博碩士論文 107282604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.222.182.52
姓名 Muhammad Abdullah Umer(Muhammad Abdullah Umer)  查詢紙本館藏   畢業系所 物理學系
論文名稱 建立於脈衝雷射沉積功能層和介面層及最佳化陽極基板之高性能中溫質子型固態氧化物燃料電池
(High-performance intermediate-temperature protonic-solid oxide fuel cell made of pulsed-laser deposition-based functional layers and interlayers on an optimally tailored anode substrate)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-9以後開放)
摘要(中) 儘管固體氧化物燃料電池(SOFCs)具有高效率、環保和燃料靈活性等重要優勢,但其較高的操作溫度(>800 ⁰C)通常導致快速的熱降解,限制了其商業應用。基於質子傳導電解質的SOFCs(稱為P-SOFC)近幾十年來受到關注,因為質子傳導具有比氧離子傳導更低的活化能,使得操作溫度能夠降低(400-800 ⁰C)。然而,P-SOFC的性能仍然受到限制,因為在較低的操作溫度下,極化電阻成為速率限制步驟,這是由於陰極氧還原反應(ORR)的遲滯性。在P-SOFCs中應用鈣鈦礦混合離子-電子導體(MIEC)La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)陰極會將水形成位點限制在電解質/陰極界面相鄰的三相界面,從而限制電流密度。因此,急需開發具有更高電荷傳輸和轉移速率的陰極材料,以提高在中溫下操作的燃料電池的功率密度。

作為質子固體氧化物燃料電池(P-SOFCs)最有前景的陰極材料,具有三重導電性(e-/H+/O2-)的氧化物已被廣泛研究,因為它們在較低的操作溫度下具有優異的催化活性。然而,直接通過刷塗或網印來應用這些陰極材料,與下層電解質層的接觸面積有限,導致陰極歐姆電阻和極化電阻較高。在本文的第一部分中,演示了透過脈沖激光沉積(PLD)發生自發相分離,可以生長出具有混合異質結構,約5納米寬的Gd0.3Ca2.7Co3.82Cu0.18O9-δ(GCCCO)-BaCe0.6Zr0.2Y0.2O3-δ(BCZY)層。這種納米複合層位於旋轉塗佈的BCZY電解質和刷塗的GCCCO陰極之間,可以有效增加兩個不同相之間的界面面積,促進質子在界面上的傳輸。這種電極設計將歐姆電阻降低了0.35 Ω cm2,極化電阻降低了三倍,因此顯著提高了電池性能。隨後發現,在實施異質界面後,性能的提升有限的原因歸因於底層半電池存在問題。因此,在具有相同BCZY緩衝層、GCCCO-BCZY納米複合層和GCCCO陰極層的燃料電池上進行了對商業化的BCZYYb基半電池的測試。結果表明,在700 ⁰C時,峰值功率密度增加了一倍以上,達到863 mW/cm2,歐姆電阻在700 ⁰C時急劇降低到0.7 Ω cm2,是原來的五分之二。這證實了在使用PLD沉積的GCCCO-BCZY納米複合陰極界面時,具有GCCCO陰極的電池的電阻和峰值功率密度的瓶頸轉移到陽極和/或電解質,突顯了這種陰極結構的高性能。

在本論文的第二部分中,通過優化燃料電極的微觀結構,完成了對內部基板的改進。由於陽極支撐是燃料電池中最厚(約1mm)的部分,其微觀結構可以在一定程度上影響陽極支撐的質子陶瓷燃料電池(PSOFCs)的電化學性能。這是因為燃料電極中的孔徑大小及其分佈與與燃料相關的質量傳輸阻力密切相關,影響其能夠達到用於氫氧化反應的電化學活性位點之能力。

因此,我們報告了使用無灰紙纖維作為P-SOFCs氫電極的造孔劑的可行性研究,展示了其獨特的微觀結構--具有大規模連接的圓柱形孔洞,可以增強燃料的運輸效率。一個含有20 wt %紙纖維的Ni-BaCe0.7Zr0.1Y0.1Yb0.1陽極基板實現了37.97 vol%的孔隙率,相比使用30 wt%馬鈴薯澱粉造孔劑(29.12 vol%)具有更低的含量。隨後,通過電泳沉積對孔填充層表面進行改性,使用脈沖激光沉積(PLD)實現了在大孔洞陽極基板上的陶瓷功能層和中間層的薄膜沉積。

一個含有20 wt %紙纖維的陽極支撐單電池在600 ⁰C時展現了最佳的電化學性能,其峰值功率密度為550 mW/cm2,歐姆電阻為0.678 Ωcm2,極化電阻為0.172 Ωcm2,相比之下,使用30 wt %澱粉造孔劑的電池為電化學性能,其峰值功率密度為389 mW/cm2,歐姆電阻為0.802 Ωcm2,極化電阻為0.252 Ωcm2。這些發現強調了紙纖維作為氫電極造孔劑的效能,凸顯了在中溫下改進PSOFC性能的潛力。
摘要(英) Despite the significant advantages of solid oxide fuel cells (SOFCs) such as high efficiency, environment friendliness, and fuel flexibility their high operation temperatures (>800 ⁰C) often result in fast thermal degradation, which limits their commercialization. SOFCs based on proton-conducting electrolyte (termed P-SOFC) has drawn much attention in the last few decades, because proton conduction has a substantially lower activation energy compared to that of oxygen ion conduction, rendering the possibility of a lowered operation temperature (400-800 ⁰C). However, the performance of P-SOFC is still limited, because at lower operation temperatures polarization resistance become the rate-limiting step due to the sluggish nature of oxygen reduction reaction (ORR) at the cathode side. Application of a mixed ionic-electronic conductor (MIEC) perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode in P-SOFCs can restrict the water formation site to three-phase boundaries adjacent to the electrolyte/cathode interface, thereby limiting the current density. Thus, the development of cathode materials with higher charge transport and transfer rates is urgently needed for raising the power density of a fuel cell operated at intermediate temperatures.
The triple-conducting (e-/H+/O2-) oxides have been extensively studied as the most promising cathode materials for protonic solid oxide fuel cells (P-SOFCs) because of their excellent catalytic activity at lower operating temperatures. However, direct application of these cathode materials by brush-painting or screen-printing provides limited contact area with the underlying electrolyte layer, resulting in high cathode ohmic and polarization resistances. In the first section of this dissertation, it is demonstrated that a bulk heterojunction Gd0.3Ca2.7Co3.82Cu0.18O9-δ (GCCCO)-BaCe0.6Zr0.2Y0.2O3-δ (BCZY) layer with a domain width of ~5 nm can be grown by pulsed laser deposition (PLD) via spontaneous phase separation. Such a nanocomposite interlayer between spin-coated BCZY electrolyte and brush-painted GCCCO cathode can effectively increases the interfacial area between the two distinct phases and facilitates proton transport across the interface. This electrode design reduces the ohmic resistance by 0.35 Ω cm2 and the polarization resistance by a factor of three, thus significantly boosting the cell performance. Later it is identified that the limited performance enhancement after the implementation of bulk heterojunction interlayer, is attributed to issues in the underlying half-cell. Therefore, a fuel cell with same BCZY buffer layer, GCCCO-BCZY nanocomposite interlayer, and GCCCO cathode layer is tested on a commercial BCZYYb-based half-cell. Results show a more than twofold increase in power density, reaching 863 mW/cm2 at 700 ⁰C, and a dramatic 2.5-fold decrease in ohmic resistance to 0.7 Ω cm2 at 700 ⁰C. This confirms that the bottle neck in cell resistance and peak power density, with the GCCCO cathode, shifts to the anode and/or electrolyte when using a PLD-deposited GCCCO-BCZY nanocomposite cathode interlayer, highlighting the high performance of this cathode structure.
