博碩士論文 108282004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.147.89.105
姓名 王渝涵(Yu-Han Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 單層至雙層二硫化鎢合成機制之探討與單層的缺陷調控
(Revealing the Synthesis Mechanism of Tungsten Disulfide from Monolayers to Bilayers and the Defect Manipulations on Monolayers)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-1以後開放)
摘要(中) 在這篇論文中,我們一揭鹼金屬鹵化物輔助熱化學氣相沉積的面紗,全面了解單層二硫化鎢和雙層二硫化鎢的成長機制。在考慮了系統邊界條件、氣體流速、成長基板形貌與性質、成長溫度、各種前驅物的蒸氣壓與加熱溫度後,我們在同一個系統中呈現了幾乎現有研究中所有二硫化鎢的形式。我們發現其中最重要的參數是成長基板形貌與性質、成長溫度、以及各項前驅物的蒸氣壓,而其他的參數其實都是改變前述三個重要參數的手法。一系列的對照實驗論證了這些參數如何影響晶粒大小、晶粒形狀、晶粒密度。我們除了用自動化程式觀察、分析並量化了這些整體的成長,我們還研究了二硫化鎢從單層成長到密實雙層的成長動力學。這篇論文致力於了解二硫化鎢的成長細節以及引導大家成長出任何型態的二硫化鎢。各個領域的研究者或業者只要在自己的系統中成長出可見的二硫化鎢晶粒後,不論目標是三角形或六角形的單層、密實或樹突狀的雙層、小於10微米或是大於200微米,都可以經由參照我們的地圖,成功且輕易地合成各式的晶粒。在應用方面,我們開發出了一種不需要光阻的製程—散射離子摻雜。藉由控制單層二硫化鎢的缺陷型態以及缺陷密度,我們既得以避免任何殘留物物又可以局部調控其能帶結構。除了以光學性質的改變間接佐證其電子結構的調變外,更進一步從實驗上與理論上研究其摻雜的機制。
摘要(英) A full picture of the growth mechanism of WS2 monolayers and bilayers through alkali-metal-halide-assisted thermal chemical vapor deposition (t-CVD) was unveiled in all aspects. Almost all types of WS2 flakes were demonstrated in the same system and considered almost all of the factors which may influence the synthesis, including the geometry of the system boundaries, the flow rate, the morphology and the properties of the growth substrate, the growth temperature, the vapor pressure, and the heating temperature of each precursor. We found that, among all parameters, the most important factors are the growth temperature, the vapor pressure, and the heating temperature of each precursor. Other parameters are just ways to alter these three main factors. A series of experiments were carried out and showed how these factors affect grain size, grain shape, and grain density. Moreover, not only the overall growth process was observed, analyzed, and quantified by an automatic program, but the grain evolution from a monolayer to a compact bilayer was also studied. This thesis provides detailed studies on the growth mechanism of WS2 and is a guide for the synthesis of any type of WS2. Once you get the first observable result in your system, no matter whether it is triangular or truncated monolayers, compact or concentric bilayers, flakes smaller than 10 µm or flakes larger than 200 µm, you can easily achieve successful synthesis by following the map in this thesis. Moreover, we developed a method for lithography without any photoresist, which is called “selective ion implantation.” The electronic structure of WS2 monolayers is manipulated through good control of defect type and defect density without any residues. We verified the achievement through optical measurements and further revealed the mechanism of their doping effect experimentally and theoretically.
