博碩士論文 105282609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.4.34
姓名 柯莫(RAJ KUMAR PAUDEL)  查詢紙本館藏   畢業系所 物理學系
論文名稱 半经验赝势方法用于二维材料
(Semiempirical Pseudopotential Method for Two Dimensional Materials)
相關論文
★ 石墨烯中電子與平面聲子交互作用的相關問題分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們開發了一種半經驗贗勢(SEPM)之計算方法,可大幅簡化石墨烯、armchair石墨烯奈米帶(aGNR)和單層過渡金屬二硫屬化物(TMDC)之能帶結構的計算。我們的SEPM方法使用二維平面波與沿垂直方向的 B-spline函數作為基函數。此 SEPM 方法結合了局部項和非局部項,這些項被參數化可得到與使用密度泛函理論 (DFT) 計算中獲得的相關量幾乎一致的結果。重點是,儘管我們的方法簡單且僅使用少量參數,但我們能夠忠實地重現從 DFT 獲得的二維材料的完整能帶結構,偏差幾乎可以忽略。

為了進一步證明我們的 SEPM 方法的多功能性,我們將其應用於計算armchair石墨烯奈米帶的能帶結構。通過對奈米帶邊緣處的局部贗勢引入一個簡單的校正項來解釋邊緣效應,我們獲得了與 DFT 計算結果非常接近的能帶結構。這使我們能夠以最少的計算資源來模擬由石墨烯奈米帶構建的真實奈米器件的光學和傳輸特性。我們的方法提供了一種實用且有效的替代方案,可以替代僅依賴於計算要求較高的 DFT 計算,使研究人員能夠以更容易理解的方式研究基於奈米帶系統的電子及光學特性。

除了armchair石墨烯奈米帶之外,我們還將 SEPM 方法的適用性擴展到單層過渡金屬二硫屬化物 (TMDC)。通過參數化 SEPM 方法來擬合DFT 計算中可獲得的相關量,我們能夠準確地得到TMDC 的能帶結構。這為研究 TMDC 的光電特性並探索其在奈米器件中的潛在應用提供了機會。我們的 SEPM 方法為二維材料領域的研究人員提供了一個有價值的工具,提供了一種有效的計算方法來研究其能帶結構和光電特性。

我們的 SEPM 方法的優點在於其簡單性、計算效率以及能準確得到石墨烯、armchair石墨烯奈米帶和單層 TMDC 之能帶結構的能力。只需少量參數,我們的方法就可以對這些材料的電子特性進行可靠的模擬。與僅依賴 DFT 計算相比,我們的方法顯著的減少了計算負擔,為探索奈米材料的電子行為提供了實用且有效的工具。這為進一步研究這些材料的光學和傳輸特性及其在奈米器件中的潛在應用鋪平了道路。
摘要(英) We have developed a semi-empirical pseudopotential (SEPM) method for efficiently calculating the electronic structures of graphene, armchair graphene nanoribbons (aGNRs), and monolayer transition metal dichalcogenides (TMDCs). Our approach combines the use of two-dimensional plane waves with B-spline functions along the perpendicular direction as basis functions. The SEPM method incorporates both local and non-local terms, which are parameterized to accurately reproduce relevant quantities obtained from density-functional theory (DFT) calculations. Remarkably, despite the simplicity of our method and the use of only a small number of parameters, we are able to faithfully reproduce the complete band structure of graphene obtained from DFT with negligible deviation.

To further demonstrate the versatility of our SEPM method, we apply it to compute the band structures of armchair graphene nanoribbons. By introducing a simple correction term to the local pseudopotentials at the nanoribbon edges, which accounts for the edge effects, we obtain band structures that closely match the results obtained from DFT calculations. This capability allows us to simulate the optical and transport properties of realistic nanodevices constructed from graphene nanoribbons with minimal computational effort. Our method offers a practical and efficient alternative to solely relying on computationally demanding DFT calculations, enabling researchers to investigate the electronic and optical properties of nanoribbon-based systems in a more accessible manner.

