博碩士論文 110022601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.145.63.42
姓名 安亞迪(Adi Ankafia)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 衛星遙測印度尼西亞邦加島 Namang 村Pelawan 紅菇 (Heimioporus sp.)的產量
(Remote Sensing of Pelawan Red Mushroom Yield (Heimioporus sp.) in Namang Village, Bangka Island, Indonesia)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
★ 對數常態分布在氣膠消光係數廓線擬合之應用★ 氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用
★ 地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析★ 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用
★ 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響★ 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析
★ 福爾摩沙衛星五號遙測儀升空前後等化係數之率定★ 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
Pelawan 紅蘑菇(Heimioporus sp.)是一種食用菌,作為外生菌根真菌存在於 Pelawan 樹 (Tristaniopsis merguensis) 的根系中,是生態系中相當重要的資源。邦加島為 印尼的主要產地之一,但尚未正確記錄當地蘑菇的潛在種質資源。本研究旨在提供有
關使用衛星遙測技術估算 Namang 村 Pelawan 紅蘑菇的產量。由於這種蘑菇與寄主的
檳榔樹共生,因此需要先進行地表物種分類以確認檳榔樹面積,還有植被指數,如檳 榔樹面積的 NDVI (Normalized Difference Vegetation Index),EVI (Enhanced Vegetation Index)和 SAVI (Soil Adjusted Vegetation Index),並藉由葉面積指數(Leaf Area Index, LAI)和植被指數之間的相關性,進行每年 Pelawan 紅蘑菇產量的估算。研究結果顯示,
基於 LAI-NDVI 和 LAI-EVI 相關性的估計產量與實際產量間差異的均方根誤差 (RMSE) 值在 2018 年和 2021 年分別為 0.12 和 0.11,表示產量估算模式具有相當的準確性和可
靠性,適合實際應用。
關鍵詞:土地利用、Pelawan 樹、Pelawan 紅蘑菇、遙測產量、LAI

i
摘要(英) Abstract
One of the potential germplasms that has not been properly recorded on Bangka Island is indigenous mushrooms, namely Pelawan red mushrooms (Heimioporus sp.) and their potential uses. Pelawan red mushroom is a type of edible fungus that is found in the root system of Pelawan trees (Tristaniopsis merguensis) as an ectomycorrhizal fungus. Research on Pelawan red mushrooms related to yield estimation has never been carried out. This research aimed to provide information related to yield estimation of Pelawan red mushrooms in Namang Village using a remote sensing approach. The observation was conducted 2 times in 2018 and 2021. Because this mushroom exists in symbiosis with Pelawan trees as the host tree, firstly, it is necessary to determine LULC to mark the Pelawan trees area, also vegetation index, including NDVI, EVI, and SAVI in the Pelawan trees area, so that the existing area can help in yield estimation of Pelawan red mushroom for each year. The yield estimation model approach used the correlation between Leaf Area Index (LAI) and the vegetation index. The evaluation demonstrated that Root Mean Squared Error (RMSE) values, which represent the difference between the actual yield and the estimated yield based on the LAI - NDVI and LAI - EVI correlations, were consistently 0.12 and 0.11 in both 2018 and 2021. This indicates the high accuracy and reliability of the estimated models, making them suitable for practical applications. Additionally, Mean Absolute Percentage Error (MAPE) values for the LAI - NDVI correlation were 28.25% in 2018 and 23.23% in 2021, while for the LAI - EVI correlation, the MAPE values were 27.33% in 2018 and 21.44% in 2021. These values further reinforce the notion that the estimation models fall within the range of reasonable estimation, affirming their validity and effectiveness.
Keywords: LULC, Pelawan Trees, Pelawan Red Mushroom Yield Estimation, LAI, Remote Sensing.

