博碩士論文 109521149 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.227.107.146
姓名 陳泓序(Hung-Shiu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波及毫米波CMOS高功 E類輸出負載多相位振盪器暨二相位移鍵調變器之研製
(Microwave and Millimeter Wave CMOS High Power Class E Load Network Multiphase Oscillator and Binary Phase Shift Keying Modulator)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-8以後開放)
摘要(中) 本篇論文主要研製射頻收發機中之本地振盪源的相關電路,第二章的主要內容為操作在 C 頻段的 E 類功率振盪器以及操作在 K 頻段的差動 E 類功率壓控振盪器,上述兩個振盪器皆使用 E 類匹配網路來提高輸出功率,第三章是介紹操作在 K 頻段的鎖相迴路整合反射式調變器,第四章為操作在 K 頻段的四相位 E 類壓控振盪器。本篇論文的設計皆使用台積電 0.18 μm CMOS 實現。第二章主要介紹 E 類匹配網路的設計,首先會先設計出一 E 類功率放大器再透過回授方式滿足巴克豪森準則而穩定振盪,歸功於 E 類匹配網路,本次設計的振盪器輸出功率皆比傳統的交錯耦合對要大得多,E 類匹配網路的設計透過 E類負載公式以及負載遷移(Load pull)技術去最大化輸出功率和效率。而在本章分別設計了單端輸出以及差動輸出的功率振盪器,且操作在不同的頻段,藉此分析E 類匹配網路在不同頻率間的取捨以及考量。差動振盪器的設計是由單端振盪器透過交互耦接滿足巴克豪森準則而穩定振盪。本次電路以台積電 0.18 μm CMOS實現,單端輸出 E 類振盪器在 5.3 GHz 有 16.5 dBm 的輸出功率,距離載波偏移1 MHz 的相位雜訊為−122 dBc/Hz,整體電路優化指數 FOMP 為−212,晶片面積為 0.83×0.76 mm2;而差動輸出 E 類振盪器頻率範圍為 22.29-22.63 GHz,最大輸出功率為 13.6 dBm,距離載波偏移 1 MHz 的相位雜訊為−110 dBc/Hz,整體電路優化指數 FOMPOSC 為−198,晶片面積為 0.5×0.7 mm2。第三章是鎖相迴路整合反射式調變器,這個章節會介紹鎖相迴路的各個子電路以及使用轉移函數來分析迴路的穩定性,鎖相迴路中的振盪器是使用第二章設計的差動功率振盪器。在完成鎖相迴路的設計後接著整合反射式調變器。成功在24.2-24.6 GHz 完成量測,且量測不同 symbol rate 之下的 EVM。本章節以台積電0.18 μm CMOS 實現,量測的頻率範圍為 24.2-24.6 GHz,距離載波偏移 1 MHz 的相位雜訊為−105 dBc/Hz,量測到的最小方均根抖動量為 420 fsec,抖動的積分範圍為 1 kHz 到 40 MHz。全頻段的突波抑制量皆大於 60 dBc,鎖相迴路部分的電路優化指數 FOMN 為−231.63。而調變的部份我們首先量測 LO 抑制,全頻段的LO 抑制接大於 20 dBc,接續量測的是在不同 symbol-rate 之下的 BPSK 和 64-QAM 星座圖與頻譜,測得的 BPSK 和 64-QAM 最小 EVM 為 1.59 %,調變部分的優化指數 FOM 為 108,晶片面積為 1.01×1.4 mm2。
第四章為使用背閘極耦合技術實現之四相位 E 類功率振盪器。電路利用背閘極耦合技術將兩個差動輸出的振盪器進行四相位耦合,本章節會先介紹背閘極耦合技術,且會分析各種四相位耦合技術的優缺點,在使用背閘極耦合時我們有額外給予基體(Body)偏壓以便調整四相位耦合強度,我們也分析了不同的基體偏壓對電路效能的影響。在量測的部分會和大家介紹四相位的量測方法,而本次是使用四埠相量網路分析儀(VNA)操作在接收機模式(receiver mode)來進行四相位的量測。本章節以台積電 0.18 μm CMOS 實現,量測到的頻率範圍為 24.59-25.5 GHz,最大輸出功率為 13.4 dBm,距離載波偏移 1 MHz 的相位雜訊為−117.3 dBc/Hz,最小的相位誤差以及振幅誤差分別是 0.1°和 0.4 dB,優化指數 FOMQ達到−205,晶片面積為 1.04×0.9 mm2
摘要(英) This paper mainly develops the relevant circuits of the local oscillator source in the radio frequency transceiver. The main content of Chapter 2 is a C-Band Class-E power oscillator and a K-Band differential Class-E power voltage-controlled oscillator, which uses a Class-E matching network to increase output power. Chapter 3 introduces a K-band phase-locked loop integrated reflection-type modulator. Chapter 4 introduces a K-band quadrature Class-E voltage-controlled oscillator. The designs in this paper are all fabricated in TSMC 0.18 μm CMOS process.
