博碩士論文 108389002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.14.141.128
姓名 陳勉中(Mien-Chung Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 空心球與熱處理對多孔A201鋁合金微結構與機械性質之影響
(Effect of hollow sphere and heat treatment on the microstructures and mechanical properties of A201 aluminum alloy foams)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 以金屬空心球法製備之多孔鋁,內部孔隙為封閉式結構,具有密度低、比強度高、抗壓縮性能好之優點,吸能性為商用泡沫鋁的數倍,極具發展潛力,可應用於抗彈或抗爆領域。A201鋁合金(Al-4.5Cu-0.3Mg-0.7Ag)為鑄造型鋁合金中強度最高者,主要強化方式為析出強化熱處理,可藉由強化相Ω與θ′的析出,提高合金機械性質,實務上依用途不同,可施以T4自然時效、T6頂時效、T7過時效等熱處理方式。本研究利用Φ2mm316L、Φ4mm316L、Φ4mm4605金屬空心球,以壓力滲透鑄造法製備A201多孔鋁,經固溶水淬後,分別施以T4自然時效(RT*4day)、T6頂時效(155°C*20hr)、T7過時效(185°C*5hr)等不同熱處理製程,探討空心球與熱處理對A201多孔鋁微結構與機械性質(壓縮、硬度)之影響。
結果顯示,鑄態多孔鋁之空心球壁微結構,316L為沃斯田鐵,4605為細波來鐵,而鋁基地微結構皆由α-Al+富鐵相+少量Al2Cu共晶相所組成;經時效處理後,由於Ω相與θ′相之析出強化效果,鋁基地硬度明顯提升,又以T6頂時效處理之升幅最大。機械性質部分,由於4605球硬度高,所含其之多孔鋁,壓縮性質均優於含316L球之多孔鋁。除外,降低空心球之尺寸,對壓縮性質亦有正向性提升效果。綜上所述,含Φ4mm4605空心球之多孔鋁,施以T6頂時效處理後,其平台應力(σpl)與單位能量吸收值(W)分別高達190MPa與112J/cm3,乃為目前蒐集文獻中,具最優秀壓縮性質之多孔鋁。
摘要(英) Porous aluminum prepared by the metal hollow sphere method possesses a closed cell structure, offering advantages such as low density, high specific strength, and excellent compression properties. Its energy absorption capacity is several times that of commercial aluminum foam, making it highly promising for applications in ballistic or blast-resistant fields. A201 aluminum alloy (Al-4.5Cu-0.3Mg-0.7Ag) is the highest-strength casting aluminum alloy, primarily strengthened through precipitation strengthening heat treatment. This process involves the precipitation of strengthening phases Ω and θ′ to enhance the mechanical properties of the alloy. In practical applications, different heat treatment methods, such as T4 natural aging, T6 peak aging, and T7 overaging, can be applied depending on the specific requirements.
In this study, A201 aluminum alloy foam was prepared using Φ2mm 316L, Φ4mm 316L, and Φ4mm 4605 metal hollow spheres through pressure infiltration casting. After solution treatment and water quenching, various heat treatment processes, including T4 natural aging (RT*4day), T6 peak aging (155°C*20hr), and T7 overaging (185°C*5hr), were applied to investigate the influence of hollow spheres and heat treatment on the microstructure and mechanical properties (compression and hardness) of A201 aluminum alloy foam.
The results show that the microstructure of the as-cast porous aluminum consists of austenite for 316L and fine pearlite for 4605 in the hollow sphere walls, while the aluminum matrix microstructure is composed of α-Al, iron-rich phases, and a small amount of Al2Cu eutectic phases. After aging treatment, the precipitation strengthening effects of Ω and θ′ phases significantly increase the hardness of the aluminum matrix, with the most significant improvement observed in the T6 peak aging treatment. In terms of mechanical properties, due to the higher hardness of 4605 spheres, porous aluminum containing 4605 spheres exhibits superior compression properties compared to those containing 316L spheres. Furthermore, reducing the size of the hollow spheres has a positive effect on compression properties.