In addition to armchair graphene nanoribbons, we extend the applicability of our SEPM method to monolayer transition metal dichalcogenides (TMDCs). By parameterizing the SEPM to fit the relevant quantities obtained from DFT calculations, we are able to accurately reproduce the band structures of TMDCs. This opens up opportunities to investigate the optoelectronic properties of TMDCs and explore their potential applications in nanodevices. Our SEPM method provides a valuable tool for researchers working in the field of two-dimensional materials, offering a computationally efficient approach to study their band structures and optoelectronic properties.

The advantages of our SEPM method lie in its simplicity, computational efficiency, and ability to accurately capture the band structures of graphene, armchair graphene nanoribbons, and monolayer TMDCs. With only a small number of parameters, our method allows for reliable simulations of these materials′ electronic properties. By significantly reducing the computational burden compared to solely relying on DFT calculations, our approach provides a practical and efficient tool for exploring the electronic behavior of nanomaterials. This paves the way for further investigations into the optical and transport properties of these materials and their potential applications in nanodevices.
關鍵字(中) ★ 密度泛函理論
★ 半經驗贗勢
★ 石墨烯
★ 過渡金屬二硫屬化物
★ 能帶結構
★ 扶手椅石墨烯納米帶
關鍵字(英) ★ Density Functional Theory
★ Semiempirical pseudooptential
★ Graphene
★ TMDC
★ Bandstructure
★ armchair graphene nanoribbons
論文目次 Contents
Abstract v
1 Introduction and Theory Overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Two dimensional Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Planar basis method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Theoretical overview 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 The Many body Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Semiemperical pseudopotential . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 B-spline basis Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Electronic states of Graphene using SEPM 31
3.1 Fitting of the Local Pseudopotential for Graphene . . . . . . . . . . . . . 31
3.2 Fitting of the Non-Local Pseudopotential for Graphene . . . . . . . . . . 39
3.3 Fourier representation of Kohn-Sham equation in planar basis . . . . . . 40
3.4 Band structure of graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Electronic states of armchair graphene nanoribbons (aGNRs) using SEPM 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Band structure of armchair graphene nanoribbon . . . . . . . . . . . . . . 51
viii
5 Electronic structure of monolayer transition metal dichalcogenides (TMDCs)
using SEPM 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Fitting strategy for the Local Pseudopotential for monolayer TMDC . . . 66
5.3 Fitting of the Non-Local Pseudopotential for WSe2 . . . . . . . . . . . . . 74
5.4 Kinetic and Overlap Matrix Element within Planar Basis . . . . . . . . . 78
5.5 Local Pseudopotential Matrix Element . . . . . . . . . . . . . . . . . . . . 78
6 Conclusions 80
Bibliography 83
參考文獻 [1] John Bardeen. “Surface States and Rectification at a Metal Semi-Conductor Contact”. In: Phys. Rev. 71 (10 1947), pp. 717–727.
[2] Robert R Schaller. “Moore’s law: past, present and future”. In: IEEE spectrum 34.6
(1997), pp. 52–59.
[3] Hartmut Haug and Stephan W Koch. Quantum theory of the optical and electronic
properties of semiconductors. World Scientific Publishing Company, 2009.
[4] Kostya S Novoselov et al. “Electric field effect in atomically thin carbon films”.
In: science 306.5696 (2004), pp. 666–669.
[5] Kin Fai Mak et al. “Atomically thin MoS 2: a new direct-gap semiconductor”. In:
Physical review letters 105.13 (2010), p. 136805.
[6] Young-Woo Son, Marvin L Cohen, and Steven G Louie. “Energy gaps in
graphene nanoribbons”. In: Physical review letters 97.21 (2006), p. 216803.
[7] Young-Woo Son, Marvin L Cohen, and Steven G Louie. “Half-metallic graphene
nanoribbons”. In: Nature 444.7117 (2006), pp. 347–349.