Chapter 2 will mainly introduce a Class-E matching network design. First, a Class-E power amplifier will be designed, and the oscillation will be stabilized by satisfying the Barkhausen criterion through the feedback method. Due to Class-E matching network, the output power of the proposed oscillator is much larger than the traditional cross-coupled pair. The Class-E matching network design is based on the Class-E load equations and load-pull technology to maximize output power and efficiency.
In this chapter, power oscillators with single-ended output and differential output are designed respectively, which operate in different frequency bands to analyze the trade-offs and considerations of the Class-E matching network between different frequencies. The design of the differential oscillator is based on a single-ended oscillator that satisfies the Barkhausen criterion for stable oscillation through coupling. This circuit is fabricated in TSMC 0.18 μm CMOS process. The single-ended Class-E oscillator has an output power of 16.5 dBm at 5.3 GHz. The phase noise at 1 MHz offset frequency is −122 dBc/Hz. The FOMP of this work can reach to −212. The chip size is 0.83×0.76 mm2. The frequency range of the differential Class-E oscillator is 22.29-22.63 GHz, and the maximum output power is 13.6 dBm. The phase noise at 1 MHz offset frequency is −110 dBc/Hz. The FOMPOSC of this work reaches 198. The chip size is 0.5 × 0.7 mm2.
Chapter 3 is the phase-locked loop integrated reflection-type modulator. This chapter will introduce the various circuits in the phase-locked loop and use the transfer functions to analyze the stability of the loop. The oscillator in the phase-locked loop is designed from Chapter 2. After completing the design of the PLL, the reflection-type modulator is then integrated. The EVM under different symbol rates is successfully measured at 24.2-24.6 GHz. This circuit is fabricated in TSMC 0.18 μm CMOS process. Between 24.2 and 24.6 GHz, the measured phase noise at 1-MHz offset and jitter integrated from 1 kHz to 40 MHz is −105 dBc/Hz and 420 fs, respectively. The measured spur suppression is greater than 60 dBc in all frequencies. The FOMN of this work reaches -231.63. As for the modulation part, the LO suppression of all frequencies is greater than 20 dBc. We measured BPSK, 64-QAM constellation diagram as well as output spectrum with different symbol rates. The measured minimum EVMs for BPSK and 64-QAM modulation schemes are 1.59%. The FOM of this work can reach 108. The chip size is 1.01 × 1.4 mm2.
Chapter 4 is a quadrature class-E power oscillator realized by back-gate coupling technology. The back gate coupling technology is used as the quadrature phase coupling between the oscillating pairs. This chapter will introduce the back gate coupling technology and analyze the advantages and disadvantages of various quadrature coupling technologies. When using back gate coupling, we have additionally given the body (Body) bias to adjust the quadrature coupling strength. We have also analyzed the influence of different body biases on the circuit performance. This circuit is fabricated in TSMC 0.18 μm CMOS process. The measured frequency range is 24.59-25.5 GHz, and the maximum output power is 13.4 dBm. The phase noise at 1 MHz offset frequency is -117.3 dBc/Hz. The minimum phase error and amplitude error are 0.1° and 0.4 dB, respectively. The calculated FOMQ is -205. The chip size is 1.04×0.9 mm2.
