博碩士論文 110329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.191.98.152
姓名 林與絜(Yu-chieh Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用吡咯烷離子液體修飾鋰離子電池之 Li7La3Zr2O12 基固態電解質與鋰金屬電極界面
(Modification of Li7La3Zr2O7-Based Solid Electrolyte and Li Electrode Interface Using Pyrrolidinium Ionic Liquid for Li-ion Battery)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用熱壓方式製備 Li6.75La3Zr1.75Ta0.25O12 (LLZTO)陶瓷電解質,並且利用離子液體(LiFSI/PMPFSI)作為修飾劑,形成富含 LiF 且穩定的固態電解質界面(Solid electrolyte interphase, SEI),進而提升循環穩定性。吡咯烷離子液體中陽離子部分的非極性脂肪鏈能夠產生疏鋰現象,使鋰金屬沉積均勻,避免有優選位點的發生而造成鋰枝晶形成,而陰離子部分的 FSI-離子中的 S-F 鍵能夠輕易的被破壞,進而形成 LiF,而此化合物已被證實能夠穩定 Li 金屬,在此也量測 LiFSI/PMPFSI 的離子導率,約為 3.29×10-3 S/cm,具有良好的離子導率能在界面傳輸。本研究比較未經修飾的 LLZTO 及使用液態修飾劑(碳酸酯類電解液、丁二腈基電解液、吡咯烷離子液體)修飾後的電化學性質,在長時間充放電循環中,利用傳統碳酸酯基液態電解質修飾的界面極不穩定,不僅電壓上升急劇,拆解電池後也發現固態電解質上具有蜘蛛網狀的鋰枝晶分佈,而使用 LiFSI/PMPFSI 修飾之電池,能夠持續循環 150小時以上。透過 XPS 分析,證明經由離子液體修飾的 SEI 膜具有 LiF、Li3N成份,這種液態修飾的 SEI 顯示了與固態電解質 LLZTO 兼容的界面,同時也是優異的電子阻擋層,能阻止固態電解質被鋰金屬還原,此項研究對於固態鋰電池(SSLMB, Solid-state lithium metal battery )至關重要。
摘要(英) This study utilized hot-pressed Li6.75La3Zr1.75Ta0.25O12 (LLZTO) ceramic electrolyte and employed an ionic liquid (LiFSI/PMPFSI) as a modifier to form a stable SEI (solid-electrolyte interphase) rich in LiF, thereby enhancing cycling stability. The S-F bond of FSI- ions in the ionic liquid can be easily broken,leading to the formation of LiF. This compound has been proven to stabilize Li metal. The ionic conductivity of LiFSI/PMPFSI was also measured and found to be approximately 3.29×10-3 S/cm, exhibiting good ion conductivity for interfacial transport. Additionally, the non-polar fatty chains in the pyrrolidinium-based ionic
liquid can create a “lithiophobic effect”, promoting uniform deposition of lithium metal and preventing the formation of preferential nucleation sites and lithium dendrites. This study compared unmodified LLZTO with LLZTO modified using liquid modifiers (conventional electrolyte, SN-based electrolyte, ionic liquid) and measured the critical current density(CCD).
During long-term charge-discharge cycling, it was observed that the interface modified with the conventional carbonate-based liquid electrolyte was highly unstable. Not only did the voltage rise sharply, but post-disassembly of the battery revealed a spiderweb-like distribution of lithium dendrites on the solid-state electrolyte. In contrast, batteries modified with LiFSI/PMPFSI were able to cycle continuously for over 150 hours. XPS analysis confirmed the presence of LiF and Li3N components in the SEI film modified by the ionic liquid, demonstrating the compatibility of the interface with the solid-state electrolyte LLZTO. This research underscores the critical importance of such interfaces for Solid-State Lithium Metal Batteries (SSLMB).