[8] Alexey I Ekimov and Alexei A Onushchenko. “Quantum size effect in threedimensional microscopic semiconductor crystals”. In: ZhETF Pisma Redaktsiiu 34
(1981), p. 363.
[9] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In: Physical
review 136.3B (1964), B864.
[10] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange
and correlation effects”. In: Physical review 140.4A (1965), A1133.
[11] AH Castro Neto et al. “The electronic properties of graphene”. In: Reviews of
modern physics 81.1 (2009), p. 109.
[12] Yong Xu, Zuanyi Li, and Wenhui Duan. “Thermal and thermoelectric properties
of graphene”. In: Small 10.11 (2014), pp. 2182–2199.
[13] Diana Y Qiu, Felipe H Da Jornada, and Steven G Louie. “Optical spectrum of
MoS 2: many-body effects and diversity of exciton states”. In: Physical review letters 111.21 (2013), p. 216805.
[14] Mark S Hybertsen and Steven G Louie. “Electron correlation in semiconductors
and insulators: Band gaps and quasiparticle energies”. In: Physical Review B 34.8
(1986), p. 5390.
83
[15] Marvin L Cohen and TK Bergstresser. “Band structures and pseudopotential
form factors for fourteen semiconductors of the diamond and zinc-blende structures”. In: Physical Review 141.2 (1966), p. 789.
[16] James R Chelikowsky and Marvin L Cohen. “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors”. In: Physical Review B 14.2 (1976), p. 556.
[17] David Vanderbilt. “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”. In: Physical review B 41.11 (1990), p. 7892.
[18] Kyoko Nakada et al. “Edge state in graphene ribbons: Nanometer size effect and
edge shape dependence”. In: Physical Review B 54.24 (1996), p. 17954.
[19] Jinming Cai et al. “Atomically precise bottom-up fabrication of graphene
nanoribbons”. In: Nature 466.7305 (2010), pp. 470–473.
[20] Yen-Chia Chen et al. “Molecular bandgap engineering of bottom-up synthesized
graphene nanoribbon heterojunctions”. In: Nature nanotechnology 10.2 (2015),
pp. 156–160.
[21] Linghao Yan and Peter Liljeroth. “Engineered electronic states in atomically precise artificial lattices and graphene nanoribbons”. In: Advances in Physics: X 4.1
(2019), p. 1651672.
[22] Daniel J Rizzo et al. “Inducing metallicity in graphene nanoribbons via zeromode superlattices”. In: Science 369.6511 (2020), pp. 1597–1603.
[23] H Sevinçli, M Topsakal, and S Ciraci. “Superlattice structures of graphene-based
armchair nanoribbons”. In: Physical Review B 78.24 (2008), p. 245402.
[24] Juan Pablo Llinas et al. “Short-channel field-effect transistors with 9-atom and 13-
atom wide graphene nanoribbons”. In: Nature communications 8.1 (2017), p. 633.
[25] Haomin Wang et al. “Graphene nanoribbons for quantum electronics”. In: Nature
Reviews Physics 3.12 (2021), pp. 791–802.
[26] Fengnian Xia et al. “Ultrafast graphene photodetector”. In: Nature nanotechnology
4.12 (2009), pp. 839–843.
[27] Thi-Nga Do et al. “Role played by edge-defects in the optical properties of armchair graphene nanoribbons”. In: Nanomaterials 11.12 (2021), p. 3229.
[28] Qiang Sun et al. “Evolution of the topological energy band in graphene nanoribbons”. In: The journal of physical chemistry letters 12.35 (2021), pp. 8679–8684.
[29] Daniel J Rizzo et al. “Rationally designed topological quantum dots in bottomup graphene nanoribbons”. In: ACS nano 15.12 (2021), pp. 20633–20642.
[30] Oliver Gröning et al. “Engineering of robust topological quantum phases in
graphene nanoribbons”. In: Nature 560.7717 (2018), pp. 209–213.
