博碩士論文 110329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.21.247.145
姓名 顏于傑(Yan Yu-Jie)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用雙朗繆爾探針分析中頻脈衝直流磁控濺鍍放電之性質
(Time-resolved Langmuir double probes measurements in a pulsed mid-frequency DC plasma)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 頻率範圍5kHz-350kHz脈衝直流磁控濺鍍在薄膜沉積上已受到廣泛應用如:介電薄膜的製備。在脈衝直流磁控放電時會因為製程參數的改變,電漿中的電子溫度與離子濃度也會有所不同。可利用朗繆爾探針來測量其電漿密度、電子溫度和電漿位能(Plasma potential)。
在許多文獻中,大多以單朗繆爾探針(Langmuir probe)來量測脈衝直流放電產生電漿環境下的時間解析,Welzel團隊透過自製雙朗繆爾探針(Langmuir probe)量測脈衝直流放電產生電漿環境下的時間解析電漿量測,得到在不同時間下離子濃度與電子溫度的變化
,在不同陰極與探針距離與相同頻率不同空佔比(Duty cycle)下其離子濃度也會發生不同的變化,且得到朗繆爾探針需要在陰極的附近才能觀察到電子溫度與脈衝時間變化的相關性。針對不同製程參數下使用雙朗繆爾探針的量測的文獻較少,本論利用脈衝直流電源濺鍍鋁靶材,並對不同製程參數與電子溫度及離子濃度的影響作探討,最終得知隨著功率的上升其電子溫度由7 eV上升至11.5 eV,且離子濃度也由1×10^18 cm^(-3)上升至7×10^18 cm^(-3)。而靶材與探針量測距離也會使電子溫度及離子濃度發生變化,隨著量測距離增加(1.5 cm到10.1 cm)其電子溫度下降了約27 %(由9 eV至6.5 eV),而離子濃度也由9.5×10^18 cm^(-3)下降至2×10^18 cm^(-3),並針對以上量測的結果進行電漿行為的解釋與探討。
摘要(英) The pulse direct current (DC) magnetron sputtering in the frequency range of 5 kHz to 350 kHz has been widely applied in thin film deposition, such as the preparation of dielectric films. During pulse DC magnetron discharge, changes in process parameters lead to variations in electron temperature and ion density in the plasma. Langmuir probes can be employed to measure plasma density, electron temperature, and plasma potential. In many studies, single Langmuir probes have been used to measure the time-resolved plasma environment generated by pulse DC discharge. The Welzel team, however, utilized homemade dual Langmuir probes to measure the time-resolved plasma environment, revealing variations in ion density and electron temperature at different times. They observed that under the same frequency but different duty cycles and varying distances between the cathode and probe, ion density exhibited distinct changes. Additionally, the correlation between electron temperature and pulse duration was observed near the cathode. There is limited literature on the use of dual Langmuir probes under different process parameters. In this study, we utilized a pulse DC power source for sputtering aluminum targets and investigated the impact of different process parameters on electron temperature and ion density. The results indicated that with increasing power, electron temperature increased from 7 eV to 11.5 eV, and ion density rose from 1×10^18 cm^(-3) to 7×10^18 cm^(-3). The distance between the target and probe also influenced electron temperature and ion density. As the measurement distance increased (from 1.5 cm to 10.1 cm), electron temperature decreased by approximately 27% (from 9 eV to 6.5 eV), and ion density decreased from 9.5×10^18 cm^(-3) to 2×10^18 cm^(-3). The results were further interpreted and discussed in the context of plasma behavior.
關鍵字(中) ★ 雙朗繆爾探針
★ 中頻脈衝直流系統
★ 電子溫度電子濃度
關鍵字(英) ★ Langmuir probe
★ medium-frequency
★ pulsed DC system
★ electron temperature
★ electron density
論文目次 目錄
摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1研究背景 1
1-2研究動機 2
第二章 基礎理論及文獻回顧 3
2-1電漿概論 3
2-1-1電漿原理 3
2-1-2電漿參數介紹 5
2-2 濺鍍系統簡介 7
2-2-1 磁控濺鍍系統 8
2-2-2 脈衝直流磁控濺鍍系統 9
2-3朗繆爾探針量測基本概論 11
2-3-1 電漿中朗繆爾探針的量測行為 11
2-3-2 雙朗繆爾探針介紹與應用 15
第三章 研究方法 20
3-1實驗設備架構 20
3-2實驗流程 21
第四章 結果與討論 24
4-1製程壓力與電漿參數之關係 24
4-2靶材與朗繆爾探針間距對於電漿參數之影響 29
4-3脈衝直流功率對於電漿參數之影響 32
4-4脈衝直流頻率對於電漿參數之影響 35
第五章 結論 39
參考文獻 40
參考文獻 [1] Straňák, V., Hubička, Z., Adámek, P., Blažek, J., Tichý, M., Špatenka, P., Wrehde, S., Surface and Coatings Technology, 201(6), 2512–2519,(2006).
[2] Schiller, S., Goedicke, K., Reschke, J., Kirchhoff, V., Schneider, S., & Milde, F., Surface and Coatings Technology, 61(1-3), 331–337,(1993).
[3] Merlino, R. L., American, Journal of Physics, 75(12), 1078–1085,(2007).
[4] Lewi Tonks,Irving Langmuir., PhysRev.33.195, (1929).
