博碩士論文 93522093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.147.242.114
姓名 林彥丞(Yen-Cheng Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 IEEE 802.16 網狀網路中具服務品質之協同分散式排程
(QoS Coordinated Distributed Scheduling in IEEE 802.16 Mesh Networks)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) IEEE 802.16網狀網路模式為第四代熱門的網路技術之一,同時被期待能提供多媒體應用服務的服務品質保證。然而,目前對於頻道資源的分配和保留,802.16的標準中尚未規範。本篇論文依據不同的優先權,提出MAC中具服務品質之協同分散式排程,達成服務品質的需求。對VoIP流量而言,調整延遲時間演算法減低平均延遲3.97%以及增加其產出達2.44%。同樣地,分配資料時段演算法降低平均延遲 13.7%,同時增加產出14.89%。動態調整延遲時間演算法縱合調整延遲時間演算法和分配資料時段演算法的優點,並考量無線頻帶上的使用率,不但降低VoIP流量平均延遲5.09%和增加產出4.17%,同時僅損失整體產出0.09%。因此動態地調整延遲時間演算法不僅達成服務區別的需求,還維持良好的整體產出。
摘要(英) The 802.16 mesh mode is one of the hot technologies for fourth-generation (4G) and is expected QoS guaranteed for multimedia services. The standard, however, are still left undefined for channel resources allocation and reservation management. The thesis propose QoS Coordinated Distributed Scheduling (QC-DSCH) based on prioritization to accomplish the QoS requirement on MAC layer. The proposed adjusting hold-off time algorithm reduces the average inter-arrival delay 3.97% in average and increase throughput 2.44% for the VoIP traffic. The proposed allocation mini-slots algorithm reduces the average inter-arrival delay 13.7% in average and increase the VoIP throughput 14.89% in average for the VoIP traffic. The proposed dynamic hold-off time employs the hybrid advantages of adjusting hold-off time and allocation mini-slots. It takes the utilization of channel into account. It reduces the average inter-arrival delay time 5.09% and increase the throughput 4.17% for the VoIP traffic. Meanwhile, it only sacrifices 0.09% overall throughput. Thus, the proposed dynamic hold-off time could achieve service differentiation and keep the high performance for overall throughput.
關鍵字(中) ★ 802.16
★ 網狀網路
★ 協同分散式排程
★ 服務品質
關鍵字(英) ★ mesh network
★ coordinated distributed scheduling algorithm
★ quality of service
★ 802.16
論文目次 Chapter 1. Introduction 1
1.1 QoS Coordinated Distributed Scheduling Algorithm 1
1.2 Motivation and Objective 3
1.3 Thesis Organization 5
Chapter 2. Background and Related Work 6
2.1 IEEE 802.16 Overview 7
2.1.1 Wireless Mesh Networks 7
2.1.2 IEEE 802.16 Mesh Mode Operations 10
2.1.3 Coordinated and Uncoordinated Distributed Scheduling Algorithm 15
2.2 IEEE 802.16 Performance Analysis 21
2.2.1 Modeling and Performance Analysis 23
2.3 IEEE 802.16 QoS Distributed Scheduling Algorithm 26
2.3.1 Extension Election based transmission timing (EBTT) mechanism 27
2.3.2 Priority Slot Allocation Algorithm (SAA) 29
2.4 Summarization of Related Work 31
Chapter 3. Proposed QoS Coordinated Distributed Scheduling (QC-DSCH) Algorithm 34
3.1 Overview and Concept 35
3.2 Assumptions and Modeling 36
3.3 QC-DSCH Based on Prioritization for Allocating Slots 41
3.3.1 Adjusting Hold-off Time Algorithm 43
3.3.2 Allocating Mini-slots Algorithm 48
3.3.3 Dynamic Hold-off time Algorithm 52
3.3.4 Summarizations of Proposed QC-DSCH 55
Chapter 4. Simulations and Discussions 57
4.1 Simulation of Architecture in NS2 57
4.2 Simulation Environment 62
4.3 Effect of Position Distribution, Number of Flows, Number of Nodes, Hold-off Time and Exponent Value 67
4.3.1 Effect on Three-way Handshaking Latency 68
4.3.2 Effect on Number of Collisions 74
4.4 Effect of Number of Nodes, Simulation Time and Algorithms 76
4.4.1 Effect on Occupied Bandwidth 78
4.4.2 Effect on Average Inter-arrival Delay 81
4.4.3 Effect on Throughput in Whole Networks 85
4.5 Effect of Number of Flows, Diverse Priorities and Algorithms 91
4.5.1 Effect on Throughput in Whole Networks 92
Chapter 5. Conclusions and Future Work 101
References 104
參考文獻 L. M. S. Committee and I. M. T. a. T. Society, "Part 16: Air Interface for Fixed Broadband Wireless Access Systems," May 13 2004.