In summary, aluminum alloy foam containing Φ4mm 4605 hollow spheres, subjected to T6 peak aging treatment, achieves a plateau stress (σpl) of up to 190MPa and a specific energy absorption value (W) of 112J/cm3. This represents the best compression properties among the literature-reviewed porous aluminum materials.
關鍵字(中) ★ 多孔鋁
★ A201合金
★ 熱處理
★ 微結構
★ 機械性質
關鍵字(英) ★ aluminum alloy foam
★ A201 alloy
★ heat treatment
★ microstructures
★ mechanical properties
論文目次 目錄
摘要.....Ⅳ
Abstract.....Ⅴ
誌謝.....Ⅶ
目錄.....Ⅷ
圖目錄.....Ⅻ
表目錄.....ⅩⅤ
第一章 前言與文獻回顧.....1
1.1 多孔金屬簡介.....1
1.2 多孔鋁簡介.....2
1.3 多孔鋁的製備方法.....3
1.3.1 鹽類法.........3
1.3.2 發泡法.........3
1.3.3 金屬空心球法....5
1.4 多孔鋁之壓縮性質......6
1.5 多孔鋁之抗彈與抗爆應用.....9
1.6 金屬空心球簡介.....11
1.6.1 無壓式粉末冶金法.....11
1.6.2 316L不鏽鋼球.....11
1.6.3 4605合金鋼球.....11
1.7 A201鋁合金簡介.....12
1.7.1 鋁合金分類.....12
1.7.2 A201鋁合金特色與應用.....13
1.7.3 A201鋁合金之析出相.....14
1.7.3.1 θ析出相.....15
1.7.3.2 S析出相.....16
1.7.3.3 Ω析出相.....16
1.7.4 A201鋁合金之熱處理 17
1.7.4.1 固溶處理(Solution Treatment) 17
1.7.4.2 淬火(Quenching).....18
1.7.4.3 時效處理(Aging).....18
1.8 空心球對多孔鋁的影響.....21
1.8.1 空心球種類的影響.....21
1.8.2 空心球尺寸的影響.....23
1.9 熱處理對多孔鋁的影響.....25
1.10 研究動機與目的.....26

第二章 實驗步驟與方法.....27
2. 實驗流程圖.....28
2.1 316L與4605空心球製備.....28
2.2 多孔鋁熔鑄.....29
2.3 密度、空心球體積分率、孔隙率量測.....30
2.4 熱處理流程.....31
2.5 微結構分析.....31
2.5.1 光學顯微鏡(OM).....31
2.5.2 電子微探儀(EPMA).....32
2.5.3 穿透式電子顯微鏡(TEM).....32
2.5.4 X光繞射分析(XRD).....32
2.6 機械性質分析.....33
2.6.1 維氏硬度試驗(Hardness Test).....33
2.6.2 壓縮試驗(Compression Test).....33

第三章 結果與討論.....34
3.1 多孔鋁物理性質.....34
3.2 微結構分析.....35
3.2.1 光學顯微鏡 (OM).....35
3.2.2 電子微探儀 (EPMA).....40
3.2.2.1 富鐵相成分分析.....40
3.2.2.2 元素Color Mapping分析.....40
3.2.3 X光繞射分析(XRD).....45
3.2.4 穿透式電子顯微鏡(TEM).....47
3.2.4.1 T4自然時效處理.....47
3.2.4.2 T6頂時效處理.....48
3.2.4.3 T7過時效處理.....50
3.2.5 結論.....52
3.3 機械性質分析......53
3.3.1 硬度試驗(Hardness Test).....53
3.3.2 壓縮性質分析(Compression Test).....57
3.3.2.1 空心球對鑄態多孔鋁之影響.....57
3.3.2.2 空心球對T4態多孔鋁之影響.....59
3.3.2.3 空心球對T6態多孔鋁之影響.....61
3.3.2.4 空心球對T7態多孔鋁之影響.....63
3.3.3 結論.....65
3.3.4.1 熱處理對多孔鋁(Φ2mm316L空心球)之影響.....65
3.3.4.2 熱處理對多孔鋁(Φ4mm316L空心球)之影響.....69
3.3.4.3 熱處理對多孔鋁(Φ4mm4605空心球)之影響.....72
3.3.5 結論.....75
3.3.6 多孔鋁壓縮性質彙整.....77

第四章 總結論.....78

第五章 參考資料.....80

第六章 附錄.....88
6.1附錄一.....88
參考文獻 1.[ASM1] J.R. Davis, ASM Specialty Handbook: Stainless Steels, ASM International Materials Park, P.13 (1994)
2.[ASM2] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.3 (1994)
3.[ASM3] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.4 (1994)
4.[ASM4] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.3 (1994)
5.[ASM5] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.4 (1994)
6.[ASM6] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.5 (1994)
7.[ASM7] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.20 (1994)
8.[ASM8] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.718 (1994)
9.[ASTM1] ASTM-B917: Standard Practice for Heat Treatment of Aluminum-Alloy Castings from All Processes, ASTM International (2023)