In the second section of this dissertation, the improvement of in-house substrate is accomplished by optimizing the microstructure of the fuel electrode. Since the anode support is the thickest (~1mm) part in the fuel cell, its microstructure can influence the electrochemical performance of an anode supported protonic ceramic fuel cell (PSOFCs) to a certain extent, due to the fact that the pore size and its distribution in the fuel electrode are closely linked to the mass transport resistance associated with the fuel, impacting its ability to reach the electrochemically active sites available for the hydrogen oxidation reaction. Therefore, we report our findings about the feasibility of using ashless paper-fibers as a pore former for the hydrogen electrode of P-SOFCs, demonstrating its unique microstructure with large interconnected cylindrical pores that enhance fuel transport efficiency. A Ni-BaCe0.7Zr0.1Y0.1Yb0.1 anode substrate with 20 wt % paper fibers achieve a porosity of 37.97 vol% with a lower content of paper fibers, as compared to using 30 wt% potato starch porogen (29.12 vol%). Subsequently, the thin film deposition of ceramic functional layers and interlayers on a macro-porous anode substrate is achieved using pulsed laser deposition (PLD), facilitated by its surface modification through electrophoretic deposition of a pore filler layer. An anode supported single cell with 20 wt % paper fibers exhibit the best electrochemical performance at 600 ⁰C with a peak power density of 550 mW/cm2, ohmic resistance of 0.678 Ωcm2, and a polarization resistance of 0.172 Ωcm2 as compared to the cell with 30 wt % starch porogen (389 mW/cm2, 0.802 Ωcm2, and 0.252 Ωcm2). These findings underscores the efficacy of paper fibers as a pore former for tailoring the microstructure of the hydrogen electrode, highlighting the potential for improved PSOFC performance at intermediate temperatures.
關鍵字(中) ★ protonic solid oxide fuel cell
★ pulsed laser deposition
★ bulk-heterojunction interlayer
★ hydrogen electrode
★ triple-conducting cathode
★ Thin-film based ceramic functional layers
關鍵字(英) ★ protonic solid oxide fuel cell
★ pulsed laser deposition
★ bulk-heterojunction interlayer
★ hydrogen electrode
★ triple-conducting cathode
★ Thin-film based ceramic functional layers
論文目次 Table of Contents
Abstract x
Acknowledgements xii
List of Tables xiii
List of Figures xv
Table of Contents xix
Thesis layout xxi
Chapter 1. Introduction 1
1.1. Overview 1
1.2. Research Motivation and Objectives 2
References 5
Chapter 2. Fundamentals 9
2.1. Introduction 9
2.2. Solid Oxide Fuel Cells 11
2.2.1. Calculation of voltage of SOFCs 13
2.2.2. Performance of solid oxide fuel cell 14
2.3. Proton-Conducting Ceramic Fuel Cells 16
2.3.1. Proton conduction mechanism 18
2.3.2. Proton-conducting electrolyte materials 21
2.4. Electrolyte Deposition 24
2.4.1. Ceramic powder processing techniques 24
2.4.2. Pulsed laser deposition of P-SOFC electrolyte 26
2.5. Electrodes for proton-conducting SOFCs 28
2.6. Pulsed laser deposition 31
2.6.1. Laser material interaction 33
2.6.2. Skin effect 35
2.6.3. Pulsed laser ablation 36
References 40
Chapter 3. Fabrication and characterization techniques 48
3.1. Pulsed laser deposition setup 48
3.1.1. PLD targets preparation 52
3.1.2. Calibration of deposition rate 53
3.2. Experimental setup for electrophoretic deposition 55
3.3. Material characterization techniques 56
3.3.1. X-ray diffraction (XRD) 56
3.3.2. Scanning Electron Microscopy (SEM) 58
3.3.3. (Scanning) Transmission Electron Microscopy 59
3.3.4. Fuel cell performance measurement 60
3.3.5. Electrochemical impedance spectroscopy 61
References 63
Chapter 4. Growth of Gd0.3Ca2.7Co3.82Cu0.18O9-δ-BaCe0.6Zr0.2Y0.2O3-δ bulk heterojunction cathode interlayer by pulsed laser deposition for enhancing protonic solid oxide fuel cell performance 64
4.1. Introduction 64
4.2. Experimental 68
4.2.1. Fabrication of anode-supported BCZY-electrolyte single cells 68
4.2.2. Deposition of GCCCO-BCZY cathode interlayer 70
4.2.3. Materials and fuel cell characterization 71
4.3. Results and discussion 72
4.4. Conclusion 96
References 97
Chapter 5. High-performance intermediate-temperature protonic solid oxide fuel cell made of pulsed laser deposition-based functional layers and interlayers on an optimally tailored anode substrate 102
5.1. Introduction 102
5.2. Experimental 107
5.2.1. Fabrication of NiO-BCZYYb anode substrate 107
5.2.2. Electrophoretic deposition of NiO-BCZYYb pore filler 109
5.2.3. Deposition of ceramic functional layers by PLD for thin-film PCFCs 110
5.2.4. Materials and fuel cell characterization 111
5.3. Results and discussion 112
5.3. Conclusion 132
References 134
Chapter 6. Conclusions and future perspectives 141
Appendix. Fabrication of anode substrate using paper fibers 145
參考文獻 Chapter 1
[1] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, 45 (2000) 2423-2435, https://10.1016/S0013-4686(00)00330-3
[2] D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 37 (2008) 1568-1578, https://10.1039/b612060c
[3] Y.B. Chen, W. Zhou, D. Ding, M.L. Liu, F. Ciucci, M. Tade, Z.P. Shao, Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements, Adv. Energy Mater., 5 (2015), 1500537, https://10.1002/aenm.201500537
[4] R. Song, X.Y. Zhang, D.M. Huan, X.Y. Li, N. Shi, C.R. Xia, R.R. Peng, Y.L. Lu, A novel triple-conductive cathode with high efficiency and stability for protonic ceramic fuel cells, Int. J. Hydrogen Energy 48 (2023) 32943-32954, https://10.1016/j.ijhydene.2023.04.351
[5] L. Li, Z.Q. Kong, B.W. Yao, H. Yang, Z.H. Gao, L.J. Xu, F.F. Dong, M. Ni, Z. Lin, An efficient and durable perovskite electrocatalyst for oxygen reduction in solid oxide fuel cells, J. Chem. Eng. 396 (2020), 125237, https://10.1016/j.cej.2020.125237
[6] S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 104 (2004) 4791-4843, https://10.1021/cr020724o