[2] C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang, "IEEE Standard 802.16: A Technical Overview of The WirelessMANTM Air Interface for Broadband Wireless Access," IEEE Communication Magazine, Jun. 2002.
[3] D. Beyer, C. Eklund, M. Kasslin, and N. v. Waes, "IEEE 802.16 BroadbandWireless Access Working Group : Comment contribution," 6 Mar. 2002.
[4] N. H. Nam and l. Sasase, "Downlink Queuing Model and Packet Scheduling for Providing Lossless Handoff and QoS in 4G Mobile Networks," Mobile Computing, vol. 5, pp. 452-462, May 2006.
[5] S. Guocong and L. Ye, "Cross-layer Optimization for OFDM Wireless Networks-part I/II: Algorithm Development," Wireless Communications, vol. 4, pp. 625-634, Mar. 2005.
[6] S. Guocong and L. Ye, "Utility-based Resource Allocation And Scheduling in OFDM-based Wireless Broadband Networks," Communcations Magazine, vol. 43, pp. 127-134, Dec. 2005.
[7] S. Ghosh, K. Basu, and S. K. Das, "An Architecture for Next-generation Radio Access Networks," IEEE Network, vol. 19, pp. 35-42, Sept.-Oct 2005.
[8] T. Otsu, I. Okajima, N. Umeda, and Y. Yamao, "Network Architecture for Mobile Communications Systems Beyond IMT-2000," IEEE Wireless Communications, vol. 8, pp. 31-37, Oct. 2001.
[9] Y. Yamao, T. Otsu, A. Fujiwara, H. Murata, and S. Yoshida, "Multi-hop Radio Access Cellular Concept For Fourth-generation Mobile Communications System," in 2002 The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, pp. 59 - 63
[10] C. Hoymann, M. Puttner, and I. Forkel, "The HIPERMAN Standard - A Performance Analysis," IST summit 2003.
[11] G. Chu, D. Wang, and S. Mei., "A QoS Architecture for The MAC Protocol of IEEE 802.16 BWA System," in Circuits and System and West Sino Expositions Communications IEEE International Conference, 2002, pp. 435-439.
[12] K. Wongthavarawat and A. Ganz., " IEEE 802.16 Based Last-mile Broadband Wireless Military Networks With Quality of Service Support," in Military Communications Conference, 2003, pp. 779-784.
[13] M. Cao, W. Ma, Q. Zhang, X. Wang, and W. Zhu, "Topology Control And Mobility: Modelling And Performance Analysis of The Distributed Scheduler in IEEE 802.16 Mesh Mode," in The 6th ACM International Symposium on Mobile Ad Hoc Networking And Computing MobiHoc '05, 2005.
[14] P. Gupta and P. R. Kumar, "The Capacity of Wireless Networks," IEEE Transactions on Information Theory, vol. 46, pp. 388-404, Mar. 2000.
[15] M. Gastpar and M. Vetterli, "On The Capacity of Wireless Networks: The Relay Case," in IEEE Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2002, 2002, pp. 1577-1586.
[16] M. Grossglauser and D. N. C. Tse, "Mobility Increases The Capacity of Ad Hoc Wireless Networks," IEEE/ACM Transaction on Networking, vol. 10, pp. 477-486, Aug. 2002.
[17] R. Negi and R. Arjunan, "Capacity of Power Constrained Ad-hoc Networks," in IEEE Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004, 2004.
[18] S. Toumpis, "Network communication capacity and behaviors: Capacity bounds for three classes of wireless networks: asymmetric, cluster, and hybrid," in the 5th ACM international symposium on Mobile ad hoc networking and computing, 2004.
[19] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris, "Capacity of Ad Hoc Wireless Networks," in The 7th Annual International Conference on Mobile Computing And Networking Publisher, 2001, pp. 61-69.
[20] Y. C. Tay and K. C. Chua, "A Capacity AnalysisFor The IEEE 802.11 MAC Protocol," Wireless Networks, vol. 7, pp. 159-171, Mar. 2001.