關鍵字(中) ★ 離子液體
★ 吡咯烷離子液體
★ 石榴石型電解質
★ 鋰離子電池
★ 氟化鋰
關鍵字(英) ★ Ionic liquid electrolyte
★ Pyrrolidinium Ionic Liquids
★ Garnet-type electrolyte
★ Lithium-ion battery
★ LiF
論文目次 摘要 I
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章、前言 1
第二章、文獻回顧 2
2.1. 鋰離子電池簡介 2
2.1.1. 鋰電池之結構組成 2
2.1.2. 鋰電池工作原理 3
2.1.3. 固態電解質界面 4
2.2. 固態電解質 7
2.2.1. LISICON結構 9
2.2.2. NASICON 10
2.2.3. 鈣鈦礦結構 (Perovskite Type) 11
2.2.4. 石榴石結構(Garnet Type) 12
2.3. LLZO基電解質的發展與挑戰 13
2.3.1. 提高離子導電率 13
2.3.2. 電池失效機制 15
2.3.3. 界面修飾方法 18
2.4. 離子液體 20
2.4.1. 離子液體陰陽離子組合 21
2.4.2. 離子液體的應用 23
2.4.3. 離子液體修飾機制 28
2.5. 研究動機 31
第三章、實驗方法 32
3.1. 實驗藥品 32
3.2. 實驗方法 33
3.2.1. LLZTO電解質製備 33
3.2.2. 傳統型液態電解液製備 33
3.2.3. 丁二腈基電解質製備 34
3.2.4. 離子液體配置 34
3.2.5. 電池組裝 35
3.3. 材料分析與鑑定 37
3.3.1. X光繞射儀 (X-ray diffraction, XRD) 37
3.3.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 37
3.3.3. 拉曼光譜儀(Raman Spectrometer) 38
3.3.4. X射線光電子能譜(X-ray photoelectron spectroscopy,XPS) 38
3.4. 電化學分析 39
3.4.1. 電化學阻抗圖譜 (Electrochemical impedance spectroscopy) 39
3.4.2. 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 39
3.4.3. 界面穩定性測試 40
第四章、結果與討論 41
4.1. LLZTO錠片之材料特性分析 41
4.1.1. 燒結後電解質錠片之相分析 41
4.1.2. SEM表面形貌分析 42
4.1.3. 相對密度 43
4.1.4. 交流阻抗分析 44
4.2. 離子液體之材料特性分析 46
4.2.1. 工作電位窗分析 46
4.2.2. 交流阻抗分析 47
4.3. 界面修飾對固態電解質之影響 48
4.3.1. 化學穩定性測試 48
4.3.2. 臨界電流密度分析 50
4.3.3. 長時間恆電流充放電分析 52
4.3.4. SEM表面形貌分析 54
4.3.5. XPS表面元素分析 56
4.3.6. 電池失效機制 58
第五章、結論 60
參考文獻 61
參考文獻 [1] Y. Miao et al., “Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements”, Energies, 2019, Vol. 12, pp. 1074.
[2] K. Liu et al., “Materials for lithium-ion battery safety”, Science advances, 2018, Vol. 4, pp. eaas9820.
[3] L. Liu et al., “Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries”, Progress in Materials Science, 2020, Vol. 111, pp. 100655.
[4] W. Xu et al., “Lithium metal anodes for rechargeable batteries”, Energy Environ. Sci, 2014, Vol. 7, pp. 513-537.
[5] M. Walter et al., “Challenges and benefits of post-lithium-ion batteries”, J. Chem, 2020, Vol. 44, pp. 1677-1683.
[6] S. K. Heiskanen et al., “Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries”, Joule, 2019, Volume 3, pp. 2322-2333.
[7] X. Wu et al., “Electrolyte for Lithium Protection: From Liquid to Solid”, Green Energy & Environment, 2019, Vol. 4, pp. 360–374.
[8] M. Walter et al., “Solid Garnet Batteries”, Joule, 2019, Vol. 4, pp.1–10.
[9] N. Zhao et al., “Review on solid electrolytes for all-solid-state lithium-ion batteries”, Journal of Power Sources, 2018, Vol. 389, pp. 198–213.
[10] F. Liang et al., “Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet”, Materials Today, 2021, Vol. 50, pp. 418-441.
[11] Q. Zhou et al., “Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries”, Electrochemical Energy Reviews, 2021, Vol. 4, pp. 793–823.
[12] Y. Heng et al., “All-solid-state reference electrode based on a solid-state electrolyte of high densified Lithium lanthanum titanium oxide (LLTO)”, J Electroceram, 2021, Vol. 47, pp.23–30.
[13] J. Lu et al., “Perovskite‐type Li‐ion solid electrolytes: a review”, J Mater Sci: Mater Electron, 2021, Vol. 32, pp.9736–9754.
[14] Y. Zhu et al., “Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films”, Nanoscale Res Lett, 2020, Vol. 15, pp. 153.
[15] P. M. Gonzalez Puente et al., “Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries”, J Adv Ceram, 2021, Vol. 10, pp. 933–972.
[16] M. M. Raju et al., “Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview”, Electrochem, 2021, Vol. 2, pp. 390-414.
[17] H. Salimkhani et al., “A glance at the influence of different dopant elements on Li7La3Zr2O12 garnets”, Ionics, 2021, Vol. 27, pp. 3673–3698.
