, B. Park, “The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell.”, Current Applied Physics, 2012, 12, 737-741.
[45] D. Zheng, M. Ye, X. Wen, N. Zhang, C. Lin, “Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell.”, Science Bulletin, 2015, 60, 850-863.
[46] P. Macheroux, “UV-visible spectroscopy as a tool to study flavorproteins.” Flavorprotein Protocols, 1999, 1-7.
[47] J. B. Maglic, R. Lavendomme, “MoloVol: an easy-to-use program to calculate various volumes and surface areas of chemical structures and identify cavities.”, ChemRxiv, 2021, 2021.
[48] M.Y.A. Rahman, A.A. Umar, R. Taslim, M.M. Salleh, “Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique.”, Electrochimica acta, 2013, 88, 639-643
[49] 徐子閎, “尋找應用於染料敏化太陽能電池之藍色染料”, 國立中央大學 106年碩士論文.
[50] 何睿哲, “吸收達近紅外光釕錯合物染料的合成並應用於染料敏化太陽能電池”, 國立中央大學 111年碩士論文.
[51] T. D. Nguyen, “Thiocyanate-Free Cycloruthenated Sensitizer for dye-Sensitized Solar Cells.”, 國立中央大學 107年博士論文.
[52] T. Maeda, S. Mineta, H. Fujiwara, H. Nakao, S. Yagi, H. Nakazumi, “Conformational effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells.” Journal of Materials Chemistry A, 2013, 1, 1303-1309.
[53] Z. Yan, S. Guang, X. Su, H. Xu, “Near-infrared absorbing squaraine dyes for solar cells: relationship between architecture and performance.”The Journal of Physical Chemistry C, 2012, 116, 8894-8900.
[54] S. K. Kim, P. Ho, J. W. Lee, S. Y. Jeon, S. Thogiti, R. Cheruku, H. J. Jo, J. H. Kim, “Effect of electrolyte redox potentials on the photovoltaic performance in dye-sensitized solar cells based on porphyrin dye.”, Molecular Crystals and Liquid Crystals, 2017, 653, 84-90.
[55] E. Figgemeier, A. Hagfeldt, “Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses.”, International Journal of Photoenergy, 2004, 6, 127-140.
[56] T. Helmut, “Dye sensitization solar cells: a critical assessment of the learning curve.”, Coordination Chemistry Reviews, 2014, 248, 13-14.
[57] Y. Tian, C. Hu, Q. Wu, X. Wu, X. Li, M. Hashim, “Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays.”, Applied Surface Science, 2011, 258, 321-326.
[58] G. D. Sharma, D. Daphnomili, K. S. V. Gupta, T. Gayathri, S. P. Singh, P. A. Angaridis, T. N. Kitsopoulos, D. Tasise, A. G. Coutsolelos, “Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium (II)-terpyridine dyes and graphene modified TiO2 photoanode.”, Rsc Advances, 2013, 3, 22412-22420.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2023-12-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明