關鍵字(中) ★ 鎖相迴路
★ 振盪器
★ 功率放大器
★ E類功率放大器
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 viii
圖目錄 xi
表目錄 xxiii
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 3
1.3 論文貢獻 4
1.4 論文架構 5
第二章 C頻段與K頻段高功率E類壓控振盪器 6
2.1 簡介 6
2.2 E類功率振盪器原理與介紹 8
2.2.1 E類負載網路分析 8
2.2.2 回授網路設計 12
2.3 E類功率振盪器架構設計與分析 14
2.3.1 E類匹配網路設計 14
2.3.2 電路模擬結果 18
2.4 E類功率振盪器實現及結果討論 27
2.4.1 E類功率振盪器量測 28
2.5 C頻段E類壓控振盪器總結 34
2.6 差動E類功率振盪器架構設計與分析 35
2.6.1 差動振盪器設計 35
2.6.2 高頻E類匹配網路設計 36
2.6.3 振盪條件分析 39
2.6.3.1 迴路增益分析 39
2.6.3.2 Gonzalez’s 二埠振盪分析[47] 41
2.6.4 電路模擬結果 45
2.7 差動E類功率振盪器實現及結果討論 55
2.7.1 差動E類功率振盪器量測 56
2.7.2 差動E類功率振盪器除錯 64
2.8 K頻段E類壓控振盪器總結 68
第三章 使用鎖相迴路之K頻段二相位調變器 69
3.1 簡介 69
3.2 鎖相迴路原理與介紹 71
3.2.1 鎖相迴路之基本架構 71
3.2.2 振盪器 73
3.2.3 除頻器 73
3.2.3.1 注入鎖定除頻器(ILFD) 73
3.2.3.2 電流模式邏輯除頻器(CML) 76
3.2.3.3 單相位時序除頻器(TSPC) 78
3.2.3.4 增強式單相位時序除頻器(Extended true-single-phase-clock, E-TSPC) 79
3.2.4 雙轉單放大器 84
3.2.5 相位頻率偵測器/充電幫浦 85
3.2.6 迴路濾波器與迴路穩定分析[63]-[64] 94
3.2.7 反射式調變器 104
3.2.8 鎖相迴路整合二相位移鍵調變器模擬與分析 114
3.3 實現及結果討論 119
3.3.1 鎖相迴路量測 122
3.3.2 調變器量測 129
3.4 總結 136
第四章 四相位高功率E類壓控振盪器 138
4.1 簡介 138
4.2 四相位訊號產生機制 140
4.3 四相位E類壓控振盪器原理介紹 141
4.3.1 四相位機制 143
4.4 實現及結果討論 154
4.4.1 四相位壓控振盪器量測 155
4.4.1.1 相位誤差及振幅誤差量測 162
4.4.2 電路除錯 173
4.5 總結 183
結論 186
參考文獻 188
參考文獻 X. Lu, V. Petrov, D. Moltchanov, S. Andreev, T. Mahmoodi, and M. Dohler, “5G-U: Conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT,” IEEE Commun. Mag., vol. 57, no. 7, pp. 92–98, Jul. 2019.
B. Razavi, Design of Analog CMOS Integrated Circuits, 2e.
D. Turker, A. Bekele, P. Upadhyaya, B. Verbruggen, Y. Cao, S. Ma, C. Erdmann, B. Farley, Y. Frans, K. Chang, “A 7.4-to-14GHz PLL with 54fsrms jitter in 16 nm FinFET for integrated RF-data-converter SoCs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 378–380.
Saeed Alzahrani, Salma Elabd, Shane Smith, Ahmed Naguib, Ramy Tantawy, Waleed Khalil, “Analysis and Design of the Tank Feedline in Millimeter-Wave VCOs,” IEEE Trans. Microw. Theory Tech., vol.70, no.5, pp.2668-2679, 2022.