[5] Raizer, Y. P.,Gas Discharge Physics.,Springer. (1991).
[6] Chapman, B.,Glow Discharge Processes: Sputtering and Plasma Etching., JOHN WILEY & SONS ,(1980).
[7] J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London , (1995).
[8] Grill, A., Cold Plasma Materials Fabrication: From Fundamentals to Applications., Wiley-IEEE Press., (1994).
[9] Chen, Francis, Introduction to Plasma Physics and Controlled Fusion, (2015).
[10] Pessoa, R. S., Fraga, M. A., Santos, L. V., Galvão, N. K. A. M., Maciel, H. S., & Massi, M., Anti-Abrasive Nanocoatings, 455–479., (2015).
[11] Musil, Jindrřich, Vacuum, 50(3-4), 363–372, (1988).
[12] Aissani, L., Alhussein, A., Zia, A.W., Mamba, G., Rtimi, S., Coatings, 12(11), 1746, (2022).
[13] Ohring, M., Materials Science of Thin Films., Academic Press, (1993).
[14] Zhu, W., Buyle, G., Lopez, J., Shanmugmurthy, S., Belkind, A., Becker, K., & Gryse, R. D., New Journal of Physics, 8(8), 146–146, (2006).
[15] Belkind, A., Freilich, A., Lopez, J., Zhao, Z., Zhu, W., & Becker, K., New Journal of Physics, 7, 90–90, (2005).
[16] I. Langmuir and H. Mott-Smith., Phys. Rev. 28, 727–763, (1926).
[17] Cherrington, B. E., Plasma Chemistry and Plasma Processing, 2(2), 113–140, (1982).
[18] Bryant, P. M., Voronin, S. A., Bradley, J. W., & Vetushka, A., Journal of Applied Physics, 102(4), 043302, (2007).
[19] Yamamoto, K., & Okuda, T., Journal of the Physical Society of Japan, 11(1), 57–68, (1956).
[20] Wong, Chiow San., Mongkolnavin, Rattachat., SpringerBriefs in Applied Sciences and Technology, (2016).
[21] F.F. Chen, Electric Probes, in "Plasma Diagnostic Techniques", ed. by R.H. Huddlestone and S.L. Leonard (Academic Press, New York), Chap. 4, pp. 113-200 (1965).
[22] Johnson, E. O., & Malter, L., Physical Review, 80(1), 58–68, (1950).
[23] Okuda, T., & Yamamoto, K., Journal of Applied Physics, 31(1), 158–162, (1960).
[24] M. Y. Naz, A. Ghaffar, N. Rehman, S. Naseer, M. Zakaullah., Progress In Electromagnetics Research, 114, 113-128, (2011).
[25] Welzel, T., Dunger, T., Kupfer, H., & Richter, F., Journal of Applied Physics, 96(12), 6994–7001, (2004).
[26] Dunger, T., Welzel, T., Welzel, S., & Richter, F., Surface and Coatings Technology, 200(5-6), 1676–1682, (2005).
[27] Richter, F., Welzel, T., Dunger, T., & Kupfer, H., Surface and Coatings Technology, 188-189, 384–391, (2004).
[28] Laframboise, J. G., & Rubinstein, J., Physics of Fluids, 19(12), 1900, (1976).
[29] Bradley, J. W., Bäcker, H., Kelly, P. J., & Arnell, R. D., Surface and Coatings Technology, 142-144, 337–341, (2001).
[30] Bradley, J. W., Bäcker, H., Aranda-Gonzalvo, Y., Kelly, P. J., & Arnell, R. D., Plasma Sources Science and Technology, 11(2), 165–174,(2002).
[31] Straňák, V., Hubička, Z., Adámek, P., Blažek, J., Tichý, M., Špatenka, P., Hippler, R., Wrehde, S., Surface and Coatings Technology, 201(6), 2512–2519, (2006).
[32] Glocker, D. A., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 11(6), 2989–2993, (1993).
[33] Bäcker, H., & Bradley, J. W., Plasma Sources Science and Technology, 14(3), 419–431, (2005).
[34] Seo, S.-H., In, J.-H., & Chang, H.-Y., Plasma Sources Science and Technology, 15(2), 256–265, (2006).
[35] Alami, J., Gudmundsson, J. T., Bohlmark, J., Birch, J., & Helmersson, U., Plasma Sources Science and Technology, 14(3), 525–531, (2005).
[36] Drüsedau, T. P., Löhmann, M., & Garke, B., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(4), 2728–2732, (1998).
[37] Bäcker, H., Bradley, J. W., Kelly, P. J., & Arnell, R. D., Journal of Physics D: Applied Physics, 34(18), 2709–2714, (2001).
[38] Belkind, A., Freilich, A., & Scholl, R., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(4), 1934–1940, (1999).
[39] Bradley, J., Bäcker, H., Kelly, P., & Arnell, R., Surface and Coatings Technology, 135(2-3), 221–228, (2001).
[40] G. Roche, L. Mahoney, Vacuum Solutions, V12, 11, (1999).
[41] Bradley, J. W., Bäcker, H., Aranda-Gonzalvo, Y., Kelly, P. J., & Arnell, R. D., Plasma Sources Science and Technology, 11(2), 165–174. (2002).
指導教授 陳一塵(Chen-I Chen) 審核日期 2024-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明