[18] T. Krauskop et al., “Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries”, Chem. Rev, 2019, Vol. 120, pp. 7745–7794.
[19] E. J. Cheng et al., “Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte”, Electrochimica Acta, 2017, Vol. 223, pp. 85-91.
[20] F. Han et al., “High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes”, Nature Energy, 2019, Vol. 4, pp. 187–196.
[21] H. Gao et al., “Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption”, Nature Communications, 2022, Vol. 13, pp. 5050.
[22] T. Krauskopf et al., “Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12”, Mater Interfaces, 2019, Vol. 15, pp. 14463-14477.
[23] W. Luo et al., “Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer”, Adv. Mater, 2017, Vol. 29, pp. 1606042.
[24] B. Zheng et al., “Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer”, Mater. Interfaces, 2018, Vol. 10, pp. 25473−25482.
[25] X. Gu et al., “Li-containing alloys beneficial for stabilizing lithium anode: A review”, Engineering Reports, 2021, pp. 3:e12339.
[26] B. Liu et al., “Garnet Solid Electrolyte Protected Li-Metal Batteries”, ACS Appl. Mater. Interfaces, 2017, Vol. 9, pp. 18809−18815.
[27] C. J. Wu et al., “Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries”, ACS Appl. Mater. Interfaces, 2017, Vol. 9, pp. 18809−18815.
[28] P. Jankowski et al., “Functional ionic liquids: Cationic SEI-formers for lithium batteries”, Energy Storage Materials, 2019, Vol. 20, pp. 108-117.
[29] W. Zhou et al., “Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries”, Adv. Sci, 2021, pp. 2004490.
[30] Y. Wang et al., “Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials”, Electrochimica Acta, 2007, Vol. 52, pp. 6346–6352.
[31] K. Liu et al., “Ionic liquids for high performance lithium metal batteries”, Journal of Energy Chemistry, 2021, Vol. 59, pp. 320-333.
[32] E. J. Cheng et al., “Ionic liquid-containing cathodes empowering ceramic solid electrolytes”, I Science, 2022,Vol. 25, pp. 103896.
[33] L. Liu et al., “In Situ Formation of a Stable Interface in Solid-State Batteries”, ACS Appl. Mater. Interfaces, 2016, Vol. 8, pp. 32631-32636.
[34] E. J. Cheng et al., “Ceramic-Based Flexible Sheet Electrolyte for Li Batteries”, ACS Appl. Mater. Interfaces, 2020, Vol. 12, pp. 10382–10388.
[35] H. W. Kim et al., “Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries”, J. Mater. Chem. A, 2016, Vol. 4, pp. 17025–17032.
[36] Z. Wang et al., “Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries”, ACS Appl. Energy Mater, 2020, Vol. 3, pp. 4265-4274.
[37] Z. Zhang et al., “A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life”, Adv. Energy Mater, 2020, pp. 1601196.
[38] B. Zheng et al., “Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer”, ACS Appl. Mater. Interfaces, 2018, Vol. 10, pp. 25473–25482.
[39] S. A. Pervez et al., “Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers”, Small, 2020, Vol. 16, pp. 2000279.
[40] R. Zhang et al., “Advanced Micro/Nanostructures for Lithium Metal Anodes”, Adv.Sci, 2017, Vol. 4, pp. 160044.
[41] D. J. Yoo et al., “The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes”, Adv. Energy Mater, 2018, Vol. 8, pp. 1702744.
[42] P. C. Rath et al., “Suppression of Dehydrofluorination Reactions of a Li0.33La0.557TiO3-Nanofiber-Dispersed Poly(vinylidene fluoride-co-hexafluoropropylene) Electrolyte for Quasi-Solid-State Lithium-Metal Batteries by a Fluorine-Rich Succinonitrile Interlayer”, ACS Appl Mater Interfaces, 2023, Vol. 15, pp. 15429-15438.
[43] E. M. Hitzet et al., “Ion-Conducting, Electron-Blocking Layer for High-Performance Solid Electrolytes”, Small, 2021, Vol. 2, pp. 2100014.
[44] H. Xu et al., “Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C”, Nano Lett. 2018, Vol. 18, pp.7414–7418
[45] B. Hu et al., “An in Situ-Formed Mosaic Li7Sn3/LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries”, ACS Appl. Mater. Interfaces 2019, Vol. 11, 38, pp. 34939–34947.
[46] C. Wang et al., “Identifying soft breakdown in all-solid-state lithium battery”, Joule, 2022, Vol. 6, pp. 1770-1781
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2023-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明