E. Juntunen, D. Dawn, S. Pinel and J. Laskar, “A High-Efficiency, High-Power Millimeter-Wave Oscillator Using a Feedback Class-E Power Amplifier in 45 nm CMOS,” in IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 430-432, Aug. 2011.
F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4086–4099, Dec. 2006.
Z. Chen et al., “Linear CMOS LC-VCO based on triple-coupled inductors and its application to 40-GHz phase-locked loop,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2977-2989, Aug. 2017.
X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by mathrm{N}^mathrm{2},” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
A. Tharayil Narayanan et al., “A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of -250 dB,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1630-1640, July 2016.
H.-Y. Chang and H.-C. Hu, “A 38–40 GHz high-speed 2n-QAM modulator using sub-harmonically injection-locked quadrature FLL,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 7, pp. 897–900, Jul. 2021.
H. -Y. Chang, W. -C. Chen and T. -Y. Lin, “A Ka-Band low-EVM sub-harmonically injection-locked FLL IQ modulator using stacked-boosting and dual-injection technique,” in IEEE Microw. Wireless Technol. Lett., 2022.
D. Hauspie, E. C. Park and J. Craninckx, “Wideband VCO with simultaneous switching of frequency band active core and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472-1480, Jul. 2007.
W. Fei, H. Yu, H. Fu, J. Ren and K. S. Yeo, “Design and analysis of wide frequency-tuning-range CMOS 60 GHz VCO by switching inductor loaded transformer,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 61, no. 3, pp. 699-711, Mar. 2014.
C. -Y. Chen, J. -L. Lin and H. Wang, “A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822-824, Sept. 2018.
M. Varonen M. Karkkainen, J. Riska, P. Kangaslahti, and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microwave Theory & Tech., vol. 53, no. 4, pp. 1322-1330, April 2005.
Yi-Ching Wu, Yuh-Jing Hwang, Chau-Ching Chiong, Bo-Ze Lu, Huei Wang, “An innovative joint-injection mixer with broadband IF and RF for advanced heterodyne receivers of millimeter-wave astronomy,” IEEE Trans. Microwave Theory & Tech., vol.68, no.12, pp.5408-5422, 2020.
Hong-Yeh Chang, Tian-Wei Huang, H. Wang, Yu-Chi Wang, Pane-Chane Chao and Chung-Hsu Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 908-919, March 2004.
Hong-Yeh Chang, Pei-Si Wu, Tian-Wei Huang, H. Wang, Chung-Long Chang and J. G. J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 20-30, Jan. 2006.
H. Matsuoka and T. Tsukahara, “A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1345–1348, Sep. 1999.
J. Crols and M. S. J. Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1483–1492, Dec. 1995.
D. Onori et al., “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Proc. Eur. Radar Conf., London, UK, 2016.
M. Pashaeifar, L. C. N. de Vreede and M. S. Alavi, “A Millimeter-Wave Mutual-Coupling-Resilient Double-Quadrature Transmitter for 5G Applications,” IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3784-3798, Dec. 2021.
S. Lee, I. Choi, H. Kim and B. Kim, “A Sub-mW Fully Integrated Wide-Band Receiver for Wireless Sensor Network,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 319-321, May 2015.
J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1–5.8-GHz image-reject receiver with wide dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1917-1926, Dec. 2000.
K.-W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” in IEEE Radio Freq. Integrated Circuits Symp. Dig., Boston, MA, USA, 2009.
K. -W. Cheng and Y. -R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016.
J. -P. Hong, S. -J. Yun, N. -J. Oh and S. -G. Lee, “A 2.2-mW back-gate coupled LC quadrature VCO with current reused structure,” in IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 298-300, April 2007.
P. Andreani, “A 2-GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002.
L. Zhang, N. -C. Kuo and A. M. Niknejad, “A 37.5–45 GHz superharmonic coupled QVCO with tunable phase accuracy in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2754-2764, Oct. 2019.
N. O. Sokal and A. D. Sokal, “Class E—A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 168-176, Jun. 1975.
F. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725-735, Dec. 1977.