10.[ASTM2] ASTM-B962: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International (2023)
11.[ASTM3] ASTM-E92-17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International (2023)
12.[ASTM4] ASTM-E9-19: Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM International (2023)
13.[AVI] M.G. Avila, M. Portanova, A. Rabiei, Ballistic performance of composite metal foams, Compos. Struct., Vol.125, PP. 202-211 (2015)
14.[BAI] Song Bai, Puyou Ying, Zhiyi Liu, Jian Wang, Junlin Li, Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys, Mater. Sci. Eng. A, Vol.687, PP.8-16 (2017)
15.[BAN] J. Banhart, F. García-Moreno, K. Heim, H. W. Seeliger, Light-weighting in transportation and defence using aluminium foam sandwich structures, Light Weighting for Defense, Aerospace, and Transportation, Springer, P.61 (2019)
16.[BAR] R.M. Barrer, Synthesis of a zeolitic mineral with chabazite-like sorptive properties, J. Chem. SOC., PP. 127-132 (1948)
17.[BOL] C. Bolat, İ. C. Akgün, A. Göksenli, On the way to real applications: aluminum matrix syntactic foams, European Mechanical Science, Vol.4, PP. 131-141 (2020)
18.[CAM] Francesca Campana, Daniela Pilone, Effect of heat treatments on the mechanical behaviour of aluminium alloy foams, Scr. Mater., Vol.60, PP. 679-682, (2009)
19.[CHA] Chih-Horng Chang, Sheng-Long Lee, Jing-Chie Lin and Rong-Ruey Jeng, The Effect of Silver Content on the Precipitation of the Al-4.6Cu-0.3Mg Alloy, Mater. Trans., Vol.46, PP. 236-240 (2005)
20.[CHA1] Chih-Horng Chang, Sheng-Long Lee, Jing-Chie Lin, Ming-Shan Yeh, Rong-Ruey Jeng, Effect of Ag content and heat treatment on the stress corrosion cracking of Al–4.6Cu–0.3Mg alloy, Mater. Chem. Phys., Vol.91, PP.454-462 (2005)
21.[CHA2] Chih-Horng Chang, Sheng-Long Lee, Tiz-Yu Hsu, and Jing-Chie Lin, Impact of Cu/Mg Ratio on Thermal Stability of Hot Extrusion of Al-4.6Cu-Mg-Ag Alloys, Metall. Mater. Trans. A, Vol.38, PP. 2832–2842 (2007)
22.[CHE] Chester R J, Polmear I J., TEM investigation of precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg alloys, Micron, Vol.11, PP.311-312 (1980)
23.[CHEN1] 陳信文, 李正德, 徐立銘, 周更生, 呂世源, 製備多孔金屬的方法, Patent pending (2000)
24.[CHEN2] Mien-Chung Chen, Tsai-Fu Chung, Cheng-Ling Tai, Yu-Hsuan Chen, Jer-Ren Yang, Sheng-Long Lee, Chien-Nan Hsiao, Cheng-Si Tsao, Che-Min Chou, Quantitative evaluation of the effect of Ag-addition on the concurrently-existing precipitation kinetics in the aged Al-Cu-Mg(-Ag) alloys, Mater. Des., Vol.227, 111766 (2023)
25.[CHUNG] Tsai-Fu Chung, Yo-Lun Yang, Chien-Nan Hsiao, Wei-Chih Li, Bo-Ming Huang, Cheng-Si Tsao, Zhusheng Shi, Jianguo Lin, Paul E. Fischione, Takahito Ohmura, Jer-Ren Yang, Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy, Int. j. lightweight mater. manuf., Vol.1, PP. 142-156 (2018)
26.[COL] A.J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, B. Sanford, E. Gonzalez, et al., Processing and properties of MIM AISI 4605 via master alloy routes, Metal Powder Industries Federation, PP. 4-35 (2012)