ii
關鍵字(中) ★ 土地利用
★ Pelawan 樹
★ Pelawan 紅蘑菇
★ 遙測產量
★ LAI
關鍵字(英) ★ LULC
★ Pelawan Trees
★ Pelawan Red Mushroom
★ Yield Estimation
★ LAI
★ Remote Sensing
論文目次 Table of Contents
摘要 ..................................................................................................................i Abstract .............................................................................................................ii Acknowledgment...............................................................................................iii Table of Contents ..............................................................................................iv List of Figures ...................................................................................................vi List of Tables ....................................................................................................viii CHAPTER I INTRODUCTION ........................................................................1
1.1. Background ................................................................................1 1.2. Research Problem and Objective.................................................5 1.2. Thesis Outline.............................................................................6
CHAPTER II LITERATURE REVIEW ............................................................7 2.1 Nomenclature and Local Name ....................................................7 2.1.1. Pelawan Tree (Tristaniopsis merguensis)...............................7 2.1.2. Pelawan Red Mushroom (Heimioporus sp.) ...........................9
2.2. Remote Sensing of Vegetation ....................................................11 2.3. Land Use and Land Cover (LULC) .............................................13 2.4. Maximum Likelihood Classification (MLC) ...............................14 2.5. Accuracy Assessment .................................................................15 2.6. Vegetation Index (VI).................................................................15
2.6.1. Normalized Difference Vegetation Index (NDVI)..................16 2.6.2. Enhanced Vegetation Index (EVI) .........................................16 2.6.3. Soil Adjusted Vegetation Index (SAVI).................................17
2.7. Leaf Area Index (LAI) ................................................................17 2.8. Landsat 8 OLI/TIRS Satellite Imagery ........................................19 2.9. Related Works ............................................................................20
CHAPTER III STUDY AREA AND METHODS .............................................22 3.1. Study Area..................................................................................22 3.2. Dataset........................................................................................26 3.3. Methods......................................................................................27
3.3.1. Landsat 8 OLI/TIRS Pre-Processing ......................................27 3.3.2. Determine Land Use and Land Cover (LULC) Type..............29 3.3.3. Supervised Image Classification ............................................29
iv
3.3.4. Map Accuracy Assessment ....................................................30
3.3.5. Vegetation Index (VI) Calculation .........................................32 3.4. Leaf Area Index (LAI) Calculation ............................................35 3.5. Yield Estimation Model .............................................................36 3.6. Evaluation of Yield Estimation Model ........................................37 3.7. Research Workflow ...................................................................40
CHAPTER IV RESULTS AND DISCUSSION.................................................41 4.1. Results and Discussion................................................................41 4.1.1. Land Use and Land Cover Classification ...............................41 4.1.2. Land Use and Land Cover Changes .......................................41 4.1.3. Accuracy Assessment of LULC .............................................43 4.1.4. NDVI Condition in the Study Area ........................................44 4.1.5. EVI Condition in the Study Area ...........................................46 4.1.6. SAVI Condition in the Study Area.........................................48 4.2. LAI of Pelawan Tree...................................................................52 4.3. Correlation Between Leaf Area Index and Vegetation Index.......54 4.4. Yield Estimation Model of Pelawan Red Mushroom...................55 4.5. Comparisons of Yield Estimation Models ...................................58 4.6. Correlation Between Actual Yield and Climatic Parameters........60 CHAPTER V CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS.....63 5.1. Conclusions ................................................................................63 5.2. Limitations .................................................................................64 5.3. Future Works..............................................................................66 References .........................................................................................................69
v
參考文獻 References
Alqurashi, A., & Kumar, L. (2013). Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: A review. Advances in Remote Sensing, 2, 193-204.
Bashir, R. D., Baharin, B. A., Malik, R. A. S., & Hafiz, Z. U. (2015). Review of Change Detection Techniques from Remotely Sensed Images. Research Journal of Applied Sciences, Engineering and Technology, 2(10), 221-229.
Blaschke, T., Hay, G. J., Weng, Q., & Resch, B. (2011). Collective sensing: integrating geospatial technologies to understand urban systems - an overview. Remote Sensing, 3(8), 1743–1776.
Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2010). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73-79.
Bruzzone, L., Cossu, R., & Vernazza, G. (2002). Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote sensing images. Information Fusion, 3, 289-297.
Budiyanto, E. (2012). V egetation Index. Retrieved November 4, 2014, from http://geo.fis.unesa.ac.id/web/index.php/en/sensing-far/77-index-vegetation.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
Chang, Y., Hou, K., Li, X., Zhang, Y., & Chen, P. (2018). Review of Land Use and Land Cover Change research progress. IOP Conference Series: Earth and Environmental Science, 113, 012087.
Chen, B., Tu, Y., Song, Y., Theobald, D. M., Zhang, T., Ren, Z., Li, X., Yang, J., Wang, J., Wang, X., et al. (2021). Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 203-218.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
Colombo, R., Bellingeri, D., Fasolini, D., & Marino, C. M. (2003). Retrieval of leaf area index in different vegetation types using high-resolution satellite data. Remote Sensing of Environment, 86, 120-131.
