參考文獻 |
X. Lu, V. Petrov, D. Moltchanov, S. Andreev, T. Mahmoodi, and M. Dohler, “5G-U: Conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT,” IEEE Commun. Mag., vol. 57, no. 7, pp. 92–98, Jul. 2019.
B. Razavi, Design of Analog CMOS Integrated Circuits, 2e.
D. Turker, A. Bekele, P. Upadhyaya, B. Verbruggen, Y. Cao, S. Ma, C. Erdmann, B. Farley, Y. Frans, K. Chang, “A 7.4-to-14GHz PLL with 54fsrms jitter in 16 nm FinFET for integrated RF-data-converter SoCs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 378–380.
Saeed Alzahrani, Salma Elabd, Shane Smith, Ahmed Naguib, Ramy Tantawy, Waleed Khalil, “Analysis and Design of the Tank Feedline in Millimeter-Wave VCOs,” IEEE Trans. Microw. Theory Tech., vol.70, no.5, pp.2668-2679, 2022.
E. Juntunen, D. Dawn, S. Pinel and J. Laskar, “A High-Efficiency, High-Power Millimeter-Wave Oscillator Using a Feedback Class-E Power Amplifier in 45 nm CMOS,” in IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 430-432, Aug. 2011.
F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4086–4099, Dec. 2006.
Z. Chen et al., “Linear CMOS LC-VCO based on triple-coupled inductors and its application to 40-GHz phase-locked loop,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2977-2989, Aug. 2017.
X. Gao, E. A. M. Klumperink, M. Bohsali and B. Nauta, “A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by mathrm{N}^mathrm{2},” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009.
A. Tharayil Narayanan et al., “A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of -250 dB,” IEEE J. Solid-State Circuits, vol. 51, no. 7, pp. 1630-1640, July 2016.
H.-Y. Chang and H.-C. Hu, “A 38–40 GHz high-speed 2n-QAM modulator using sub-harmonically injection-locked quadrature FLL,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 7, pp. 897–900, Jul. 2021.
H. -Y. Chang, W. -C. Chen and T. -Y. Lin, “A Ka-Band low-EVM sub-harmonically injection-locked FLL IQ modulator using stacked-boosting and dual-injection technique,” in IEEE Microw. Wireless Technol. Lett., 2022.
D. Hauspie, E. C. Park and J. Craninckx, “Wideband VCO with simultaneous switching of frequency band active core and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472-1480, Jul. 2007.
W. Fei, H. Yu, H. Fu, J. Ren and K. S. Yeo, “Design and analysis of wide frequency-tuning-range CMOS 60 GHz VCO by switching inductor loaded transformer,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 61, no. 3, pp. 699-711, Mar. 2014.
C. -Y. Chen, J. -L. Lin and H. Wang, “A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822-824, Sept. 2018.
M. Varonen M. Karkkainen, J. Riska, P. Kangaslahti, and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microwave Theory & Tech., vol. 53, no. 4, pp. 1322-1330, April 2005.
Yi-Ching Wu, Yuh-Jing Hwang, Chau-Ching Chiong, Bo-Ze Lu, Huei Wang, “An innovative joint-injection mixer with broadband IF and RF for advanced heterodyne receivers of millimeter-wave astronomy,” IEEE Trans. Microwave Theory & Tech., vol.68, no.12, pp.5408-5422, 2020.
Hong-Yeh Chang, Tian-Wei Huang, H. Wang, Yu-Chi Wang, Pane-Chane Chao and Chung-Hsu Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 908-919, March 2004.
Hong-Yeh Chang, Pei-Si Wu, Tian-Wei Huang, H. Wang, Chung-Long Chang and J. G. J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 20-30, Jan. 2006.
H. Matsuoka and T. Tsukahara, “A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1345–1348, Sep. 1999.
J. Crols and M. S. J. Steyaert, “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1483–1492, Dec. 1995.
D. Onori et al., “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Proc. Eur. Radar Conf., London, UK, 2016.
M. Pashaeifar, L. C. N. de Vreede and M. S. Alavi, “A Millimeter-Wave Mutual-Coupling-Resilient Double-Quadrature Transmitter for 5G Applications,” IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3784-3798, Dec. 2021.
S. Lee, I. Choi, H. Kim and B. Kim, “A Sub-mW Fully Integrated Wide-Band Receiver for Wireless Sensor Network,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 319-321, May 2015.
J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1–5.8-GHz image-reject receiver with wide dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1917-1926, Dec. 2000.
K.-W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” in IEEE Radio Freq. Integrated Circuits Symp. Dig., Boston, MA, USA, 2009.