關鍵字(中) ★ 二硫化鎢
★ 化學氣相沉積
★ 缺陷調控
★ 成長模型
關鍵字(英) ★ WS2
★ chemical vapor deposition
★ defect manipulation
★ synthesis model
論文目次 摘要 I
Abstract II
Acknowledgement IV
Table of Contents VI
List of Figures IX
List of Tables XX
Nomenclature XXI
Chapter 1. Introduction 1
Chapter 2. Literature Reviews 3
2.1. 2D WS2 3
2.1.1. Structure 3
2.1.2. Electronic Structure 4
2.1.3. Optical Properties and Applications 7
2.1.4. Electrical Properties and Applications 11
2.2. Fabrication of 2D WS2 through CVD 12
2.2.1. The Role of the Ratio of Chalcogen Vapor Pressure to Transition Metal Vapor Pressure 12
2.2.2. The Role of Alkali Metal Halide 15
2.2.3. Synthesis of TMDCs through Alkali-Metal-Halide-Assisted t-CVD 20
2.2.4. Synthesis of Bilayers 22
2.2.5. Defects and Inhomogeneity in As-Grown TMDCs 25
2.3. Defect Manipulations in TMDCs Monolayers 33
Chapter 3. Motivations 38
3.1. WS2 Synthesis 38
3.2. WS2 Defect Manipulations 39
Chapter 4. Experimental and Theoretical Methods 40
4.1. WS2 Synthesis through Alkali-Metal-Halide-Assisted t-CVD 41
4.1.1. Surface Treatments on Substrates 41
4.1.2. Precursor Preparation 41
4.1.3. Alkali-Metal-Halide-Assisted t-CVD 42
4.1.4. Grain Analysis 44
4.2. Defect Manipulations through Selective Ion Implantation70 47
4.2.1. Synthesis of WS2 Monolayers 47
4.2.2. Selective Ion Implantation 47
4.2.3. Theoretical Calculations 48
4.3. Characterizations 50
4.3.1. OM/SEM 50
4.3.2. AFM 50
4.3.3. PL and Raman 51
4.3.4. XPS 54
Chapter 5. Results 57
5.1. Synthesis of WS2 Monolayers and Compact Bilayers 57
5.1.1. Characterizations of WS2 Monolayers and Bilayers/SiO2/Si 57
5.2. Growth Mechanisms of WS2 Flakes 60
5.2.1. Impacts in Morphology 60
5.2.2. Impacts in Properties 69
5.3. Growth Mechanisms of WS2 Compact Bilayers 74
5.3.1. Grain Evolution 74
5.3.2. Growth Mechanism 80
5.4. Defect Manipulations through Selective Ion Implantation 70 84
5.4.1. Characterizations of WS2 Monolayers/sapphire 84
5.4.2. SRIM Calculations of Selective Ion Implantation 85
5.4.3. Experimental Results of Selective Ion Implantation 86
5.4.4. DFT Calculations on the Mechanism of Oxygen Doping 96
Chapter 6. Conclusions 99
Chapter 7. Bibliography 101
參考文獻 (1) Sun, Y.; Wang, D.; Shuai, Z.Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction. J. Phys. Chem. C 2016, 120 (38), 21866–21870. https://doi.org/10.1021/acs.jpcc.6b08748.
(2) Voiry, D.; Mohite, A.; Chhowalla, M.Phase Engineering of Transition Metal Dichalcogenides. Chemical Society Reviews. 2015, pp 2702–2712. https://doi.org/10.1039/c5cs00151j.
(3) Song, I.; Park, C.; Choi, H. C.Synthesis and Properties of Molybdenum Disulphide: From Bulk to Atomic Layers. RSC Adv. 2015, 5 (10), 7495–7514. https://doi.org/10.1039/c4ra11852a.
(4) Lin, Y. C.; Yeh, C. H.; Lin, H. C.; Siao, M. D.; Liu, Z.; Nakajima, H.; Okazaki, T.; Chou, M. Y.; Suenaga, K.; Chiu, P. W.Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. ACS Nano 2018, 12 (12), 12080–12088. https://doi.org/10.1021/acsnano.8b04979.
(5) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M.Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013, 12 (9), 850–855. https://doi.org/10.1038/nmat3700.
(6) Mos, H. S.; Al, E. D. A. E. T.Coherent Atomic and Electronic. ACS Nano 2012, No. 8, 7311–7317.
(7) Huang, Q.; Li, X.; Sun, M.; Zhang, L.; Song, C.; Zhu, L.; Chen, P.; Xu, Z.; Wang, W.; Bai, X.The Mechanistic Insights into the 2H-1T Phase Transition of MoS2 upon Alkali Metal Intercalation: From the Study of Dynamic Sodiation Processes of MoS2 Nanosheets. Adv. Mater. Interfaces 2017, 4 (15), 2–7. https://doi.org/10.1002/admi.201700171.
(8) Ramsdell, L. S.Studies on Silicon Carbide. Am. Mineral. 1947, 32 (1–2), 64–82.
(9) Kuc, A.; Zibouche, N.; Heine, T.Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide TS2. Phys. Rev. B 2011, 83 (24), 245213. https://doi.org/10.1103/PhysRevB.83.245213.
(10) Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F.Mono- and Bilayer WS2 Light-Emitting Transistors. 2019.
(11) Braga, D.; Gutie, I.; Berger, H.; Morpurgo, A. F.Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors. 2012.
(12) Zatko, V.; Galbiati, M.; Dubois, S. M. M.; Och, M.; Palczynski, P.; Mattevi, C.; Brus, P.; Bezencenet, O.; Martin, M. B.; Servet, B.; Charlier, J. C.; Godel, F.; Vecchiola, A.; Bouzehouane, K.; Collin, S.; Petroff, F.; Dlubak, B.; Seneor, P.Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS2. ACS Nano 2019, 13 (12), 14468–14476. https://doi.org/10.1021/acsnano.9b08178.