27.[COX] James Cox, Dung D. Luong, Vasanth Chakravarthy Shunmugasamy, Nikhil Gupta, Oliver M. Strbik III, Kyu Cho, Dynamic and Thermal Properties of Aluminum alloya356/Silicon Carbide Hollow Particle Syntactic Foams, Metals, Vol.4, PP. 530-548 (2014)
28.[DAV] N.J. Davidson: Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0, AFS, PP. 232-247 (1988)
29.[ELL] Elliott, J. C., U.S. Patent, 2751289 (1956)
30.[GAV] M. Gavgali, B. Aksakal, Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014, Mater. Sci. Eng. A, Vol.254, PP.189–199 (1998)
31.[GIB] L. J. Gibson, M. F. Ashby, Cellular Solids : Structure and Properties, Cambridge: Cambridge University Press (1997)
32.[GON] Gonzalo Alejandro, Rocha Rivero, Benjamin Franklin Schultz, J.B. Ferguson, Compressive properties of Al-A206/sic and Mg-AZ91/sic Syntactic foams, J. Mater. Res., Vol.28, PP. 2426-2435 (2013)
33.[IBR] A. Ibrahim, C. Körner, R. F. Singer, The effect of TiH2 particle size on the morphology of al-foam produced by pm process, Adv. Eng. Mater., Vol.10, PP. 845-848 (2018)
34.[JIN] L. Jing, X. Su, F. Yang, et al, Compressive strain rate dependence and constitutive modeling of closed-cell aluminum foams with various relative densities. J. Mater. Sci., Vol.53, PP. 14739–14757 (2018)
35.[KAN] Sung Jin Kang , Jian-Min Zuo , Heung Nam Han , Miyoung Kim, Ab initio study of growth mechanism of omega precipitates in Al-Cu-Mg-Ag alloy and similar systems, J. Alloys Compd., Vol.737, PP. 207-212 (2018)
36.[KEN] A.R Kennedy, The effect of TiH2 heat treatment on gas release and foaming in Al–TiH2 preforms, Scr. Mater., Vol. 47, PP. 763-767 (2002)
37.[KIS] M. Kiser, M.Y. He, F.W. Zok, The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading, Acta Mater., Vol.47, PP. 2685-2694 (1999)
38.[KNO] K. M. Knowles, W. M. Stobbs, The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys, Acta Cryst., Vol.44, PP. 207-227 (1988)
39.[KOR] Kornél Májlinger, Imre Norbert Orbulov, Characteristic compressive properties of hybrid metal matrix syntactic foams, Mater. Sci. Eng. A, Vol.606, PP. 248-256 (2014)
40.[KOV] L. Kovarik, S.A. Court, H.L. Fraser, M.J. Mills, GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys, Acta Mater., Vol.56, PP. 4804-4815 (2008)
41.[KRE] Grilec Kresimir, Marić Gojko, Jakovljević Suzana, A study on energy absorption of aluminium foam. BHM Bergund Hüttenmännische Monatshefte. Vol.155, PP. 231-234 (2010)
42.[LEE] Lee DH, Nam SW., Role of Mn-dispersoid in the fracture toughness enhancement of A1–Zn–Mg–(Mn) alloys, Vol.1, Met. Mater., PP. 171–176 (1995)
43.[LEE1] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9-34 (2018)
44.[LEE2] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9-41 (2018)
45.[LEE3] 李勝隆, 金屬熱處理:原理與應用, 全華, P.9-52 (2018)
46.[LI] Q. M. Li, I. Magkiriadis and J. J. Harrigan, Compressive Strain at the Onset of Densification of Cellular Solids, J. Cell. Plast., Vol.42, PP. 371-392 (2016) [LIU1] Y. Liu, F. Teng, F.H. Cao, Z.X. Yin, Y. Jiang, S.B. Wang, P.K. Shen, Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging, J. Alloys Compd., Vol.774, PP.988-996 (2019)