84
[31] Kuan-Sen Lin and Mei-Yin Chou. “Topological properties of gapped graphene
nanoribbons with spatial symmetries”. In: Nano Letters 18.11 (2018), pp. 7254–
7260.
[32] Katsunori Wakabayashi et al. “Electronic and magnetic properties of
nanographite ribbons”. In: Physical Review B 59.12 (1999), p. 8271.
[33] M Topsakal, H Sevinçli, and S Ciraci. “Spin confinement in the superlattices of
graphene ribbons”. In: Applied Physics Letters 92.17 (2008), p. 173118.
[34] David MT Kuo and Yia-Chung Chang. “Contact effects on thermoelectric properties of textured graphene nanoribbons”. In: Nanomaterials 12.19 (2022), p. 3357.
[35] Pierre Darancet, Valerio Olevano, and Didier Mayou. “Coherent electronic transport through graphene constrictions: subwavelength regime and optical analogy”. In: Physical review letters 102.13 (2009), p. 136803.
[36] Yuri M Zuev, Willy Chang, and Philip Kim. “Thermoelectric and magnetothermoelectric transport measurements of graphene”. In: Physical review letters 102.9
(2009), p. 096807.
[37] Peng Wei et al. “Anomalous thermoelectric transport of Dirac particles in
graphene”. In: Physical review letters 102.16 (2009), p. 166808.
[38] G Dresselhaus, Mildred S Dresselhaus, and Riichiro Saito. Physical properties of
carbon nanotubes. World scientific, 1998.
[39] Amina Kimouche et al. “Ultra-narrow metallic armchair graphene nanoribbons”.
In: Nature communications 6.1 (2015), p. 10177.
[40] Martin Evaldsson et al. “Edge-disorder-induced Anderson localization and
conduction gap in graphene nanoribbons”. In: Physical Review B 78.16 (2008),
p. 161407.
[41] Alexander V Kolobov and Junji Tominaga. Two-dimensional transition-metal
dichalcogenides. Vol. 239. Springer, 2016.
[42] Damien Voiry, Aditya Mohite, and Manish Chhowalla. “Phase engineering
of transition metal dichalcogenides”. In: Chemical Society Reviews 44.9 (2015),
pp. 2702–2712.
[43] Li F Mattheiss. “Band structures of transition-metal-dichalcogenide layer compounds”. In: Physical Review B 8.8 (1973), p. 3719.
[44] Haotian Wang et al. “Physical and chemical tuning of two-dimensional transition
metal dichalcogenides”. In: Chemical Society Reviews 44.9 (2015), pp. 2664–2680.
[45] Qing Hua Wang et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”. In: Nature nanotechnology 7.11 (2012), pp. 699–712.
[46] Gui-Bin Liu et al. “Electronic structures and theoretical modelling of twodimensional group-VIB transition metal dichalcogenides”. In: Chemical Society
Reviews 44.9 (2015), pp. 2643–2663.
85
[47] Sajedeh Manzeli et al. “2D transition metal dichalcogenides”. In: Nature Reviews
Materials 2.8 (2017), pp. 1–15.
[48] Jl A Wilson and AD Yoffe. “The transition metal dichalcogenides discussion and
interpretation of the observed optical, electrical and structural properties”. In:
Advances in Physics 18.73 (1969), pp. 193–335.
[49] Hsiang-Lin Liu et al. “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry”. In: Applied Physics Letters 105.20
(2014).
[50] Priya Johari and Vivek B Shenoy. “Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains”. In:
ACS nano 6.6 (2012), pp. 5449–5456.
[51] Wenwu Shi and Zhiguo Wang. “Mechanical and electronic properties of Janus
monolayer transition metal dichalcogenides”. In: Journal of Physics: Condensed
Matter 30.21 (2018), p. 215301.
[52] Fucai Liu et al. “Electric field effect in two-dimensional transition metal dichalcogenides”. In: Advanced Functional Materials 27.19 (2017), p. 1602404.