Comber, A. J., Fisher, P. F., & Wadsworth, R. A. (2003). Actor Network Theory: A Suitable Framework to Understand How Land Cover Mapping Projects Develop? Land Use Policy, 20, 299-309.
Congalton, R. G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46.
69
Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices. Boca Raton, FL: CRC/Lewis Press.
Danoedoro, P. (2009). Land-Use Information From the Satellite Imagery: Versatility and Contents for Local Physical Planning. Lambert Academy Publishing.
Danoedoro, P. (2016). The Influence of the Number and Method of Test Sample Collection on the Accuracy Level of Remote Sensing Digital Image Classification. In Proceedings of the 4th National Symposium on Geoinformation Sciences (pp. 1).
Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J. M., Van der Gucht, K., ... & De Meester, L. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology, 86(7), 1905-1915.
Dick, R. P., Breakwell, D. P., & Turco, R. F. (2000). Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 32(13), 1915-1919.
Foy, C. D. (1992). Soil chemical factors limiting plant root growth. Advances in Soil Science, 19, 97-149.
Gao, S., Niu, Z., Huang, N., & Hou, X. (2013). Estimating the leaf area index, height and biomass of maize using Hj-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24, 1-8.
Gounaridis, D., Apostolou, A., & Koukoulas, S. (2016). Land cover of Greece, 2010: a semi- automated classification using random forests. Journal of Maps, 12(5), 1055-1062.
Gowda, P. H., Howell, T. A., Chavez, J. L., Paul, G., Moorhead, J. E., Holman, D., Marek, T. H., Porter, D. O., Marek, G. H., Colaizzi, P. D., et al. (2015). A decade of remote sensing and evapotranspiration research at USDA_ARS conservation and production research laboratory. In Proceedings of the Emerging technologies for sustainable irrigation a joint ASABE/IA Irrigation Symposium, Long Beach, CA, USA, 10-12 November 2015.
Griffin, D. M. (1981). Water and Microbial Stress. Advances in Microbial Ecology, 5, 91-136.
Gungor, Y., Yüksel, Ü., Tokatli, C., & Kutman, U. B. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159(1-2), 131-138.
Hanafiah, K. A. (2007). Fundamentals of Soil Science. Jakarta: PT. Raja Grafindo Persada. Hardjowigeno. (2010). Soil Science. Jakarta: Mediyatama Pressindo.
Hasan, S.S., Zhen, L., Miah, M.G., Ahamed, T., & Samie, A. (2020). Impact of land use change on ecosystem services: A review. Environmental Development, 34, 100527.
Hermon, D. (2009). Settlement Areas Dynamics and Alternative Policy of Settlement Development in Landslide Prone Areas in Padang City (Unpublished doctoral dissertation). Bogor: IPB.
70

Hermon, D. (2016a). The Changes of Carbon Stocks and CO2 Emission as The Result of Land Cover Change for Tin Mining and Settlement in Belitung Island Indonesia. Journal of Geography and Earth Sciences, 4, 17-30.
Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of leaf area index (LAI) in corn and soybean using multi-polarization C- and L-band radar data. Remote Sensing of Environment, 170, 77–89.
Huang, D. (2017). Accuracy Assessment Model For Classification Result of Remote Sensing Image Based on Spatial Sampling. Journal of Applied Remote Sensing, 11, 1–13.
Huete, A. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295-309.
Huete, A.R., & Justice, C. (1999). MODIS vegetation index (MOD13) algorithm theoretical basis document. Ver. 3.
Imam, E. (2017). Habitat Suitability Modelling for Sambar (Rusa unicolor): A Remote Sensing and GIS Approach. In Environment and Earth Observation (pp. 231-246). Cham: Springer.
Jensen, J. R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, NJ: Pearson Prentice Hall.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., Mitchard, E.T., et al. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8, 70.
Kachhwala, T.S. (1985). Temporal monitoring of forest land for change detection and forest cover mapping through satellite remote sensing. In Proceedings of the 6th Asian Conference on Remote Sensing (pp. 77-83).
Knight, E.J., & Kvaran, G. (2014). Landsat-8 operational land imager design, characterization, and performance. Remote Sensing, 6.