(13) Elı, A. L.; Charlier, J.; Terrones, H.; Terrones, M.Identification of Individual and Few Layers. 1–8. https://doi.org/10.1038/srep01755.
(14) Jin, Q.; Liu, N.; Chen, B.; Mei, D.Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-Dimensional MoS2 Nanosheets. J. Phys. Chem. C 2018, 122 (49), 28215–28224. https://doi.org/10.1021/acs.jpcc.8b10256.
(15) Blundo, E.; Felici, M.; Yildirim, T.; Pettinari, G.; Tedeschi, D.; Miriametro, A.; Liu, B.; Ma, W.; Lu, Y.; Polimeni, A.Evidence of the Direct-to-Indirect Band Gap Transition in Strained Two-Dimensional WS2, MoS2, and WSe2. Phys. Rev. Res. 2020, 2 (1), 12024. https://doi.org/10.1103/PhysRevResearch.2.012024.
(16) Amin, B.; Kaloni, T. P.; Schwingenschlögl, U.Strain Engineering of WS2, WSe2, and WTe2. RSC Adv. 2014, 4 (65), 34561–34565. https://doi.org/10.1039/c4ra06378c.
(17) Michail, A.; Anestopoulos, D.; Delikoukos, N.; Grammatikopoulos, S.; Tsirkas, S. A.; Lathiotakis, N. N.; Frank, O.; Filintoglou, K.; Parthenios, J.; Papagelis, K.Tuning the Photoluminescence and Raman Response of Single-Layer WS2 Crystals Using Biaxial Strain. J. Phys. Chem. C 2023, 127 (7), 3506–3515. https://doi.org/10.1021/acs.jpcc.2c06933.
(18) Liu, X.; Guo, W.Shear Strain Tunable Exciton Dynamics in Two-Dimensional Semiconductors. Phys. Rev. B 2019, 99 (3), 35401. https://doi.org/10.1103/PhysRevB.99.035401.
(19) Tong, L.; Duan, X.; Song, L.; Liu, T.; Ye, L.; Huang, X.; Wang, P.; Sun, Y.; He, X.; Zhang, L.; Xu, K.; Hu, W.; Xu, J.Bin; Zang, J.; Cheng, G. J.Artificial Control of In-Plane Anisotropic Photoelectricity in Monolayer MoS 2. Appl. Mater. Today 2019, 15, 203–211. https://doi.org/10.1016/j.apmt.2019.02.001.
(20) Yuan, L.; Huang, L.Exciton Dynamics and Annihilation in WS2 2D Semiconductors. Nanoscale 2015, 7 (16), 7402–7408. https://doi.org/10.1039/c5nr00383k.
(21) Zhu, B.; Chen, X.; Cui, X.Exciton Binding Energy of Monolayer WS2. Sci. Rep. 2015, 5 (1), 9218. https://doi.org/10.1038/srep09218.
(22) Zinkiewicz, M.; Woźniak, T.; Kazimierczuk, T.; Kapuscinski, P.; Oreszczuk, K.; Grzeszczyk, M.; Bartoš, M.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; Faugeras, C.; Kossacki, P.; Potemski, M.; Babiński, A.; Molas, M. R.Excitonic Complexes in N-Doped WS2 Monolayer. Nano Lett. 2021, 21 (6), 2519–2525. https://doi.org/10.1021/acs.nanolett.0c05021.
(23) Biswas, C.; Lee, Y. H.; Sebait, R.; Song, B.; Seo, C.Identifying Defect-Induced Trion in Monolayer WS2 via Carrier Screening Engineering. ACS Nano 2021, 15 (2), 2849–2857. https://doi.org/10.1021/acsnano.0c08828.
(24) Soni, A.; Kushavah, D.; Lu, L. S.; Chang, W. H.; Pal, S. K.Ultrafast Exciton Trapping and Exciton-Exciton Annihilation in Large-Area CVD-Grown Monolayer WS2. J. Phys. Chem. C 2021, 125 (43), 23880–23888. https://doi.org/10.1021/acs.jpcc.1c06267.
(25) Boulesbaa, A.; Huang, B.; Wang, K.; Lin, M. W.; Mahjouri-Samani, M.; Rouleau, C.; Xiao, K.; Yoon, M.; Sumpter, B.; Puretzky, A.; Geohegan, D.Observation of Two Distinct Negative Trions in Tungsten Disulfide Monolayers. Phys. Rev. B - Condens. Matter Mater. Phys. 2015, 92 (11), 1–7. https://doi.org/10.1103/PhysRevB.92.115443.