[7] J. Kim, S. Choi, A. Jun, H.Y. Jeong, J. Shin, G. Kim, Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-Doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ, Chemsuschem, 7 (2014) 1669-1675, https://10.1002/cssc.201301401
[8] J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M.L. Liu, G. Kim, Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells, Chemsuschem, 7 (2014) 2811-2815, https://10.1002/cssc.201402351
[9] H. Tong, M. Fu, Y. Yang, F.L. Chen, Z.T. Tao, A novel self-assembled cobalt-free perovskite composite cathode with triple-conduction for intermediate proton-conducting solid oxide fuel cells, Adv. Funct. Mater., 32 (2022) 2209695, https://10.1002/adfm.202209695
[10] Y.S. Song, Y.B. Chen, W. Wang, C. Zhou, Y.J. Zhong, G.M. Yang, W. Zhou, M.L. Liu, Z.P. Shao, Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode, Joule, 3 (2019) 2842-2853, https://10.1016/j.joule.2019.07.004
[11] S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H.Y. Jeong, Y. Choi, G. Kim, M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ, Sci. Rep., 3 (2013), Article number: 2426, https://10.1038/srep02426
[12] W.L. Zhang, Y.C. Zhou, X.Y. Hu, Y. Ding, J. Gao, Z.Y. Luo, T.T. Li, N. Kane, X.Y. Yu, T. Terlier, M.L. Liu, A synergistic three-phase, triple-conducting air electrode for reversible proton-conducting solid oxide cells, ACS Energy Lett., 8 (2023) 3999-4007, https://10.1021/acsenergylett.3c01251
[13] J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.H. Lim, G. Kim, Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production, Nano Energy, 44 (2018) 121-126, https://10.1016/j.nanoen.2017.11.074
[14] H.P. Ding, W. Wu, C. Jiang, Y. Ding, W.J. Bian, B.X. Hu, P. Singh, C.J. Orme, L.C. Wang, Y.Y. Zhang, D. Ding, Nat. Commun, 11 (2020) 1907, https://10.1038/s41467-020-15677-z
[15] N. Hildenbrand, B.A. Boukamp, P. Nammensma, D.H.A. Blank, Improved cathode/electrolyte interface of SOFC, Solid State Ion., 192 (2011) 12-15, https://10.1016/j.ssi.2010.01.028
[16] K. Akimoto, N. Wang, C.M. Tang, K. Shuto, S. Jeong, S. Kitano, H. Habazaki, Y. Aoki, Functionality of the cathode-electrolyte interlayer in protonic solid oxide fuel cells, ACS Appl. Energy Mater., 5 (2022) 12227-12238, https://10.1021/acsaem.2c01712
[17] J. Hou, J.Y. Gong, L. Bi, Advancing cathodic electrocatalysis an generated dense active interlayer based on CuO5 pyramid-structured Sm2Ba1.33Ce0.67Cu3O9, J. Mater. Chem. A 10 (2022) 15949-15959, https://10.1039/d2ta03449b
[18] J.S. Park, H.J. Choi, G.D. Han, J. Koo, E.H. Kang, D.H. Kim, K. Bae, J.H. Shim, High-performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium-rich interface coating, J. Power Sources 482 (2021) 229043, https://10.1016/j.jpowsour.2020.229043
[19] C.M. Tang, N. Wang, R.J. Zhu, S. Kitano, H. Habazaki, Y. Aoki, Design of anode functional layers for protonic solid oxide electrolysis cells, J. Mater. Chem. A, 10 (2022) 15719-15730, https://10.1039/d2ta02760g
[20] H. Shimada, Y. Yamaguchi, M.M. Ryuma, H. Sumi, K. Nomura, W. Shin, Y. Mikami, K. Yamauchi, Y. Nakata, T. Kuroha, M. Mori, Y. Mizutani, Protonic Ceramic fuel cell with Bi-layered structure of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ functional interlayer and BaZr0.8Yb0.2O3-δ electrolyte, J. Electrochem. Soc., 168 (2021) 124504, https://10.1149/1945-7111/ac3d04
[21] S. Choi, C.J. Kucharczyk, Y.G. Liang, X.H. Zhang, I. Takeuchi, H.I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3 (2018) 202-210, https://10.1038/s41560-017-0085-9
[22] W. Lehnert, J. Meusinger, F. Thom, Modelling of gas transport phenomena in SOFC anodes, J. Power Sources, 87 (2000) 57-63, https://10.1016/S0378-7753(99)00356-0
[23] W.P. Pan, Z. Lü, K.F. Chen, X.B. Zhu, X.Q. Huang, Y.H. Zhang, B. Wei, W.H. Su, Paper-fibres used as a pore-former for anode substrate of solid oxide fuel cell, Fuel Cells, 11 (2011) 172-177, https://10.1002/fuce.201000135
[24] J. Gao, Y.Q. Meng, T. Hong, S. Kim, S. Lee, K. He, K.S. Brinkman, Rational anode design for protonic ceramic fuel cells by a one-step phase inversion method, J. Power Sources, 418 (2019) 162-166, https://10.1016/j.jpowsour.2019.02.040

Chapter 2

[1] Y. Ma, H. Tian, H. Cheng, F. Jiang, Y. Yang, The economic feasibility and life cycle carbon emission of developing biomass-based renewable combined heat and power (RCHP) systems, Fuel, 353 (2023) 129177, https://doi.org/10.1016/j.fuel.2023.129177
[2] R. Thiruvenkatachari, S. Su, H. An, X.X. Yu, Post combustion CO capture by carbon fibre monolithic adsorbents, Prog. Energy Combust. Sci. 35 (2009) 438-455, https://10.1016/j.pecs.2009.05.003
[3] L.X. Fan, Z.K. Tu, S.H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep., 7 (2021) 8421-8446, https://10.1016/j.egyr.2021.08.003
[4] B. Shabani, M. Hafttananian, S. Khamani, A. Ramiar, A.A. Ranjbar, Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies, J. Power Sources, 427 (2019) 21-48, https://10.1016/j.jpowsour.2019.03.097
[5] P.J. de Wild, R.G. Nyqvist, F.A. de Bruijn, E.R. Stobbe, Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications, J. Power Sources, 159 (2006) 995-1004, https://10.1016/j.jpowsour.2005.11.100
[6] Y.F. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC-ICGT) hybrid cycle, J. Power Sources 132 (2004) 77-85, https://10.1016/j.jpowsour.2003.08.035
[7] D. McLarty, J. Brouwer, S. Samuelsen, Fuel cell-gas turbine hybrid system design part I: Steady state performance, J. Power Sources, 257 (2014) 412-420, https://10.1016/j.jpowsour.2013.11.122
[8] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 104 (2004) 4245-4270, https://10.1021/cr040110e
[9] S. Choi, C.J. Kucharczyk, Y.G. Liang, X.H. Zhang, I. Takeuchi, H.I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3 (2018) 202-210, https://10.1038/s41560-017-0085-9
[10] E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334 (2011) 935-939, https://10.1126/science.1204090
[11] G.M. Yang, C. Su, H.G. Shi, Y.L. Zhu, Y.F. Song, W. Zhou, Z.P. Shao, Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development, Energy Fuel, 34 (2020) 15169-15194, https://10.1021/acs.energyfuels.0c01887