Liang, L., Di, L., Zhang, L., Deng, M., Qin, Z., Zhao, S., & Lin, H. (2015). Estimation of crop LAI using hyperspectral indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134.
Lillesand, T.M., & Kiefer, R.W. (1999). Remote Sensing and Image Interpretation. New York, NY: Wiley.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. New Jersey, US: John Wiley & Sons.
Liu, J., Heiskanen, J., Aynekulu, E., & Pellikka, P. K. E. (2015). Seasonal variation of land cover classification accuracy of Landsat 8 images in Burkina Faso. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 455-460.
71

Liu, H.Q., & Huete, A.R. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457–465.
Majd, M.S., Simonetto, E., & Polidori, L. (2012). Maximum likelihood classification of single high-resolution polarimetric SAR images in urban areas. Photogrammetrie, Fernerkundung, Geoinformation, (4), 395-407.
Manserud, R.A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistics. Ecological Modelling, 62, 275–279.
Mesev, V. (2001). Modified maximum likelihood classifications of urban land use: Spatial segmentation of prior probabilities. Geocarto International, 16(4), 41-48.
Meyer, W.B., & Turner, B.L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39–61.
Ministry of Planning, Ministry of Cooperation, Ministry of Health. (2008). Comprehensive food security and vulnerability analysis in Iraq: Methodology.
Mohan Rajan, S.N., Loganathan, A., & Manoharan, P. (2020). Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environmental Science and Pollution Research, 27, 29900-29926.
Montanaro, M., Levy, R., & Markham, B. (2014). On-orbit radiometric performance of the Landsat 8 thermal infrared sensor. Remote Sensing, 8.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis, 5th Edition. Wiley.
Mora, B., Tsendbazar, N.E., Herold, M., & Arino, O. (2014). Global land cover mapping: Current status and future trends. In I. Manakos & M. Braun (Eds.), Land Use and Land Cover Mapping in Europe (Vol. 18, pp. 11-30). Dordrecht, The Netherlands: Springer.
Mukhoriyah, & Yudhatama, D. (2015). Identification of Former Tin Mining Areas Using Remote Sensing Satellite Imagery (Case Study: West Bangka Regency). Proceedings of the Scientific Meeting, 897-903.
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., & Rundquist, D. (2012). Green leaf index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104, 1336–1347.
Omotehinse, A.O., & Ako, B.D. (2019). The Environmental Implications of the Exploration and Exploitation of Solid Minerals in Nigeria with a special focus on Tin in Jos and Coal in Enugu. Journal of Sustainable Mining, 18, 18-24.
Pal, M., & Mather, P.M. (2004). Assessment of the Effectiveness of Support Vector Machines for Hyperspectral Data. Future Generation Computer Systems, 20(7), 1215-1225.
72

Parece, T.E., & Campbell, J.B. (2015). Land use/land cover monitoring and geospatial technologies: An overview. In T. Younos & T. Parece (Eds.), Advances in Watershed Science and Assessment (Vol. 33, pp. 1-32). Cham, Switzerland: Springer.
Pettorelli, N., Vik, J., Mysterud, A., Gaillard, J.-M., Tucker, C.J., & Stenseth, N.C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20, 503-510.
Phiri, D., & Morgenroth, J. (2017). Developments in Landsat land cover classification methods: A review. Remote Sensing, 9, 967.
Postma, J., Schilder, M. T., & van Elsas, J. D. (2006). Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology and Biochemistry, 39(2), 400-408.
Ramachandran, R.M., & Reddy, C.S. (2017). Monitoring of deforestation and land use changes (1925–2012) in Idukki district, Kerala, India using remote sensing and GIS. Journal of Indian Society of Remote Sensing, 45(1), 163–170.
Richards, J. A., & Richards, J. (1999). Remote Sensing Digital Image Analysis. Berlin, Heidelberg, New York: Springer-Verlag.
Ridwan, M. A., Radzi, N. A. M., Ahmad, W. S. H. M. W., Mustofa, I. S., Din, N. M., Jalil, Y. E., Isa, A. M., Othman, N. S., & Zaki, W. M. D. W. (2018). Applications of Landsat-8 Data: A Survey. International Journal of Engineering & Technology, 7(4.35), 436-441.
Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land- cover and land-use change. Progress in Planning, 61, 301-325.
Rosenfield, G.H., & Fitzpatrick-Lins, K. (1979). A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52, 223– 227. (1986).
Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8, 611-622.
Salm, S.M., Van Dijk, M.A., & Van Riemsdijk, W.H. (1998). Assessment of weathering rates in Dutch loess and river-clay soils at pH 3.5, using laboratory experiments. Geoderma, 85(1), 41-62.
Salma, L.A. (2013). Specific Primer Designed for Early Detection of Edible Ectomycorrhiza Pelawan [Master′s thesis, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University].
Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis, 2nd Edition. Wiley.
Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G., Murphy, R.E., Schiffer, R.A., Bretherton, F.P., Dickinson, R.E., Ellingson, R.G., Field, C.B., Huemmrich, K.F., Justice, C.O., Melack, J.M., Roulet, N.T., Schimel, D.S., & Try, P.D. (1995). Remote Sensing of the Land Surface for Studies of Global Change: Models—Algorithms—Experiments.
73

Sosef, M.S.M., Hong, L.T., & Prawirohatmodjo, S. (1998). Plant Resources of South-East Asia: Timber trees; Lesser-known timbers.
Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland, MA: Sinauer Associates, Inc.
Tang, R., Li, Z.-L., Jia, Y., Li, Ch., Sun, X., Kustas, W.P., & Anderson, M.C. (2011). An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurement over a wheat-corn production region. Remote Sensing of Environment, 115, 3187-3202.
The Enhanced Vegetation Index (EVI) was developed by DeFries, R., & Townshend, J. R. G. The formula provided can be attributed to Huete, A. R., et al. (2002) in the paper titled "Overview of the radiometric and biophysical performance of the MODIS vegetation indices".
Treitz, P., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-cover and land-use change—an introduction. Progress in Planning, 61, 269-279.
Vasuki, Y. (2019). The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A visual analytics approach. Ore Geology Reviews, 108, 23-32.
Wardlow, B. D., & Egbert, S. L. (2010). A comparison of MODIS 250-m EVI and NDVI data for crop mapping: a case study for southwest Kansas. International Journal of Remote Sensing, 31(3), 805-830.
Watkins, C. B., Nock, J. F., Fellman, J. K., & Whitaker, B. D. (2002). A summary of physiological processes or disorders in fruits, vegetables, and ornamental products that are delayed or decreased, increased, or unaffected by application of 1-methylcyclopropene (1- MCP). Department of Horticulture, Cornell University, Ithaca, New York 14853.
Weil, G., Lensky, I. M., Resheff, Y. S., & Levin, N. (2017). Optimizing the timing of unmanned aerial vehicle image acquisition for applied mapping of woody vegetation species using feature selection. Remote Sensing, 9(11).
Wilson, P. G., & Waterhouse, J. T. (1982). Tristaniopsis merguensis (Griff.). Australian Journal of Botany, 30, 435.
Wu, C., et al. (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171–182.
Wulandari, N. (2020). Using the NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) Methods for Check Availability Green Open Space To Meet Oxygen Needs (Case Study: City Yogyakarta) [Master′s thesis, Malang National Institute of Technology].
Yano, K., & Takaki, M. (2005). Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biology and Biochemistry, 37(8), 1569-1572.
74

Yarli, N. (2011). Ecology of ′Pelawan Tree′ (Tristaniopsis merguensis Griff.) as a Host of ′Pelawan Fungi′ in Central Bangka Regency [Master′s thesis, Bogor Agricultural University].
Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of Vegetation Indices Derived from UAV Data for Differentiation of Tillage Effects in Agriculture. Remote Sensing, 11, 1548.
Yin, J., Dong, J., Hamm, N. A., Li, Z., Wang, J., Xing, H., & Fu, P. (2021). Integrating remote sensing and geospatial big data for urban land use mapping: A review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514.
Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., et al. (2014). Meta-discoveries from a synthesis of satellite-based landcover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588.
Yunianto, B. (2009). A Study on the Problems of Tin Mining in the Bangka Belitung Islands Province as Input for National Mining Policy. Mineral and Coal Technology, 5, 97-113.
Zhang, H., Schroder, J. L., Fuhrman, J. K., Basta, N. T., Storm, D. E., & Payton, M. E. (2005). Path and multiple regression analyses of phosphorus sorption capacity. Soil Science Society of America Journal, 69, 96-106.
Zheng, G., & Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9, 2719-2745.
75
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2023-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明