(26) He, X.; Iwamoto, Y.; Kaneko, T.; Kato, T.Fabrication of Near-Invisible Solar Cell with Monolayer WS2. Sci. Rep. 2022, 12 (1), 11315. https://doi.org/10.1038/s41598-022-15352-x.
(27) BinRafiq, M. K. S.; Amin, N.; Alharbi, H. F.; Luqman, M.; Ayob, A.; Alharthi, Y. S.; Alharthi, N. H.; Bais, B.; Akhtaruzzaman, M.WS2: A New Window Layer Material for Solar Cell Application. Sci. Rep. 2020, 10 (1), 771. https://doi.org/10.1038/s41598-020-57596-5.
(28) Pal, S.; Mukherjee, S.; Jangir, R.; Nand, M.; Jana, D.; Mandal, S. K.; Bhunia, S.; Mukherjee, C.; Jha, S. N.; Ray, S. K.WS2 Nanosheet/Si P–n Heterojunction Diodes for UV–Visible Broadband Photodetection. ACS Appl. Nano Mater. 2021, 4 (3), 3241–3251. https://doi.org/10.1021/acsanm.1c00421.
(29) Kim, J.; Venkatesan, A.; Phan, N. A. N.; Kim, Y.; Kim, H.; Whang, D.; Kim, G.-H.Schottky Diode with Asymmetric Metal Contacts on WS2. Adv. Electron. Mater. 2022, 8 (3), 2100941. https://doi.org/https://doi.org/10.1002/aelm.202100941.
(30) Gu, J.; Chakraborty, B.; Khatoniar, M.; Menon, V. M.A Room-Temperature Polariton Light-Emitting Diode Based on Monolayer WS2. Nat. Nanotechnol. 2019, 14 (11), 1024–1028. https://doi.org/10.1038/s41565-019-0543-6.
(31) Jafry, A. A. A.; Kasim, N.; Munajat, Y.; Yusoff, R. A. M.; Harun, S. W.Microsecond Pulse Erbium-Doped Fiber Laser Using WS2 Deposited on D-Shaped Fiber Fabricated by Polishing Wheel Technique. J. Phys. Conf. Ser. 2019, 1371 (1), 12001. https://doi.org/10.1088/1742-6596/1371/1/012001.
(32) Ge, X.; Minkov, M.; Li, X.; Fan, S.; Zhou, W.A Large Area Monolayer WS2 Laser Based on Surface-Emitting Heterostructure Photonic Crystal Cavities. In 2018 Conference on Lasers and Electro-Optics (CLEO); 2018; pp 1–2.
(33) Mao, D.; Wang, Y.; Ma, C.; Han, L.; Jiang, B.; Gan, X.; Hua, S.; Zhang, W.; Mei, T.; Zhao, J.WS2 Mode-Locked Ultrafast Fiber Laser. Sci. Rep. 2015, 5 (1), 7965. https://doi.org/10.1038/srep07965.
(34) Li, X.; Li, X.; Li, Z.; Wang, J.; Zhang, J.WS2 Nanoflakes Based Selective Ammonia Sensors at Room Temperature. Sensors Actuators B Chem. 2017, 240, 273–277. https://doi.org/https://doi.org/10.1016/j.snb.2016.08.163.
(35) Tang, H.; Li, Y.; Sokolovskij, R.; Sacco, L.; Zheng, H.; Ye, H.; Yu, H.; Fan, X.; Tian, H.; Ren, T.-L.; Zhang, G.Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction. ACS Appl. Mater. Interfaces 2019, 11 (43), 40850–40859. https://doi.org/10.1021/acsami.9b13773.
(36) Wu, L.; vanHoof, A. J. F.; Dzade, N. Y.; Gao, L.; Richard, M.-I.; Friedrich, H.; DeLeeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P.Enhancing the Electrocatalytic Activity of 2H-WS2 for Hydrogen Evolution via Defect Engineering. Phys. Chem. Chem. Phys. 2019, 21 (11), 6071–6079. https://doi.org/10.1039/C9CP00722A.
(37) Hsiao, F.-H.; Chung, C.-C.; Chiang, C.-H.; Feng, W.-N.; Tzeng, W.-Y.; Lin, H.-M.; Tu, C.-M.; Wu, H.-L.; Wang, Y.-H.; Woon, W.-Y.; Chen, H.-C.; Chen, C.-H.; Lo, C.-Y.; Lai, M.-H.; Chang, Y.-M.; Lu, L.-S.; Chang, W.-H.; Chen, C.-W.; Luo, C.-W.Using Exciton/Trion Dynamics to Spatially Monitor the Catalytic Activities of MoS2 during the Hydrogen Evolution Reaction. ACS Nano 2022, 16 (3), 4298–4307. https://doi.org/10.1021/acsnano.1c10380.