[12] S.M. Hu, J. Li, Y. Zeng, J. Pu, B. Chi, A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells, Phys. Chem. Chem. Phys., 25 (2023) 5926-5941, https://10.1039/d2cp05133h
[13] F.H. Taylor, J. Buckeridge, C.R.A. Catlow, Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO, Chem. Mater., 28 (2016) 8210-8220, https://10.1021/acs.chemmater.6b03048
[14] E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev., 39 (2010) 4355-4369, https://10.1039/b902343g
[15] E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes, Adv. Mater., 24 (2012) 195-208, https://10.1002/adma.201103102
[16] C.J.J. Fu, Q. Ma, L.M. Gao, S. Li, Recent advances in perovskite oxides electrocatalysts: Ordered perovskites, cations segregation and exsolution, Chemcatchem, 15 (2023) e202300389, https://10.1002/cctc.202300389
[17] R. Merkle, M.F. Hoedl, G. Raimondi, R. Zohourian, J. Maier, Oxides with mixed protonic and electronic conductivity, Annu. Rev. Mater. Res., 51 (2021) 461-493, https://10.1146/annurev-matsci-091819-010219
[18] W. Zhang, Y.H. Hu, Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices, Energy Sci. Eng., 9 (2021) 984-1011, https://10.1002/ese3.886
[19] H.N. Wang, X.B. Wang, B. Meng, X.Y. Tan, K.S. Loh, J. Sunarso, S.M. Liu, Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: Recent status and advances, J. Ind. Eng. Chem., 60 (2018) 297-306, https://10.1016/j.jiec.2017.11.016
[20] S.C. Sun, Q.M. Tang, K.K. Zhang, Y.T. Wen, A. Billings, K. Huang, A focused review on structures and ionic conduction mechanisms in inorganic solid-state proton and hydride anion conductors, Mater. Adv., 4 (2023) 389-407, https://10.1039/d2ma01003h
[21] H.R. Su, Y.H. Hu, Degradation issues and stabilization strategies of protonic ceramic electrolysis cells for steam electrolysis, Energy Sci. Eng., 10 (2022) 1706-1725, https://10.1002/ese3.1010
[22] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen-production, Solid State Ion., 3-4 (1981) 359-363, https://10.1016/0167-2738(81)90113-2
[23] N. Ito, M. Iijima, K. Kimura, S. Iguchi, New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte, J. Power Sources 152 (2005) 200-203, https://10.1016/j.jpowsour.2005.01.009
[24] S.V. Bhide, A.V. Virkar, Stability of BaCeO-based proton conductors in water-containing atmospheres, J. Electrochem. Soc., 146 (1999) 2038-2044, https://10.1149/1.1391888
[25] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO, Solid State Ion., 138 (2000) 91-98, https://10.1016/S0167-2738(00)00777-3
[26] J.H. Tong, D. Clark, M. Hoban, R. O′Hayre, Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics, Solid State Ion., 181 (2010) 496-503, https://10.1016/j.ssi.2010.02.008
[27] H.G. Bohn, T. Schober, Electrical conductivity of the high-temperature proton conductor BaZr0.19Y0.1O, J. Am. Ceram., 83 (2000) 768-772, https://doi.org/10.1111/j.1151-2916.2000.tb01272.x
[28] A. Uthayakumar, A. Pandiyan, S. Mathiyalagan, A.K. Keshri, S.B.K. Moorthy, The effect of space charge on blocking grain boundary resistance in an yttrium-doped barium zirconate electrolyte for solid oxide fuel cells, J. Phys. Chem. C, 124 (2020) 5591-5599, https://10.1021/acs.jpcc.0c00166
[29] L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbO, Science, 326 (2009) 126-129, https://10.1126/science.1174811
[30] C. Zhou, J. Sunarso, Y.F. Song, J. Dai, J.X. Zhang, B.B. Gu, W. Zhou, Z.P. Shao, New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode, J. Mater. Chem. A . 7 (2019) 13265-13274, https://10.1039/c9ta03501j
[31] C.C. Duan, R. Kee, H.Y. Zhu, N. Sullivan, L.Z. Zhu, L.Z. Bian, D. Jennings, R. O′Hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production, Nat Energy, 4 (2019) 230-240, https://10.1038/s41560-019-0333-2
[32] M. Zunic, L. Chevallier, F. Deganello, A. D′Epifanio, S. Licoccia, E. Di Bartolomeo, E. Traversa, Electrophoretic deposition of dense Ba0.9Ce0.1YO3-x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 190 (2009) 417-422, https://10.1016/j.jpowsour.2009.01.046
[33] J. Dailly, M. Ancelin, M. Marrony, Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity, Solid State Ion., 306 (2017) 69-75, https://10.1016/j.ssi.2017.03.002
[34] M.A. Umer, Y.C. Yu, K.R. Lee, C.J. Tseng, S.Y. Chen, S.W. Lee, Three-dimensional NiO-decorated La0.6Sr0.4Co0.2Fe0.8O3-δ nanofibrous mesh as high-performance cathode for protonic ceramic electrochemical cells, ACS Appl. Energy Mater., 6 (2023) 1621-1629, https://10.1021/acsaem.2c03498
[35] L.M. Zhang, S.Q. Hu, Z.W. Cao, B.J. Pang, J.Y. Wang, P. Zhang, X.F. Zhu, W.S. Yang, Repeatable preparation of defect-free electrolyte membranes for proton-conducting fuel cells, J. Membr. Sci, 656 (2022) 120642, https://doi.org/10.1016/j.memsci.2022.120642
[36] Z.Z. Huang, Y. Yang, H.P. Lv, C.X. Shi, T. Li, Y.H. Ling, T. Chen, S.R. Wang, Large-area anode-supported protonic ceramic fuel cells combining with multilayer-tape casting and hot-pressing lamination technology, J Eur Ceram Soc, 43 (2023) 428-437, https://10.1016/j.jeurceramsoc.2022.09.057
[37] K.R. Lee, C.J. Tseng, S.C. Jang, J.C. Lin, K.W. Wang, J.K. Chang, T.C. Chen, S.W. Lee, Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid, Int J Hydrogen Energ, 44 (2019) 23784-23792, https://10.1016/j.ijhydene.2019.07.097
[38] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 52 (2007) 1-61, https://10.1016/j.pmatsci.2006.07.001
[39] I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, J. Eur. Ceram., 28 (2008) 1353-1367, https://10.1016/j.jeurceramsoc.2007.12.011
[40] T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells, J. Am. Ceram. Soc., 79 (1996) 913-919, https://doi.org/10.1111/j.1151-2916.1996.tb08525.x
[41] D. Kim, T.K. Lee, S. Han, Y. Jung, D.G. Lee, M. Choi, W.Y. Lee, Advances and challenges in developing protonic ceramic cells, Mater. Today Energy, 36 (2023) 101365, https://doi.org/10.1016/j.mtener.2023.101365