47.[LIU1] Hongwei Liu, Yongan Zhang, Jianbo Zhang , Baohong Zhu, Feng Wang , Zhihui Li , Xiwu Li , Baiqing Xiong, DSC and TEM study of Al-Cu-Mg-Ag alloy ageing at low and elevated temperature, Adv. Mater. Res., Vol.295, PP. 1225-1229 (2011)
48.[LIU2] Xiao Yan Liu, Qing Lin Pan, Cong Ge Lu, Yun Bin Hea,Wen Bin Li ,Wen Jie Liang, Microstructure and mechanical properties of Al–Cu–Mg–Mn–Zr alloy with trace amounts of Ag, Mater. Sci. Eng. A, Vol.639, PP. 128-132 (2009)
49.[MA] L. Q. Ma and Z. L. Song, Cellular structure control of aluminum foams during foaming process of aluminum melt, Scr. Mater., Vol. 39, PP. 1523-1528 (1998)
50.[MAR] Jacob Marx, Afsaneh Rabiei, Overview of composite metal foams and their properties and performance, Adv. Eng. Mater., Vol.19, 1600776 (2017)
51.[MAR2] J.A. Santa Maria, B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Al–Al2O3 syntactic foams – Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams, Mater. Sci. Eng. A, Vol.582, PP. 415-422 (2013)
52.[MARX] J. Marx, M. Portanova, A. Rabiei, Ballistic performance of composite metal foam against large caliber threats, Compos. Struct., Vol.225, 111032 (2019)
53.[MAZ] F.M.Mazzolani, Aluminum Structural Design, Springer, P.16 (2003)
54.[MCB] J.W. Mcbain, The Sorption of Gases and Vapors by Solids, Rutledge and Sons, P.8 (1932)
55.[MPIF] MPIF-Standard-50, Preparing and Evaluating Metal Injection Molded (MIM) Sintered/Heat Treated Tension Test Specimens, Metal Powder Industries Federation (2023)
56.[MUD] B.C Buddle, The precipitate Ω phase in Al-Cu-Mg-Ag alloys, Acta Mater., Vol.37, PP. 777-789 (1989)
57.[MUK] T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi1, T.G. Nieh and K. Higashi, Experimental study of energy absorption in a Close-celled aluminum foam under dynamic loading, Scr. Mater., Vol.40, PP. 921–927 (1999)
58.[MUKH] A. K. Mukhopadhyay, Nucleation of Ω Phase in an Al-Cu-Mg Alloy Containing Small Additions of Ag, Mater. Trans., Vol.38, PP.478-482 (1997)
59.[NAG] S. Nagata, K. Kanaiwa and T. Ichikawa, Method for the preparation of a spongy metallic body, U.S. Patent, 4556096 (1985)
60.[NIN] Ningzhen Wang, Xiang Chen, Yanxiang Li, Yuan Liu, Huawei Zhang and Xiong Wang, Preparation and Compressive Performance of an A356 Matrix Syntactic Foam, Mater. Trans., Vol.59, PP.699-705 (2018)
61.[NOR] Norbert O., I., Szlancsik, A., Kemény, A., Kincses, D., Compressive mechanical properties of low-cost aluminium matrix syntactic foams, Compos. Part A, 105923 (2020)
62.[PUG] H. Puga, V.H. Carneiro, C. Jesus, J. Pereira, V. Lopes, Influence of particle diameter in mechanical performance of Al expanded clay syntactic foams, Compos. Struct., Vol.184, PP. 698-703 (2018)
63.[RAB1] A. Rabiei, A.T. O’Neill, A study on processing of a composite metal foam via casting, Mater. Sci. Eng. A, Vol.404, PP. 159-164 (2005)
64.[RIV] Rocha Rivero, G., Schultz, B., Ferguson, J., Gupta, N., Rohatgi, P., Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams, J. Mater. Res., Vol.28, PP. 2426-2435 (2013)