(38) Kim, B.; Kim, J.; Tsai, P. C.; Choi, H.; Yoon, S.; Lin, S. Y.; Kim, D. W.Large Surface Photovoltage of WS2/MoS2 and MoS2/WS2 Vertical Hetero-Bilayers. ACS Appl. Electron. Mater. 2021, 3 (6), 2601–2606. https://doi.org/10.1021/acsaelm.1c00192.
(39) Yang, R.; Feng, S.; Xiang, J.; Jia, Z.; Mu, C.; Wen, F.; Liu, Z.Ultrahigh-Gain and Fast Photodetectors Built on Atomically Thin Bilayer Tungsten Disulfide Grown by Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2017, 9 (48), 42001–42010. https://doi.org/10.1021/acsami.7b14853.
(40) Yu, Y.; Huang, S. Y.; Li, Y.; Steinmann, S. N.; Yang, W.; Cao, L.Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution. Nano Lett. 2014, 14 (2), 553–558. https://doi.org/10.1021/nl403620g.
(41) Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K.Thickness-Dependent Interfacial Coulomb Scattering in Atomically Thin Field-Effect Transistors. Nano Lett. 2013, 13 (8), 3546–3552. https://doi.org/10.1021/nl4010783.
(42) Dong, L.; Wang, Y.; Sun, J.; Pan, C.; Zhang, Q.; Gu, L.; Wan, B.; Song, C.; Pan, F.; Wang, C.; Tang, Z.; Zhang, J.Facile Access to Shape-Controlled Growth of WS2 Monolayer via Environment-Friendly Method. 2D Mater. 2019, 6 (1), 15007. https://doi.org/10.1088/2053-1583/aae7eb.
(43) Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H.Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 2014, 26 (22), 6371–6379. https://doi.org/10.1021/cm5025662.
(44) Govind Rajan, A.; Warner, J. H.; Blankschtein, D.; Strano, M. S.Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10 (4), 4330–4344. https://doi.org/10.1021/acsnano.5b07916.
(45) Yoreo, J.De; Vekilov, P. G.Principles of Crystal Nucleation and Growth. Rev. Mineral. Geochemistry 2003, 54, 57–93.
(46) Jafari, H.; Afshar, M.Effect of Vacancies on Spin Transport Characteristics of Zigzag WS2 Nanoribbon. Mater. Res. Express 2019, 6 (2), 25013. https://doi.org/10.1088/2053-1591/aaeb00.
(47) Deng, Q.; Thi, Q. H.; Zhao, J.; Yun, S. J.; Kim, H.; Chen, G.; Ly, T. H.Impact of Polar Edge Terminations of the Transition Metal Dichalcogenide Monolayers during Vapor Growth. J. Phys. Chem. C 2018, 122 (6), 3575–3581. https://doi.org/10.1021/acs.jpcc.7b09332.
(48) Xiao, S.-L.; Yu, W.-Z.; Gao, S.-P.Edge Preference and Band Gap Characters of MoS2 and WS2 Nanoribbons. Surf. Sci. 2016, 653, 107–112. https://doi.org/https://doi.org/10.1016/j.susc.2016.06.011.
(49) Jin, Y.; Cheng, M.; Liu, H.; Ouzounian, M.; Hu, T. S.; You, B.; Shao, G.; Liu, X.; Liu, Y.; Li, H.; Li, S.; Guan, J.; Liu, S.Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion. Chem. Mater. 2020, 32 (13), 5616–5625. https://doi.org/10.1021/acs.chemmater.0c01089.
(50) Li, X.; Kahn, E.; Kahn, E.; Chen, G.; Sang, X.; Lei, J.; Passarello, D.; Oyedele, A. D.; Zakhidov, D.; Chen, K. W.; Chen, Y. X.; Hsieh, S. H.; Fujisawa, K.; Unocic, R. R.; Xiao, K.; Salleo, A.; Toney, M. F.; Chen, C. H.; Kaxiras, E.; Terrones, M.; Yakobson, B. I.; Harutyunyan, A. R.Surfactant-Mediated Growth and Patterning of Atomically Thin Transition Metal Dichalcogenides. ACS Nano 2020, 14 (6), 6570–6581. https://doi.org/10.1021/acsnano.0c00132.