[42] H. An, H.W. Lee, B.K. Kim, J.W. Son, K.J. Yoon, H. Kim, D. Shin, H.I. Ji, J.H. Lee, A 5 x 5 cm protonic ceramic fuel cell with a power density of 1.3 W cm2 at 600 °C, Nat. Energy, 3 (2018) 870-875, https://10.1038/s41560-018-0230-0
[43] K. Bae, D.H. Kim, H.J. Choi, J.-W. Son, J.H. Shim, High-performance protonic ceramic fuel cells with 1 µm thick Y:Ba(Ce, Zr)O3 electrolytes, Adv. Energy Mater., 8 (2018) 1801315, https://doi.org/10.1002/aenm.201801315
[44] E.H. Kang, H.R. Choi, J.S. Park, K.H. Kim, D.H. Kim, K. Bae, F.B. Prinz, J.H. Shim, Protonic ceramic fuel cells with slurry-spin coated BaZrCeYYbO thin-film electrolytes, J. Power Sources, 465 (2020) 228254, https://10.1016/j.jpowsour.2020.228254
[45] Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High total proton conductivity in large-grained yttrium-doped barium zirconate, Chem. Mater., 21 (2009) 2755-2762, https://10.1021/cm900208w
[46] Y.Y. Huang, R. Merkle, J. Maier, Effects of NiO addition on sintering and proton uptake of Ba(Zr,Ce,Y)O, J Mater Chem A, 9 (2021) 14775-14785, https://10.1039/d1ta02555d
[47] Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity, J Mater Chem, 20 (2010) 8158-8166, https://10.1039/c0jm02013c
[48] M. Choi, J. Paik, D. Kim, D. Woo, J. Lee, S.J. Kim, J. Lee, W. Lee, Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes, Energy Environ. Sci., 14 (2021) 6476-6483, https://10.1039/d1ee01497h
[49] S.M. Choi, J.H. Lee, J. Hong, H. Kim, K.B. Yoon, B.K. Kim, J.H. Lee, Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba(Zr0.84Y0.15Cu0.01)O3-δ, Int. J. Hydrog. Energy, 39 (2014) 7100-7108, https://10.1016/j.ijhydene.2014.02.072
[50] C.C. Duan, J.H. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O′Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349 (2015) 1321-1326, https://10.1126/science.aab3987
[51] J.Y. Chen, J. Li, L.C. Jia, I. Moussa, B. Chi, J. Pu, J. Li, A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells, J Power Sources, 428 (2019) 13-19, https://10.1016/j.jpowsour.2019.04.104
[52] D.L. Han, S. Uemura, C. Hiraiwa, M. Majima, T. Uda, Detrimental Effect of Sintering Additives on Conducting Ceramics: Yttrium-Doped Barium Zirconate, Chemsuschem, 11 (2018) 4102-4113, https://10.1002/cssc.201801837
[53] Y.H. Li, W.J. Yang, L. Wang, J. Zhu, W. Meng, Z.X. He, L. Dai, Improvement of sinterability of BaZr0.8Y0.2O for H2 separation using Li2O/ZnO dual-sintering aid, Ceram Int, 44 (2018) 15935-15943, https://10.1016/j.ceramint.2018.06.014
[54] K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.K. Kim, J.H. Lee, J.W. Son, J.H. Shim, Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells, Nat Commun, 8 (2017) 14553, https://10.1038/ncomms14553
[55] I. Chang, P. Heo, S.W. Cha, Thin film solid oxide fuel cell using a pinhole-free and dense Y-doped BaZrO3, Thin Solid Films, 534 (2013) 286-290, https://doi.org/10.1016/j.tsf.2013.03.024
[56] K. Bae, S. Lee, D.Y. Jang, H.J. Kim, H. Lee, D. Shin, J.-W. Son, J.H. Shim, High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate–zirconate electrolytes on compositionally gradient anodes, ACS Appl. Mater. Interfaces 8(2016) 9097-9103, https://doi.org/10.1021/acsami.6b00512
[57] K. Bae, H.-S. Noh, D.Y. Jang, J. Hong, H. Kim, K.J. Yoon, J.-H. Lee, B.-K. Kim, J.H. Shim, J.-W. Son, High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix, J Mater Chem A, 4 (2016) 6395-6403, http://dx.doi.org/10.1039/C5TA10670B
[58] J. Basbus, M. Arce, H. Troiani, Q. Su, H. Wang, A. Caneiro, L. Mogni, Study of BaCe0.4Zr0.4Y0.2O3-δ/BaCe0.8Pr0.2O3-δ (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC), Int. J. Hydrog. Energy, 45 (2020) 5481-5490, https://doi.org/10.1016/j.ijhydene.2019.06.164
[59] D. Sarantaridis, A. Atkinson, Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review, Fuel Cells, 7 (2007) 246-258, https://doi.org/10.1002/fuce.200600028
[60] J. Malzbender, E. Wessel, R.W. Steinbrech, Reduction and re-oxidation of anodes for solid oxide fuel cells, Solid State Ionics, 176 (2005) 2201-2203, https://doi.org/10.1016/j.ssi.2005.06.014
[61] C. Yang, X. Zhang, H. Zhao, Y. Shen, Z. Du, C. Zhang, Electrochemical properties of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ-Nd1.95NiO4+δ composite cathode for protonic ceramic fuel cells, Int. J. Hydrog. Energy, 40 (2015) 2800-2807, https://doi.org/10.1016/j.ijhydene.2014.12.084
[62] X. Zhang, Y.e. Qiu, F. Jin, F. Guo, Y. Song, B. Zhu, A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr0.1Ce0.7Y0.2O3−δ, J. Power Sources, 241 (2013) 654-659, https://doi.org/10.1016/j.jpowsour.2013.05.002
[63] S. Lee, I. Park, H. Lee, D. Shin, Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells, Int J Hydrogen Energ, 39 (2014) 14342-14348, https://doi.org/10.1016/j.ijhydene.2014.03.135
[64] B.H. Rainwater, M. Liu, M. Liu, A more efficient anode microstructure for SOFCs based on proton conductors, Int. J. Hydrog. Energy, 37 (2012) 18342-18348, https://doi.org/10.1016/j.ijhydene.2012.09.027
[65] L. Bi, E. Fabbri, E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs), Electrochem. Commun., 16 (2012) 37-40, https://doi.org/10.1016/j.elecom.2011.12.023
[66] W.P. Pan, Z. Lü, K.F. Chen, X.B. Zhu, X.Q. Huang, Y.H. Zhang, B. Wei, W.H. Su, Paper-fibres used as a pore-former for anode substrate of solid oxide fuel cell, Fuel Cells, 11 (2011) 172-177, https://10.1002/fuce.201000135
[67] J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M.L. Liu, G. Kim, Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells, Chemsuschem, 7 (2014) 2811-2815, https://10.1002/cssc.201402351
[68] M. Saqib, I.G. Choi, H. Bae, K. Park, J.S. Shin, Y.D. Kim, J.I. Lee, M. Jo, Y.C. Kim, K.S. Lee, S.J. Song, E.D. Wachsman, J.Y. Park, Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst, Energ. Environ. Sci., 14 (2021) 2472-2484, https://10.1039/d0ee02799e
[69] R.W. Eason, I. Wiley, Pulsed laser deposition of thin films : applications-led growth of functional materials, John Wiley, Hoboken, N.J, 2007.
[70] D. Bäuerle, Laser Processing and Chemistry, 3rd Edition, Springer Berlin Heidelberg: Imprint: Springer, Berlin, Heidelberg, 2000.