L. Fanori and P. Andreani, “Class-D CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3105-3119, Dec. 2013.
A. Mazzanti and P. Andreani, “Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise,” in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
M. Babaie and R. B. Staszewski, “A class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120–3133, Dec. 2013.
M. Babaie and R. B. Staszewski, “An ultra-low phase noise class-F 2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679–692, Mar. 2015.
M. Shahmohammadi, M. Babaie, and R. B. Staszewski, “A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610–2624, Nov. 2016.
M. Barzgari, A. Ghafari, A. Nikpaik and A. Medi, “Even-Harmonic Class-E CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 57, no. 6, pp. 1594-1609, June 2022.
H. -Y. Chang, C. -H. Lin, Y. -C. Liu, W. -P. Li and Y. -C. Wang, “A 2.5 GHz high efficiency high power low phase noise monolithic microwave power oscillator,” in IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 730-732, Nov. 2015.
D. K. Choi and S. I. Long, “A physically based analytic model of FET Class-E power amplifiers-designing for maximum PAE,” IEEE Trans. Microw. Theory Techn, vol. 47, no. 9, pp. 1712-1720, Sept. 1999.
林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國101年
C. Yoo, and Q. Huang, “A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-µm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 823–830, May 2003.
B. Razavi, RF Microelectronics, Prentice Hall, 1998.
Yongnan Xuan and C. M. Snowden, “A Generalized Approach to the Design of Microwave Oscillators,” IEEE Trans. Microw. Theory Techn, vol. 35, no. 12, pp. 1340-1347, Dec 1987.
S. Jeon, A. Suarez, and D. B. Rutledge, “Nonlinear design technique for high power switching-mode oscillators,” IEEE Trans. Microwave Theory Tech., vol. 54, no.10, pp. 3630-3640, Oct. 2006.
H. -Y. Chang, C. -H. Lin, Y. -C. Liu, W. -P. Li and Y. -C. Wang, “A K-band high efficiency high power monolithic GaAs power oscillator using class-E network,” in IEEE IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 55-57, Jan. 2017.
S. Jee, J. Moon, J. Kim, J. Son and B. Kim, “Switching Behavior of Class-E Power Amplifier and Its Operation Above Maximum Frequency,” IEEE Trans. Microw. Theory Techn, vol. 60, no. 1, pp. 89-98, Jan. 2012.
G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.
C. -H. Lin, W. -P. Li and H. -Y. Chang, “A fully integrated 2.4-GHz 0.5-W high efficiency class-E voltage-controlled oscillator in 0.15-µm PHEMT process,” in IEEE 2011 Asia-Pacific Microw. Conf.
S. -Y. Lin and H. -K. Chiou, “A modified high phase accuracy SIC-QVCO using a complementary-injection technique,” in IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 222-224, March 2019.
T.-P. Wang and S.-Y. Wang, “Frequency-tuning negative-conductance boosted structure and applications for low-voltage low-power wide-tuning-range VCO,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1137-1144, Jun. 2015.
C. -W. Lim and T. -Y. Yun, “Gm- and Swing-Enhanced Colpitts VCO by Optimization of Capacitance Ratio,” in IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 977-980, Oct. 2020.
N. Mahalingam, K. Ma, K. S. Yeo and W. M. Lim, “K-band high-PAE wide-tuning-range VCO using triple-coupled LC tanks,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 736-740, Nov. 2013.
Y. -H. Chang, “Low-voltage dual-band CMOS voltage-controlled oscillator for Ka-Band and V-Band applications,” in IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1307-1310, Dec. 2021.
Y. -T. Chang and H. -C. Lu, “A K -band high-efficiency VCO using current reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1134-1136, Dec. 2017.
J. Yang, C. -Y. Kim, D. -W. Kim and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173-177, March 2010.
T. -Y. Lian, K. -H. Chien and H. -K. Chiou, “An improved Gm-boosted technique for a K-band cascode Colpitts CMOS VCO,” in IEEE 2013 Asia-Pacific Microw. Conf., 2013, pp. 685-687.