(51) Suleman, M.; Lee, S.; Kim, M.; Nguyen, V. H.; Riaz, M.; Nasir, N.; Kumar, S.; Park, H. M.; Jung, J.; Seo, Y.NaCl-Assisted Temperature-Dependent Controllable Growth of Large-Area MoS2Crystals Using Confined-Space CVD. ACS Omega 2022, 7 (34), 30074–30086. https://doi.org/10.1021/acsomega.2c03108.
(52) Xie, C.; Yang, P.; Huan, Y.; Cui, F.; Zhang, Y.Roles of Salts in the Chemical Vapor Deposition Synthesis of Two-Dimensional Transition Metal Chalcogenides. Dalt. Trans. 2020, 49 (30), 10319–10327. https://doi.org/10.1039/d0dt01561j.
(53) Lan, C.; Kang, X.; Wei, R.; Meng, Y.; Yip, S.; Zhang, H.; Ho, J. C.Utilizing a NaOH Promoter to Achieve Large Single-Domain Monolayer WS2 Films via Modified Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2019, 11 (38), 35238–35246. https://doi.org/10.1021/acsami.9b12516.
(54) Lei, J.; Xie, Y.; Kutana, A.; Bets, K.V.; Yakobson, B. I.Salt-Assisted MoS2 Growth: Molecular Mechanisms from the First Principles. J. Am. Chem. Soc. 2022, 144 (16), 7497–7503. https://doi.org/10.1021/jacs.2c02497.
(55) Li, S.Salt-Assisted Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. iScience 2021, 24 (11), 103229. https://doi.org/10.1016/j.isci.2021.103229.
(56) Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T.Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Adv. Opt. Mater. 2014, 2 (2), 131–136. https://doi.org/10.1002/adom.201300428.
(57) Qiang, X.; Iwamoto, Y.; Watanabe, A.; Kameyama, T.; He, X.; Kaneko, T.; Shibuta, Y.; Kato, T.Non-Classical Nucleation in Vapor–liquid–solid Growth of Monolayer WS2 Revealed by in-Situ Monitoring Chemical Vapor Deposition. Sci. Rep. 2021, 11 (1), 1–9. https://doi.org/10.1038/s41598-021-01666-9.
(58) Liu, L.; Li, T.; Ma, L.; Li, W.; Gao, S.; Sun, W.; Dong, R.; Zou, X.; Fan, D.; Shao, L.; Gu, C.; Dai, N.; Yu, Z.; Chen, X.; Tu, X.; Nie, Y.; Wang, P.; Wang, J.; Shi, Y.; Wang, X.Uniform Nucleation and Epitaxy of Bilayer Molybdenum Disulfide on Sapphire. Nature 2022, 605 (7908), 69–75. https://doi.org/10.1038/s41586-022-04523-5.
(59) Reale, F.; Palczynski, P.; Amit, I.; Jones, G. F.; Mehew, J. D.; Bacon, A.; Ni, N.; Sherrell, P. C.; Agnoli, S.; Craciun, M. F.; Russo, S.; Mattevi, C.High-Mobility and High-Optical Quality Atomically Thin WS 2. Sci. Rep. 2017, 7 (1), 1–10. https://doi.org/10.1038/s41598-017-14928-2.
(60) Jiang, H.; Zheng, L.; Wang, J.; Xu, M.; Gan, X.; Wang, X.; Huang, W.Inversion Symmetry Broken in 2H Phase Vanadium-Doped Molybdenum Disulfide. Nanoscale 2021, 13 (43), 18103–18111. https://doi.org/10.1039/d1nr05725a.
(61) Zhang, Z.; Liu, Y.; Dai, C.; Yang, X.; Chen, P.; Ma, H.; Zhao, B.; Wu, R.; Huang, Z.; Wang, D.; Liu, M.; Huangfu, Y.; Xin, S.; Luo, J.; Wang, Y.; Li, J.; Li, B.; Duan, X.Highly Selective Synthesis of Monolayer or Bilayer WSe2 Single Crystals by Pre-Annealing the Solid Precursor. Chem. Mater. 2021, 33 (4), 1307–1313. https://doi.org/10.1021/acs.chemmater.0c04210.
(62) Ye, H.; Zhou, J.; Er, D.; Price, C. C.; Yu, Z.; Liu, Y.; Lowengrub, J.; Lou, J.; Liu, Z.; Shenoy, V. B.Toward a Mechanistic Understanding of Vertical Growth of van Der Waals Stacked 2D Materials: A Multiscale Model and Experiments. ACS Nano 2017, 11 (12), 12780–12788. https://doi.org/10.1021/acsnano.7b07604.