[53] Manish Chhowalla et al. “The chemistry of two-dimensional layered transition
metal dichalcogenide nanosheets”. In: Nature chemistry 5.4 (2013), pp. 263–275.
[54] Zhiyong Y Zhu, Yingchun C Cheng, and Udo Schwingenschlögl. “Giant spinorbit-induced spin splitting in two-dimensional transition-metal dichalcogenide
semiconductors”. In: Physical Review B 84.15 (2011), p. 153402.
[55] Guangwei Li and Yia-Chung Chang. “Planar-basis pseudopotential calculations
of the Si (001) 2× 1 surface with and without hydrogen passivation”. In: Physical
Review B 48.16 (1993), p. 12032.
[56] Guangwei Li and Yia-Chung Chang. “Electronic structures of As/Si (001) 2× 1
and Sb/Si (001) 2× 1 surfaces”. In: Physical Review B 50.12 (1994), p. 8675.
[57] Yia-Chung Chang and Guangwei Li. “Planar-basis pseudopotential method and
planar Wannier functions for surfaces and heterostructures”. In: Computer physics
communications 95.2-3 (1996), pp. 158–170.
[58] Chung-Yuan Ren, Chen-Shiung Hsue, and Yia-Chung Chang. “A mixed basis
density functional approach for low dimensional systems with B-splines”. In:
Computer Physics Communications 188 (2015), pp. 94–102.
[59] Chung-Yuan Ren, Yia-Chung Chang, and Chen-Shiung Hsue. “A mixed basis
density functional approach for one-dimensional systems with B-splines”. In:
Computer Physics Communications 202 (2016), pp. 188–195.
[60] Carl: de Boor. A practical guide to splines. Springer-Verlag, 1987.
[61] Marvin L Cohen and Steven G Louie. Fundamentals of condensed matter physics.
Cambridge University Press, 2016.
86
[62] M Born and JR Oppenheimer. “DEUTSCH: Zur Quantentheorie der
Molekeln/ENGLISH: On the Quantum Theory of Molecules”. In: Ann. Physik
84.457 (1927), p. 36.
[63] Richard M Martin. Electronic structure: basic theory and practical methods. Cambridge university press, 2020.
[64] John P Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized gradient
approximation made simple”. In: Physical review letters 77.18 (1996), p. 3865.
[65] John P Perdew and Alex Zunger. “Self-interaction correction to densityfunctional approximations for many-electron systems”. In: Physical Review B
23.10 (1981), p. 5048.
[66] Axel D Becke. “Density-functional exchange-energy approximation with correct
asymptotic behavior”. In: Physical review A 38.6 (1988), p. 3098.
[67] Jianmin Tao et al. “Climbing the density functional ladder: Nonempirical meta–
generalized gradient approximation designed for molecules and solids”. In:
Physical review letters 91.14 (2003), p. 146401.
[68] Jochen Heyd, Gustavo E Scuseria, and Matthias Ernzerhof. “Hybrid functionals
based on a screened Coulomb potential”. In: The Journal of chemical physics 118.18
(2003), pp. 8207–8215.
[69] Conyers Herring. “A new method for calculating wave functions in crystals”. In:
Physical Review 57.12 (1940), p. 1169.
[70] James C Phillips and Leonard Kleinman. “New method for calculating wave
functions in crystals and molecules”. In: Physical Review 116.2 (1959), p. 287.
[71] DR Hamann, M Schlüter, and C Chiang. “Norm-conserving pseudopotentials”.
In: Physical Review Letters 43.20 (1979), p. 1494.
[72] GP Kerker. “Non-singular atomic pseudopotentials for solid state applications”.
In: Journal of Physics C: Solid State Physics 13.9 (1980), p. L189.
[73] Alex Zunger and Marvin L Cohen. “First-principles nonlocal-pseudopotential
approach in the density-functional formalism: Development and application to
atoms”. In: Physical Review B 18.10 (1978), p. 5449.