C.-C. Lee, S.-Y. Huang and H.-Y. Chang, “A 44-49 GHz low phase noise CMOS voltage-controlled oscillator with 10-dBm output power and 16.1% efficiency,” in 2014 IEEE MTT-S Int. Microw. Symp, 2014, pp. 1-4.
Qiuting Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456-465, March 1996.
X. P. Yu, M. A. Do, W. M. Lim, K. S. Yeo and J. . -G. Ma, “Design and Optimization of the Extended True Single-Phase Clock-Based Prescaler,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 11, pp. 3828-3835, Nov. 2006.
S. Kim and H. Shin, “Investigation of forward body bias effects on TSPC RF frequency dividers in 0.18-μm CMOS,” International SoC Design Conference, Busan, Korea (South), 2008.
H. Notani, H. Kondoh and Y. Matsuda, “A 622-MHz CMOS phase-locked loop with precharge-type phase frequency detector,” Proc. Symp. VLSI Circuits, pp.129-130, June 1994.
W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 545-548, 1999-Jun.
高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
M. Huang, C. Yu, J. Tsai and T. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 μm COMS technology,” in 2012 Asia Pacific Microw. Conf. Proc., 2012, pp. 643-645.
T. Tired et al., “A 1.5 V 28 GHz beam steering SiGe PLL for an 81-86 GHz E-band transmitter,” IEEE Microw. Wireless Compon. Lett, vol. 26, no. 10, pp. 843-845, Oct. 2016.
呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所博士論文,民國105年。
C.-Y. Chen, J.-L. Lin, and H. Wang, “A 38-GHz high-speed I/Q modulator using weak-inversion biasing modified Gilbert-cell mixer,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822–824, Sep. 2018.
W. -H. Lin, H. -Y. Yang, J. -H. Tsai, T. -W. Huang and H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
Y. Shen, R. Bootsman, M. S. Alavi, and L. C. N. de Vreede, “A wideband IQ-mapping direct-digital RF modulator for 5G transmitters,” IEEE J. Solid-State Circuits, vol. 57, no. 5, pp. 1446–1456, May 2022.
T.-C. Tang, C.-N. Chen, H.-H. Lin, J.-L. Lin, and H. Wang, “A 38-GHz sub-harmonic I/Q modulator using LO frequency quadrupler in 65-nm CMOS,” in Proc. IEEE Asia–Pacific Microw. Conf. (APMC), Dec. 2019, pp. 723–725.
Yin-Cheng Chang, Yuan-Chia Hsu, Shuw-Guann Lin, Ying-Zong Juang and Hwann-Kaeo Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, USA, 2008.
C. -T. Lu, H. -H. Hsieh and L. -H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 793-802, April 2010.
H. Nam, W. Lee, J. Son and J. -D. Park, “A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 3, pp. 284-287, March 2020.
K. -W. Cheng and Y. -R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016.
K. -H. Lu, G. -L. Huang and H. -Y. Chang, “A 17.5-dBm output power 11.2% DC-to-RF efficiency low phase noise CMOS quadrature voltage-controlled oscillator,” in 2018 IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, USA, 2018.
S. -Y. Lin and H. -K. Chiou, “A Modified High Phase Accuracy SIC-QVCO Using a Complementary-Injection Technique,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 222-224, March 2019.
M. Jalalifar and G. -S. Byun, “A Current-Reused Back-Gate Coupling QVCO Using Transformer Feedback Structure,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 534-536, July 2016.
P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, “A transformer-based current-reuse QVCO with an FoM up to −200.5 dBc/Hz,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 749-753, June 2018.
H. -Y. Chang and Y. -T. Chiu, “K-Band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 46-59, Jan. 2012.
“Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices AN0001,1997.
N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, “Design of class-E power VCO in 65 nm CMOS technology: application to RF transmitter architecture,” IEEE Int. Symp. on Circuits and Systems, pp. 984-987, May 2008.
指導教授 張鴻埜 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明