(63) Sheng, Y.; Wang, X.; Fujisawa, K.; Ying, S.; Elias, A. L.; Lin, Z.; Xu, W.; Zhou, Y.; Korsunsky, A. M.; Bhaskaran, H.; Terrones, M.; Warner, J. H.Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2017, 9 (17), 15005–15014. https://doi.org/10.1021/acsami.6b16287.
(64) Jeong, H. Y.; Lee, S. Y.; Ly, T. H.; Han, G. H.; Kim, H.; Nam, H.; Jiong, Z.; Shin, B. G.; Yun, S. J.; Kim, J.; Kim, U. J.; Hwang, S.; Lee, Y. H.Visualizing Point Defects in Transition-Metal Dichalcogenides Using Optical Microscopy. ACS Nano 2016, 10 (1), 770–777. https://doi.org/10.1021/acsnano.5b05854.
(65) Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee, H. S.; Lee, Y. H.Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2. Adv. Mater. 2017, 29 (15), 1605043. https://doi.org/https://doi.org/10.1002/adma.201605043.
(66) Carozo, V.; Wang, Y.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S.; Lin, Z.; Zhou, C.; Perea-López, N.; Elías, A. L.; Kabius, B.; Crespi, V. H.; Terrones, M.Optical Identification of Sulfur Vacancies: Bound Excitons at the Edges of Monolayer Tungsten Disulfide. Sci. Adv. 2017, 3, e1602813. https://doi.org/10.1126/sciadv.1602813.
(67) Schuler, B.; Qiu, D. Y.; Refaely-Abramson, S.; Kastl, C.; Chen, C. T.; Barja, S.; Koch, R. J.; Ogletree, D. F.; Aloni, S.; Schwartzberg, A. M.; Neaton, J. B.; Louie, S. G.; Weber-Bargioni, A.Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS2. Phys. Rev. Lett. 2019, 123 (7), 76801. https://doi.org/10.1103/PhysRevLett.123.076801.
(68) Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C.; Hwang, C.; Schwartzberg, A.; Aloni, S.; Mo, S.-K.; Frank Ogletree, D.; Crommie, M. F.; Yazyev, O.V; Louie, S. G.; Neaton, J. B.; Weber-Bargioni, A.Identifying Substitutional Oxygen as a Prolific Point Defect in Monolayer Transition Metal Dichalcogenides. Nat. Commun. 2019, 10 (1), 3382. https://doi.org/10.1038/s41467-019-11342-2.
(69) Hu, Z.; Avila, J.; Wang, X.; Leong, J. F.; Zhang, Q.; Liu, Y.; Asensio, M. C.; Lu, J.; Carvalho, A.; Sow, C. H.; Castro Neto, A. H.The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS2. Nano Lett. 2019, 19 (7), 4641–4650. https://doi.org/10.1021/acs.nanolett.9b01670.
(70) Wang, Y. H.; Ho, H. M.; Ho, X. L.; Lu, L. S.; Hsieh, S. H.; Huang, S.De; Chiu, H. C.; Chen, C. H.; Chang, W. H.; White, J. D.; Tang, Y. H.; Woon, W. Y.Photoluminescence Enhancement in WS2Nanosheets Passivated with Oxygen Ions: Implications for Selective Area Doping. ACS Appl. Nano Mater. 2021, 4 (11), 11693–11699. https://doi.org/10.1021/acsanm.1c02265.
(71) Xu, R.; Pang, F.; Pan, Y.; Lun, Y.; Meng, L.; Zheng, Z.; Xu, K.; Lei, L.; Hussain, S.; Li, Y. J.; Sugawara, Y.; Hong, J.; Ji, W.; Cheng, Z.Atomically Asymmetric Inversion Scales up to Mesoscopic Single-Crystal Monolayer Flakes. ACS Nano 2020, 14 (10), 13834–13840. https://doi.org/10.1021/acsnano.0c06198.
(72) Feng, S.; Yang, R.; Jia, Z.; Xiang, J.; Wen, F.; Mu, C.; Nie, A.; Zhao, Z.; Xu, B.; Tao, C.; Tian, Y.; Liu, Z.Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS2 Crystals. ACS Appl. Mater. Interfaces 2017, 9 (39), 34071–34077. https://doi.org/10.1021/acsami.7b09744.
(73) Jin, Y.; Zeng, Z.; Xu, Z.; Lin, Y. C.; Bi, K.; Shao, G.; Hu, T. S.; Wang, S.; Li, S.; Suenaga, K.; Duan, H.; Feng, Y.; Liu, S.Synthesis and Transport Properties of Degenerate P-Type Nb-Doped WS 2 Monolayers. Chem. Mater. 2019, 31 (9), 3534–3541. https://doi.org/10.1021/acs.chemmater.9b00913.