[74] Alex Zunger and Marvin L Cohen. “First-principles nonlocal-pseudopotential
approach in the density-functional formalism. II. Application to electronic and
structural properties of solids”. In: Physical Review B 20.10 (1979), p. 4082.
[75] Martin Schlipf and François Gygi. “Optimization algorithm for the generation
of ONCV pseudopotentials”. In: Computer Physics Communications 196 (2015),
pp. 36–44.
[76] Peter E Blöchl. “Projector augmented-wave method”. In: Physical review B 50.24
(1994), p. 17953.
87
[77] Georg Kresse and Daniel Joubert. “From ultrasoft pseudopotentials to the projector augmented-wave method”. In: Physical review b 59.3 (1999), p. 1758.
[78] KC Pandey and JC Phillips. “Nonlocal pseudopotentials for Ge and GaAs”. In:
Physical Review B 9.4 (1974), p. 1552.
[79] N Bouarissa. “Effects of compositional disorder upon electronic and lattice properties of GaxIn1- xAs”. In: Physics Letters A 245.3-4 (1998), pp. 285–291.
[80] Max V Fischetti and Steven E Laux. “Band structure, deformation potentials, and
carrier mobility in strained Si, Ge, and SiGe alloys”. In: Journal of Applied Physics
80.4 (1996), pp. 2234–2252.
[81] P Friedel, MS Hybertsen, and M Schlüter. “Local empirical pseudopotential approach to the optical properties of Si/Ge superlattices”. In: Physical Review B
39.11 (1989), p. 7974.
[82] Seong Jae Lee et al. “Band structure of ternary compound semiconductors beyond the virtual crystal approximation”. In: Journal of Physics: Condensed Matter
2.14 (1990), p. 3253.
[83] Kurt A Mäder and Alex Zunger. “Empirical atomic pseudopotentials for
AlAs/GaAs superlattices, alloys, and nanostructures”. In: Physical Review B 50.23
(1994), p. 17393.
[84] SK Pugh et al. “Electronic structure calculations on nitride semiconductors”. In:
Semiconductor Science and Technology 14.1 (1999), p. 23.
[85] Massimo V Fischetti et al. “Pseudopotential-based studies of electron transport
in graphene and graphene nanoribbons”. In: Journal of Physics: Condensed Matter
25.47 (2013), p. 473202.
[86] Alejandro Molina-Sanchez. “Electronic structure and optical properties of III-N
nanowires”. PhD thesis. University of Valencia, Valencia, Spain, 2011.
[87] Lin-Wang Wang and Alex Zunger. “Local-density-derived semiempirical pseudopotentials”. In: Physical Review B 51.24 (1995), p. 17398.
[88] Gabriel Bester. “Electronic excitations in nanostructures: an empirical pseudopotential based approach”. In: Journal of Physics: Condensed Matter 21.2 (2008),
p. 023202.
[89] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method
without the agonizing pain. 1994.
[90] Guangyu Xu et al. “Enhanced conductance fluctuation by quantum confinement
effect in graphene nanoribbons”. In: Nano letters 10.11 (2010), pp. 4590–4594.
[91] Yia-Chung Chang. “Electronic properties of the reconstructed Si (111) 7× 7 surface”. In: Journal of Vacuum Science & Technology B: Microelectronics Processing and
Phenomena 1.3 (1983), pp. 709–713.
88
[92] LL Bonilla and SW Teitsworth. “Nonlinear Wave Methods for Charge Transport.
WILEY-VCH Verlag GmbH & Co”. In: (2010).
[93] John E Carlstrom, Richard L Plambeck, and DD Thornton. “A continuously tunable 65-15-ghz gunn oscillator”. In: IEEE transactions on microwave theory and techniques 33.7 (1985), pp. 610–619.
指導教授 張亞中(Yia-Chung Chang) 審核日期 2023-10-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明