[21] G. Bianchi, "Performance Analysis of The IEEE 802.11 Distributed Coordination Function," Selected Areas in Communications, vol. 18, pp. 535-547, Mar. 2000.
[22] F. Cali, M. Conti, and E. Gregori, "Dynamic Tuning of The IEEE 802.11 Protocol to Achieve A Theoretical Throughput Limit," IEEE/ACM Transaction on Networking, vol. 8, pp. 785-799, Dec. 2000.
[23] F. Eshghi and A. K. Elhakeem, "Performance Analysis of Ad Hoc Wireless LANs For Real-time Traffic," Selected Areas in Communications, vol. 21, pp. 204-215, Feb. 2003.
[24] C. Jianfeng, J. Wenhua, and W. Hongxi, "A Service Flow Management Strategy for IEEE 802.16 Broadband Wireless Access Systems in TDD Mode," in 2005 IEEE International Communications, 2005. ICC 2005. , 2005, pp. 3422-3426.
[25] H.-Y. Wei, S. Ganguly, R. Izmailov, and Z. J. Haas, "Interference-aware IEEE 802.16 WiMax Mesh Networks," in 2005 IEEE 61st Vehicular Technology Conference, 2005, pp. 3102-3106.
[26] D. Kim and A. ganz, "Fair and Efficient Multihop Scheduling Algorithm for IEEE 802.16 BWA Systems," in 2005 2nd International Conference on Broadband Networks, 2005, pp. 895 - 901
[27] N. Bayer, D. Sivchenko, B. Xu, V. Rakocevic, and J. Habermann, "Transmission Timing of Signalling Messages in IEEE 802.16 Based Mesh Networks."
[28] F. Liu, Z. Zeng, J. Tao, Q. Li, and Z. Lin, "Achieving QoS for IEEE 802.16 in Mesh Mode," in 8th International Conference on Computer Science and Informatics, Salt Lake City, Utah, USA, 2005.
[29] I. C. Society and I. M. T. a. T. Society, "IEEE P802.11e : Draft 13.0," in IEEE 802.11 WG, Draft Supplemnet to Standard for Information technology - Telecommunciatins And Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - "Part 11:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specificatinos : Amendment : MAC Quality of Service (QoS) Enchancements, 2005.
[30] W. Liu, W. Lou, X. Chen, and Y. Fang, "A QoS-enabled MAC Architecture for Prioritized Service in IEEE 802.11 WLANs," in IEE Globecom 2003, San Francisco, CA, 2003, pp. 3802-3807.
[31] S. Mangold, C. Sunghyun, G. R. Hiertz, O. Klein, and B. Walke, "Analysis of IEEE 802.11e for QoS Support in Wireless LANs," Wireless Communications, IEEE, vol. 10, pp. 40-50, Dec. 2003.
[32] J. F. Chen, C. Chi, and Q. Guo, "A Bandwidth Allocation Model with High Concurrence Rate in IEEE802.16 Mesh Mode," in Communications ,2005 Asia-Pacific, 2005, pp. 750-754.
[33] J. Tao, F. Liu, Z. Zeng, and Z. Lin, "Throughput Enhancement in WiMax Mesh Networks Using Concurrent Transmission," in Wireless Communcations, International Conference on Networking and Mobile Computing 2005, 2005, pp. 871-874.
[34] Heidemann and T. henderson, "Network Simulator," 2.29 ed: Apache License V2.0, BSD License, GNU General Public License (GPL) 2006.
[35] S. M. Regents of the University of California, Inc., Scriptics Corporation, and other parties, "Tcl/Tk," 8.4.5 ed, 2006.
[36] Heidemann, Larryrowe, Lloydlim, Openmash, Padmah, Tim1724, and T. henderson, "TclCL," 1.16 ed, 2006.
[37] Heidemann, Larryrowe, Lloydlim, Openmash, Padmah, Tim1724, and T. henderson, "OTcl," 1.11 ed, 2006.
[38] R. Stallman, "GNU Scientific Library (GSL)," 1.8 ed, 2006.
[39] "Contributed Code," 2006.
[40] M. Lacage, "Ns-2 802.11 Support," 14.2 ed, 2006.
[41] K. Gakhar, A. Gravey, and A. Leroy, "IROISE: A New QoS Architecture for IEEE 802.16 And IEEE 802.11e Interworking," in 2005 2nd International Conference on Broadband Networks, 2005, pp. 607-612.
指導教授 周立德(Li-Der Chou) 審核日期 2006-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明