K. -W. Cheng and Y. -R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016.
J. -P. Hong, S. -J. Yun, N. -J. Oh and S. -G. Lee, “A 2.2-mW back-gate coupled LC quadrature VCO with current reused structure,” in IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 298-300, April 2007.
P. Andreani, “A 2-GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002.
L. Zhang, N. -C. Kuo and A. M. Niknejad, “A 37.5–45 GHz superharmonic coupled QVCO with tunable phase accuracy in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2754-2764, Oct. 2019.
N. O. Sokal and A. D. Sokal, “Class E—A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. SC-10, no. 6, pp. 168-176, Jun. 1975.
F. Raab, “Idealized operation of the class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725-735, Dec. 1977.
L. Fanori and P. Andreani, “Class-D CMOS Oscillators,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3105-3119, Dec. 2013.
A. Mazzanti and P. Andreani, “Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise,” in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2716-2729, Dec. 2008.
M. Babaie and R. B. Staszewski, “A class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120–3133, Dec. 2013.
M. Babaie and R. B. Staszewski, “An ultra-low phase noise class-F 2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability,” IEEE J. Solid-State Circuits, vol. 50, no. 3, pp. 679–692, Mar. 2015.
M. Shahmohammadi, M. Babaie, and R. B. Staszewski, “A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610–2624, Nov. 2016.
M. Barzgari, A. Ghafari, A. Nikpaik and A. Medi, “Even-Harmonic Class-E CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 57, no. 6, pp. 1594-1609, June 2022.
H. -Y. Chang, C. -H. Lin, Y. -C. Liu, W. -P. Li and Y. -C. Wang, “A 2.5 GHz high efficiency high power low phase noise monolithic microwave power oscillator,” in IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 730-732, Nov. 2015.
D. K. Choi and S. I. Long, “A physically based analytic model of FET Class-E power amplifiers-designing for maximum PAE,” IEEE Trans. Microw. Theory Techn, vol. 47, no. 9, pp. 1712-1720, Sept. 1999.
林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國101年
C. Yoo, and Q. Huang, “A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-µm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 823–830, May 2003.
B. Razavi, RF Microelectronics, Prentice Hall, 1998.
Yongnan Xuan and C. M. Snowden, “A Generalized Approach to the Design of Microwave Oscillators,” IEEE Trans. Microw. Theory Techn, vol. 35, no. 12, pp. 1340-1347, Dec 1987.
S. Jeon, A. Suarez, and D. B. Rutledge, “Nonlinear design technique for high power switching-mode oscillators,” IEEE Trans. Microwave Theory Tech., vol. 54, no.10, pp. 3630-3640, Oct. 2006.
H. -Y. Chang, C. -H. Lin, Y. -C. Liu, W. -P. Li and Y. -C. Wang, “A K-band high efficiency high power monolithic GaAs power oscillator using class-E network,” in IEEE IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 55-57, Jan. 2017.
S. Jee, J. Moon, J. Kim, J. Son and B. Kim, “Switching Behavior of Class-E Power Amplifier and Its Operation Above Maximum Frequency,” IEEE Trans. Microw. Theory Techn, vol. 60, no. 1, pp. 89-98, Jan. 2012.
G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997.
C. -H. Lin, W. -P. Li and H. -Y. Chang, “A fully integrated 2.4-GHz 0.5-W high efficiency class-E voltage-controlled oscillator in 0.15-µm PHEMT process,” in IEEE 2011 Asia-Pacific Microw. Conf.
S. -Y. Lin and H. -K. Chiou, “A modified high phase accuracy SIC-QVCO using a complementary-injection technique,” in IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 222-224, March 2019.
T.-P. Wang and S.-Y. Wang, “Frequency-tuning negative-conductance boosted structure and applications for low-voltage low-power wide-tuning-range VCO,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1137-1144, Jun. 2015.
C. -W. Lim and T. -Y. Yun, “Gm- and Swing-Enhanced Colpitts VCO by Optimization of Capacitance Ratio,” in IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 977-980, Oct. 2020.
N. Mahalingam, K. Ma, K. S. Yeo and W. M. Lim, “K-band high-PAE wide-tuning-range VCO using triple-coupled LC tanks,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 736-740, Nov. 2013.
Y. -H. Chang, “Low-voltage dual-band CMOS voltage-controlled oscillator for Ka-Band and V-Band applications,” in IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1307-1310, Dec. 2021.
Y. -T. Chang and H. -C. Lu, “A K -band high-efficiency VCO using current reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 1134-1136, Dec. 2017.