(74) Gao, J.; Kim, Y. D.; Liang, L.; Idrobo, J. C.; Chow, P.; Tan, J.; Li, B.; Li, L.; Sumpter, B. G.; Lu, T. M.; Meunier, V.; Hone, J.; Koratkar, N.Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Adv. Mater. 2016, 28 (44), 9735–9743. https://doi.org/10.1002/adma.201601104.
(75) Qin, Z.; Loh, L.; Wang, J.; Xu, X.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T.; Koch, N.; Dan, J.; Pennycook, S. J.; Zeng, D.; Bosman, M.; Eda, G.Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing. ACS Nano 2019, 13 (9), 10768–10775. https://doi.org/10.1021/acsnano.9b05574.
(76) Zhang, F.; Lu, Y.; Schulman, D. S.; Zhang, T.; Fujisawa, K.; Lin, Z.; Lei, Y.; LauraElias, A.; Das, S.; Sinnott, S. B.; Terrones, M.Carbon Doping of WS2 Monolayers: Bandgap Reduction and p-Type Doping Transport. Sci. Adv. 2019, 5, eaav5003. https://doi.org/10.1126/sciadv.aav5003.
(77) Amani, M.; Taheri, P.; Addou, R.; Ahn, G. H.; Kiriya, D.; Lien, D. H.; Ager, J. W.; Wallace, R. M.; Javey, A.Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. Nano Lett. 2016, 16 (4), 2786–2791. https://doi.org/10.1021/acs.nanolett.6b00536.
(78) Dhakal, K. P.; Roy, S.; Yun, S. J.; Ghimire, G.; Seo, C.; Kim, J.Heterogeneous Modulation of Exciton Emission in Triangular WS2 Monolayers by Chemical Treatment. J. Mater. Chem. C 2017, 5 (27), 6820–6827. https://doi.org/10.1039/C7TC01833A.
(79) Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y.; Li, Z.; Vignolini, S.; Stranks, S. D.; Hofmann, S.; Rao, A.Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands. Nano Lett. 2019, 19 (9), 6299–6307. https://doi.org/10.1021/acs.nanolett.9b02431.
(80) Venkatakrishnan, A.; Chua, H.; Tan, P.; Hu, Z.; Liu, H.; Liu, Y.; Carvalho, A.; Lu, J.; Sow, C. H.Microsteganography on WS2 Monolayers Tailored by Direct Laser Painting. ACS Nano 2017, 11 (1), 713–720. https://doi.org/10.1021/acsnano.6b07118.
(81) Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y.Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano 2015, 9 (4), 4056–4063.
(82) Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N.Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. ACS Nano 2015, 9 (2), 1520–1527. https://doi.org/10.1021/nn5073495.
(83) Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G.Lattice Dynamics in Mono- and Few-Layer Sheets of WS2 and WSe2. Nanoscale 2013, 5 (20), 9677–9683. https://doi.org/10.1039/c3nr03052k.
(84) Zheng, W.; Zhu, Y.; Li, F.; Huang, F.Raman Spectroscopy Regulation in van Der Waals Crystals. Photonics Res. 2018, 6 (11), 991–995. https://doi.org/10.1364/PRJ.6.000991.
(85) Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M.Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. Sci. Rep. 2013, 3 (1), 1755. https://doi.org/10.1038/srep01755.
(86) Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E.Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano 2012, 6 (4), 3614–3623. https://doi.org/10.1021/nn3008965.
(87) Thiruraman, J. P.; Masih Das, P.; Drndić, M.Irradiation of Transition Metal Dichalcogenides Using a Focused Ion Beam: Controlled Single-Atom Defect Creation. Adv. Funct. Mater. 2019, 29 (52), 1904668. https://doi.org/https://doi.org/10.1002/adfm.201904668.
(88) Bai, Z.; Zhang, L.; Liu, L.Improving Low-Energy Boron/Nitrogen Ion Implantation in Graphene by Ion Bombardment at Oblique Angles. Nanoscale 2016, 8 (16), 8761–8772. https://doi.org/10.1039/C6NR00983B.
(89) Fabbri, F.; Dinelli, F.; Forti, S.; Sementa, L.; Pace, S.; Piccinini, G.; Fortunelli, A.; Coletti, C.; Pingue, P.Edge Defects Promoted Oxidation of Monolayer WS2 Synthesized on Epitaxial Graphene. J. Phys. Chem. C 2020, 124 (16), 9035–9044. https://doi.org/10.1021/acs.jpcc.0c00350.
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2024-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明