[71] R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin-films - Physics and theoretical-model, Phys Rev B, 41 (1990) 8843-8859, https://10.1103/PhysRevB.41.8843

Chapter 3

[1] J. Greer, Large-Area Commercial Pulsed Laser Deposition, in: Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (R. Eason, ed.,), Chapter 9, pp. 191-213, John Wiley & Sons, Inc., New Jersey, 2006, http://dx.doi.org/10.1002/9780470052129.ch9
[2] J.-W. Jhuang, K.-R. Lee, J.-k. Chang, C.-T. Shen, Y.-H. Lee, S.-W. Lee, C.-J. Tseng, Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method, Int. J. Hydrog. Energy, 42 (2017) 22259-22265, https://doi.org/10.1016/j.ijhydene.2017.03.126
[3] P. Sawant, S. Varma, B.N. Wani, S.R. Bharadwaj, Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC, Int. J. Hydrog. Energy, 37 (2012) 3848-3856, http://dx.doi.org/10.1016/j.ijhydene.2011.04.106
[4] A. Ali, Y.W. Chiang, R.M. Santos, X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions, Minerals, 12 (2022) 205, https://www.mdpi.com/2075-163X/12/2/205
[5] V.K. Pecharsky, P.Y. Zavalij, Fundamentals of powder diffraction and structural characterization of materials, 2nd Edition, Springer, New York, 2005.

Chapter 4

E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev., 39 (2010) 4355-4369, https://doi.org/10.1039/b902343g
[2] K.D. Kreuer, Proton-conducting oxides, Annu. Rev. Mater. Res., 33 (2003) 333-359, https://doi.org/10.1146/annurev.matsci.33.022802.091825
[3] A. Esquirol, N.P. Brandon, J.A. Kilner, M. Mogensen, Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc., 151 (2004) A1847-A1855, https://doi.org/10.1149/1.1799391
[4] Y. Teraoka, H.M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides, Mater. Res. Bull., 23 (1988) 51-58, https://doi.org/10.1016/0025-5408(88)90224-3
[5] M.E. Lynch, L. Yang, W. Qin, J.-J. Choi, M. Liu, K. Blinn, M. Liu, Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform, Energy Enivron. Sci., 4 (2011) 2249-2258, https://doi.org/10.1039/C1EE01188J
[6] M.A. Umer, Y.-C. Yu, K.-R. Lee, C.-J. Tseng, S.-y. Chen, S.-W. Lee, Three-Dimensional NiO-Decorated La0.6Sr0.4Co0.2Fe0.8O3-δ Nanofibrous Mesh as High-Performance Cathode for Protonic Ceramic Electrochemical Cells, ACS Appl. Energy Mater., 6 (2023) 1621-1629, https://doi.org/10.1021/acsaem.2c03498
[7] Y. Chen, S. Yoo, X.X. Li, D. Ding, K. Pei, D.C. Chen, Y. Ding, B.T. Zhao, R. Murphy, B. Deglee, J. Liu, M.L. Liu, An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes, Nano Energy, 47 (2018) 474-480, https://doi.org/10.1016/j.nanoen.2018.03.043
[8] J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M.L. Liu, G. Kim, Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells, ChemSusChem., 7 (2014) 2811-2815, https://doi.org/10.1002/cssc.201402351
[9] C.C. Duan, J.H. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O′Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349 (2015) 1321-1326, https://doi.org/10.1126/science.aab3987
[10] S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency, Energy Environ. Sci., 12 (2019) 206-215, https://doi.org/10.1039/c8ee02865f
[11] S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H.Y. Jeong, Y. Choi, G. Kim, M. Liu, Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ, Sci. Rep., 3 (2013) 2426, https://doi.org/10.1038/srep02426
[12] J.-I. Lee, K.-Y. Park, H. Park, H. Bae, M. Saqib, K. Park, J.-S. Shin, M. Jo, J. Kim, S.-J. Song, E.D. Wachsman, J.-Y. Park, Triple perovskite structured Nd1.5Ba1.5CoFeMnO9−δ oxygen electrode materials for highly efficient and stable reversible protonic ceramic cells, J. Power Sources, 510 (2021) 230409, https://doi.org/10.1016/j.jpowsour.2021.230409
[13] Y.S. Song, Y.B. Chen, W. Wang, C. Zhou, Y.J. Zhong, G.M. Yang, W. Zhou, M.L. Liu, Z.P. Shao, Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode, Joule, 3 (2019) 2842-2853, https://doi.org/10.1016/j.joule.2019.07.004
[14] C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen, B. Zhu, Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells, Nat. Commun. , 10 (2019) 1707, https://doi.org/10.1038/s41467-019-09532-z
[15] N. Mushtaq, Y.Z. Lu, C. Xia, W.J. Dong, B.Y. Wang, M.A.K.Y. Shah, S. Rauf, M. Akbar, E.Y. Hu, R. Raza, M.I. Asghar, P.D. Lund, B. Zhu, Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure, Appl. Catal. B, 298 (2021) 120503, https://doi.org/10.1016/j.apcatb.2021.120503
[16] L. Yuzheng, Z. Bin, S. Jing, Y. Sining, Advanced low-temperature solid oxide fuel cells based on a built-in electric field, Energy Mater., 1 (2021) 100007, http://dx.doi.org/10.20517/energymater.2021.06
[17] M. Saqib, I.G. Choi, H. Bae, K. Park, J.S. Shin, Y.D. Kim, J.I. Lee, M. Jo, Y.C. Kim, K.S. Lee, S.J. Song, E.D. Wachsman, J.Y. Park, Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst, Energy Environ. Sci., 14 (2021) 2472-2484, https://doi.org/10.1039/d0ee02799e
[18] S. Choi, C.J. Kucharczyk, Y.G. Liang, X.H. Zhang, I. Takeuchi, H.I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat. Energy, 3 (2018) 202-210, https://doi.org/10.1038/s41560-017-0085-9
[19] D. Pergolesi, E. Fabbri, E. Traversa, Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance, Electrochem. commun., 12 (2010) 977-980, https://doi.org/10.1016/j.elecom.2010.05.005
[20] K. Akimoto, N. Wang, C. Tang, K. Shuto, S. Jeong, S. Kitano, H. Habazaki, Y. Aoki, Functionality of the cathode–electrolyte interlayer in protonic solid oxide fuel cells, ACS Appl. Energy Mater., 5 (2022) 12227-12238, https://doi.org/10.1021/acsaem.2c01712
[21] J. Hou, J. Gong, L. Bi, Advancing cathodic electrocatalysis via an in situ generated dense active interlayer based on CuO5 pyramid-structured Sm2Ba1.33Ce0.67Cu3O9, J. Mater. Chem. A., 10 (2022) 15949-15959, https://doi.org/10.1039/D2TA03449B
[22] J.S. Park, H.J. Choi, G.D. Han, J. Koo, E.H. Kang, D.H. Kim, K. Bae, J.H. Shim, High-performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium-rich interface coating, J. Power Sources, 482 (2021) 229043, https://doi.org/10.1016/j.jpowsour.2020.229043
[23] C. Tang, N. Wang, R. Zhu, S. Kitano, H. Habazaki, Y. Aoki, Design of anode functional layers for protonic solid oxide electrolysis cells, J. Mater. Chem., 10 (2022) 15719-15730, https://doi.org/10.1039/D2TA02760G