J. Yang, C. -Y. Kim, D. -W. Kim and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 173-177, March 2010.
T. -Y. Lian, K. -H. Chien and H. -K. Chiou, “An improved Gm-boosted technique for a K-band cascode Colpitts CMOS VCO,” in IEEE 2013 Asia-Pacific Microw. Conf., 2013, pp. 685-687.
C.-C. Lee, S.-Y. Huang and H.-Y. Chang, “A 44-49 GHz low phase noise CMOS voltage-controlled oscillator with 10-dBm output power and 16.1% efficiency,” in 2014 IEEE MTT-S Int. Microw. Symp, 2014, pp. 1-4.
Qiuting Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456-465, March 1996.
X. P. Yu, M. A. Do, W. M. Lim, K. S. Yeo and J. . -G. Ma, “Design and Optimization of the Extended True Single-Phase Clock-Based Prescaler,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 11, pp. 3828-3835, Nov. 2006.
S. Kim and H. Shin, “Investigation of forward body bias effects on TSPC RF frequency dividers in 0.18-μm CMOS,” International SoC Design Conference, Busan, Korea (South), 2008.
H. Notani, H. Kondoh and Y. Matsuda, “A 622-MHz CMOS phase-locked loop with precharge-type phase frequency detector,” Proc. Symp. VLSI Circuits, pp.129-130, June 1994.
W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 545-548, 1999-Jun.
高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
劉深淵、楊清淵,鎖相迴路,滄海書局,民國 100 年。
M. Huang, C. Yu, J. Tsai and T. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 μm COMS technology,” in 2012 Asia Pacific Microw. Conf. Proc., 2012, pp. 643-645.
T. Tired et al., “A 1.5 V 28 GHz beam steering SiGe PLL for an 81-86 GHz E-band transmitter,” IEEE Microw. Wireless Compon. Lett, vol. 26, no. 10, pp. 843-845, Oct. 2016.
呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所博士論文,民國105年。
C.-Y. Chen, J.-L. Lin, and H. Wang, “A 38-GHz high-speed I/Q modulator using weak-inversion biasing modified Gilbert-cell mixer,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 9, pp. 822–824, Sep. 2018.
W. -H. Lin, H. -Y. Yang, J. -H. Tsai, T. -W. Huang and H. Wang, “1024-QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
Y. Shen, R. Bootsman, M. S. Alavi, and L. C. N. de Vreede, “A wideband IQ-mapping direct-digital RF modulator for 5G transmitters,” IEEE J. Solid-State Circuits, vol. 57, no. 5, pp. 1446–1456, May 2022.
T.-C. Tang, C.-N. Chen, H.-H. Lin, J.-L. Lin, and H. Wang, “A 38-GHz sub-harmonic I/Q modulator using LO frequency quadrupler in 65-nm CMOS,” in Proc. IEEE Asia–Pacific Microw. Conf. (APMC), Dec. 2019, pp. 723–725.
Yin-Cheng Chang, Yuan-Chia Hsu, Shuw-Guann Lin, Ying-Zong Juang and Hwann-Kaeo Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, USA, 2008.
C. -T. Lu, H. -H. Hsieh and L. -H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 4, pp. 793-802, April 2010.
H. Nam, W. Lee, J. Son and J. -D. Park, “A compact I/Q upconversion chain for a 5G wireless transmitter in 65-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 3, pp. 284-287, March 2020.
K. -W. Cheng and Y. -R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717-719, Sept. 2016.
K. -H. Lu, G. -L. Huang and H. -Y. Chang, “A 17.5-dBm output power 11.2% DC-to-RF efficiency low phase noise CMOS quadrature voltage-controlled oscillator,” in 2018 IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, USA, 2018.
S. -Y. Lin and H. -K. Chiou, “A Modified High Phase Accuracy SIC-QVCO Using a Complementary-Injection Technique,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 3, pp. 222-224, March 2019.
M. Jalalifar and G. -S. Byun, “A Current-Reused Back-Gate Coupling QVCO Using Transformer Feedback Structure,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 534-536, July 2016.
P. -Y. Wang, G. -Y. Su, Y. -C. Chang, D. -C. Chang and S. S. H. Hsu, “A transformer-based current-reuse QVCO with an FoM up to −200.5 dBc/Hz,” in IEEE Trans. on Circuits Syst. II, Exp. Briefs, vol. 65, no. 6, pp. 749-753, June 2018.
H. -Y. Chang and Y. -T. Chiu, “K-Band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 46-59, Jan. 2012.
“Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices AN0001,1997.
N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, “Design of class-E power VCO in 65 nm CMOS technology: application to RF transmitter architecture,” IEEE Int. Symp. on Circuits and Systems, pp. 984-987, May 2008. |