65.[REI] L.Reich, M.Murayama, K.Hono, Evolution of Ω phase in an Al–Cu–Mg–Ag alloy a three-dimensional atom probe study, Acta Mater., Vol.46, PP. 6053-6062 (1998)
66.[VEN1] Lakshmi J. Vendra, Afsaneh Rabiei, A study on aluminum–steel composite metal foam processed by casting, Mater. Sci. Eng. A, Vol.465, PP. 59-67 (2007)
67.[VEN2] L.J. Vendra, J.A. Brown, A. Rabiei, Effect of processing parameters on the microstructure and mechanical properties of Al–steel composite foam. J Mater Sci 46, 4574–4581 (2011)
68.[VER] B. Verlinden, P. Wouters, E. Aernoudt ,L. Delaey, S.Cauwenberg, Effect of Different Homogenization Treatments on the Hot Workability of Aluminium Alloy AA2024, Mater. Sci. Eng. A, Vol.123, PP.229-237 (1990)
69.[SHU] G.J. Shu, K.S. Hwang, Y.T. Pan, Improvements in sintered density and dimensional stability of powder injection-molded 316L compacts by adjusting the alloying compositions, Acta Mater., Vol.54, PP. 1335-1342 (2006)
70.[SIN] S. Singh, N. Bhatnagar, A survey of fabrication and application of metallic foams (1925–2017), J. Porous Mater., Vol.25, PP. 537–554 (2018)
71.[SOL] R. Soltani, Z. Sarajan, M. Soltani, Foaming of pure aluminium by TiH2, Mater. Res. Innov., Vol.18, PP. 401-406 (2014)
72.[SOS] Sosnik A., U.S. Patent, 2434775 (1948)
73.[TAN1] Wan Tan, Yuan Liu, Canxu Zhou, Xiang Chen, Yanxiang Li , Fabrication, properties, and applications of open-cell aluminum foams: A review, J. Mater. Sci. Technol., Vol.62, PP.11-24 (2021)
74.[TAN2] Wan Tan. et al. Fabrication and compressive behavior of open-cell aluminum foams via infiltration casting using spherical CaCl2 space-holders. China Foundry, Vol.19, PP. 89–98 (2022)
75.[TANG] E. Tang, X. Zhang, Y. Han, Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact, J. Mater. Res. Technol., Vol.8, PP. 4620-4630 (2019)
76.[WAN] Ningzhen Wang, Xiang Chen, Yanxiang Li, Yuan Liu, Huawei Zhang and Xiong Wang, Preparation and Compressive Performance of an A356 Matrix Syntactic Foam, Mater. Trans., Vol.59, PP.699-705 (2018)
77.[WANG] Chunhe Wang, Chunhuan Guo, Ruonan Qin, Fengchun Jiang, Fabrication and characterization of layered structure reinforced composite metal foam, J. Alloys Compd., Vol.895,162658 (2022)
78.[WANG1] Ningzhen Wang, Eric Maire, Xiang Chen, Jérôme Adrien, Yanxiang Li, et al., Compressive performance and deformation mechanism of the dynamic gas injection aluminum foams. Mater. Charact., Vol.147, PP. 11-20 (2019)
79.[WANG2] Ningzhen Wang, Xiang Chen, Yanxiang Li, Yuan Liu, Huawei Zhang, Xiong Wang, Preparation and Compressive Performance of an A356 Matrix Syntactic Foam, Mater. Trans., Vol.59, PP. 699-705 (2018)
80.[XIA] Xingchuan Xia, Xiaowei Chen, Zan Zhang, Xu Chen, Weimin Zhao, Bo Liao, Boyoung Hur, Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Mater. Des., Vol.56, PP. 353-358 (2014)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2023-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明