[24] H. Shimada, Y. Yamaguchi, M.M. Ryuma, H. Sumi, K. Nomura, W. Shin, Y. Mikami, K. Yamauchi, Y. Nakata, T. Kuroha, M. Mori, Y. Mizutani, Protonic ceramic fuel cell with bi-layered structure of BaZr0.1Ce0.7Y0.1Yb0.1O3–δ functional Interlayer and BaZr0.8Yb0.2O3–δ electrolyte, J. Electrochem. Soc., 168 (2021) 124504, https://doi.org/10.1149/1945-7111/ac3d04
[25] S. Choi, C.J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H.-I. Ji, S.M. Haile, Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells, Nat Energy, 3 (2018) 202-210, https://doi.org/10.1038/s41560-017-0085-9
[26] C. Tang, K. Akimoto, N. Wang, L. Fadillah, S. Kitano, H. Habazaki, Y. Aoki, The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells, J. Mater. Chem. A, 9 (2021) 14032-14042, http://dx.doi.org/10.1039/D1TA02848K
[27] K. Develos-Bagarinao, T. Ishiyama, H. Kishimoto, H. Shimada, K. Yamaji, Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities, Nat. Commun., 12 (2021), https://doi.org/10.1038/s41467-021-24255-w
[28] S. Cho, Y.N. Kim, J. Lee, A. Manthiram, H. Wang, Microstructure and electrochemical properties of PrBaCo2O5+δ/Ce0.9Gd0.1O1.95 vertically aligned nanocomposite thin film as interlayer for thin film solid oxide fuel cells, Electrochim. Acta, 62 (2012) 147-152, https://doi.org/10.1016/j.electacta.2011.12.008
[29] J.-W. Jhuang, K.-R. Lee, J.-k. Chang, C.-T. Shen, Y.-H. Lee, S.-W. Lee, C.-J. Tseng, Chemical stability and electrical and mechanical properties of BaZrxCe0.8-xY0.2O3 with CeO2 protection method, Int. J. Hydrog. Energy, 42 (2017) 22259-22265, https://doi.org/10.1016/j.ijhydene.2017.03.126
[30] A. Infortuna, A.S. Harvey, L.J. Gauckler, Microstructures of CGO and YSZ thin films by pulsed laser deposition, Adv. Funct. Mater., 18 (2008) 127-135, https://doi.org/10.1002/adfm.200700136
[31] A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films, Acta Mater., 61 (2013) 2783-2792, https://doi.org/10.1016/j.actamat.2012.09.072
[32] K.R. Lee, C.J. Tseng, S.C. Jang, J.C. Lin, K.W. Wang, J.K. Chang, T.C. Chen, S.W. Lee, Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid, Int. J. Hydrog. Energy, 44 (2019) 23784-23792, https://doi.org/10.1016/j.ijhydene.2019.07.097
[33] W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong, J. Li, D. Ding, Revitalizing interface in protonic ceramic cells by acid etch, Nature, 604 (2022) 479-485, https://doi.org/10.1038/s41586-022-04457-y
[34] R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes, J. Mater. Chem., 20 (2010) 6218-6225, http://dx.doi.org/10.1039/C0JM00350F
[35] Y.-W. Lai, K.-R. Lee, S.-Y. Yang, C.-J. Tseng, S.-C. Jang, I.Y. Tsao, S.-y. Chen, S.-W. Lee, Production of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode with graded porosity for improving proton-conducting solid oxide fuel cells, Ceram. Int., 45 (2019) 22479-22485, https://doi.org/10.1016/j.ceramint.2019.07.270
[36] N. Wang, Z.-Y. Huang, C.-M. Tang, L.-X. Xing, L. Meng, Y. Aoki, L. Du, S.-Y. Ye, Functional layer engineering to improve performance of protonic ceramic fuel cells, Rare Met., (2023), https://doi.org/10.1007/s12598-022-02257-x
[37] D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, Phase equilibria in Ca–Co–O system, Journal of Solid State Chemistry, 194 (2012) 199-205. https://doi.org/10.1016/j.jssc.2012.05.014

Chapter 5

[1] N. Armaroli, V. Balzani, Towards an electricity-powered world, Energ Environ Sci, 4 (2011) 3193-3222, https://doi.org/10.1039/c1ee01249e
[2] X.B. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage, Chem Soc Rev, 41 (2012) 7909-7937, https://doi.org/10.1039/c2cs35230c
[3] N.Q. Li, B. Liu, L.C. Jia, D. Yan, J. Li, Liquid biofuels for solid oxide fuel cells: A review, J. Power Sources, 556 (2023), https://doi.org/10.1016/j.jpowsour.2022.232437
[4] P.P. Zhang, L. Hu, B. Zhao, Z. Lei, B. Ge, Z.B. Yang, X.F. Jin, S.P. Peng, Direct power generation from ethanol by solid oxide fuel cells with an integrated catalyst layer, Fuel, 333 (2023), https://doi.org/10.1016/j.fuel.2022.126340
[5] J.K. Sang, S. Liu, J. Yang, T. Wu, X. Luo, Y.M. Zhao, J.X. Wang, W.B. Guan, M.R. Chai, S.C. Singhal, Power generation from flat-tube solid oxide fuel cells by direct internal dry reforming of methanol: A route for simultaneous utilization of CO2 and biofuels, J. Chem. Eng., 457 (2023), https://doi.org/10.1016/j.cej.2022.141189
[6] K. Xu, F. Zhu, M.Y. Hou, C. Li, H. Zhang, Y. Chen, Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells, Nano Res., 16 (2023) 2454-2462, https://doi.org/10.1007/s12274-022-4993-z
[7] S.Z. Golkhatmi, M.I. Asghar, P.D. Lund, A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools, Renew Sust Energ Rev, 161 (2022), https://doi.org/10.1016/j.rser.2022.112339
[8] C.C. Duan, R. Kee, H.Y. Zhu, N. Sullivan, L.Z. Zhu, L.Z. Bian, D. Jennings, R. O′Hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production, Nat. Energy, 4 (2019) 230-240, https://doi.org/10.1038/s41560-019-0333-2
[9] Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells, Energ Environ Sci, 9 (2016) 1602-1644, https://doi.org/10.1039/c5ee03858h
[10] H.G. Shi, C. Su, R. Ran, J.F. Cao, Z.P. Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci-Mater., 30 (2020) 764-774, https://doi.org/10.1016/j.pnsc.2020.09.003
[11] E. Fabbri, L. Bi, D. Pergolesi, E. Traversa, Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes, Adv. Mater., 24 (2012) 195-208, https://doi.org/10.1002/adma.201103102
[12] R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev., 32 (2003) 17-28, https://doi.org/10.1039/b105764m
[13] E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem Soc Rev, 39 (2010) 4355-4369, https://doi.org/10.1039/b902343g
[14] S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency, Energ Environ Sci, 12 (2019) 206-215, https://doi.org/10.1039/c8ee02865f
[15] K. Bae, H.S. Noh, D.Y. Jang, J. Hong, H. Kim, K.J. Yoon, J.H. Lee, B.K. Kim, J.H. Shim, J.W. Son, High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix, J. Mater. Chem. A 4(2016) 6395-6403, https://doi.org/10.1039/c5ta10670b
[16] L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3–δ, Science, 326 (2009) 126-129, https://doi.org/10.1126/science.1174811
[17] W. Wang, Y.B. Chen, F. Wang, M.O. Tade, Z.P. Shao, Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol, Chem. Eng. Sci., 126 (2015) 22-31, https://doi.org/10.1016/j.ces.2014.12.011
[18] C.C. Duan, J.H. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O′Hayre, Readily processed protonic ceramic fuel cells with high performance at low temperatures, Science, 349 (2015) 1321-1326, https://doi.org/10.1126/science.aab3987
[19] C. Zhou, J. Sunarso, Y.F. Song, J. Dai, J.X. Zhang, B.B. Gu, W. Zhou, Z.P. Shao, New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode, J. Mater. Chem A, 7 (2019) 13265-13274, https://doi.org/10.1039/c9ta03501j
[20] E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334 (2011) 935-939, https://doi.org/10.1126/science.1204090
[21] S.M. Haile, G. Staneff, K.H. Ryu, Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites, J Mater Sci, 36 (2001) 1149-1160, https://doi.org/10.1023/A:1004877708871
[22] S.M. Haile, D.L. West, J. Campbell, The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate, J. Mater. Res., 13 (1998) 1576-1595, https://doi.org/10.1557/Jmr.1998.0219
[23] S. Ricote, N. Bonanos, A. Manerbino, W.G. Coors, Conductivity study of dense BaCexZr(0.9-x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 °C, Int. J. Hydrog. Energy 37 (2012) 7954-7961, https://doi.org/10.1016/j.ijhydene.2011.08.118
[24] F. Liu, H. Deng, D. Diercks, P. Kumar, M.H.A. Jabbar, C. Gumeci, Y. Furuya, N. Dale, T. Oku, M. Usuda, P. Kazempoor, L.Y. Fang, D. Chen, B. Liu, C.C. Duan, Lowering the operating temperature of protonic ceramic electrochemical cells to <450 °C, Nat. Energy, (2023), https://doi.org/10.1038/s41560-023-01350-4
[25] M. Choi, J. Paik, D. Kim, D. Woo, J. Lee, S.J. Kim, J. Lee, W. Lee, Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes, Energ Environ Sci, 14 (2021) 6476-6483, https://doi.org/10.1039/d1ee01497h
[26] S.M. Choi, H. An, K.J. Yoon, B.K. Kim, H.W. Lee, J.W. Son, H. Kim, D. Shin, H.I. Ji, J.H. Lee, Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte, Appl. Energy, 233 (2019) 29-36, https://doi.org/10.1016/j.apenergy.2018.10.043
[27] W.J. Bian, W. Wu, B.M. Wang, W. Tang, M. Zhou, C.R. Jin, H.P. Ding, W.W. Fan, Y.H. Dong, J. Li, D. Ding, Revitalizing interface in protonic ceramic cells by acid etch, Nature, 604 (2022) 479-+, https://doi.org/10.1038/s41586-022-04457-y
[28] K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.K. Kim, J.H. Lee, J.W. Son, J.H. Shim, Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells, Nat Commun, 8 (2017), https://doi.org/10.1038/ncomms14553
[29] K. Bae, D.H. Kim, H.J. Choi, J.W. Son, J.H. Shim, High-performance protonic ceramic fuel cells with 1μm thick Y:Ba(Ce, Zr)O3 electrolytes, Adv Energy Mater, 8 (2018), https://doi.org/10.1002/aenm.201801315
[30] S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 104 (2004) 4791-4843, https://doi.org/10.1021/cr020724o
[31] M.A. Umer, C.Y. Cheng, B.R. Lai, C.J. Tseng, S.Y. Chen, S.W. Lee, Growth of Gd0.3Ca2.7Co3.82Cu0.18O9-delta-BaCe0.6Zr0.2Y0.2O3-delta bulk heterojunction cathode interlayer by pulsed laser deposition for enhancing protonic solid oxide fuel cell performance, Appl. Surf. Sci., 638 (2023), https://doi.org/10.1016/j.apsusc.2023.158139
[32] D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: A review, Fuel Cells, 7 (2007) 246-258, https://doi.org/10.1002/fuce.200600028
[33] J. Malzbender, E. Wessel, R.W. Steinbrech, Reduction and re-oxidation of anodes for solid oxide fuel cells, Solid State Ion., 176 (2005) 2201-2203, https://doi.org/10.1016/j.ssi.2005.06.014
[34] S.S. Bi, C.C. Ye, Y.L. Liu, Y.X. Zhang, Y. Wang, Z. Liu, M.Q. Wang, L.L. Zhou, X. Lin, L.J. Zhang, J.Q. Wang, Microstructure optimization of fuel electrodes for high-efficiency reversible proton ceramic cells, J. Am. Ceram. Soc., 106 (2023) 6911-6922, https://doi.org/10.1111/jace.19273
[35] L.A. Malik, N.A. Mahmud, N.S.M. Affandi, N.W. Mazlan, N.H.A. Zakaria, N.I.A. Malek, O.H. Hassan, A.M.M. Jani, N. Osman, Effect of nickel oxide - Modified BaCe0.54Zr0.36Y0.1O2.95as composite anode on the performance of proton-conducting solid oxide fuel cell, Int. J. Hydrog. Energy, 46 (2021) 5963-5974, https://doi.org/10.1016/j.ijhydene.2020.10.219
[36] Y.X. Pan, K. Pei, Y.C. Zhou, T. Liu, M.L. Liu, Y. Chen, A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell, J. Mater. Chem. A, 9 (2021) 10789-10795, https://10.1039/d1ta00591j
[37] N. Nasani, D. Ramasamy, A.D. Brandao, A.A. Yaremchenko, D.P. Fagg, The impact of porosity, pH2 and pH2O on the polarisation resistance of Ni-BaZr0.85Y0.15O3−δ cermet anodes for Protonic Ceramic Fuel Cells (PCFCs), Int. J Hydrogen Energ., 39 (2014) 21231-21241, https://doi.org/10.1016/j.ijhydene.2014.10.093
[38] G. Taillades, P. Batocchi, A. Essoumhi, M. Taillades, D.J. Jones, J. Rozière, Engineering of porosity, microstructure and electrical properties of Ni-BaCe0.9Y0.1O2.95 cermet fuel cell electrodes by gelled starch porogen processing, Micropor. Mesopor. Mat., 145 (2011) 26-31, https://doi.org/10.1016/j.micromeso.2011.04.020
[39] M.A. Laguna-Bercero, A.R. Hanifi, L. Menand, N.K. Sandhu, N.E. Anderson, T.H. Etsell, P. Sarkar, The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes, Electrochim. Acta, 268 (2018) 195-201, https://doi.org/10.1016/j.electacta.2018.02.055
[40] A. Sarikaya, V. Petrovsky, F. Dogan, Development of the anode pore structure and its effects on the performance of solid oxide fuel cells, Int. J. Hydrog. Energy, 38 (2013) 10081-10091, https://doi.org/10.1016/j.ijhydene.2013.05.160
[41] J.H. Lee, J.W. Heo, D.S. Lee, J. Kim, G.H. Kim, H.W. Lee, H.S. Song, J.H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC, Solid State Ion., 158 (2003) 225-232, https://doi.org/10.1016/S0167-2738(02)00915-3
[42] T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells, Science, 325 (2009) 852-855, https://doi.org/10.1126/science.1176404
[43] B.H. Rainwater, M.F. Liu, M.L. Liu, A more efficient anode microstructure for SOFCs based on proton conductors, Int. J. Hydrog. Energy 37 (2012) 18342-18348, https://doi.org/10.1016/j.ijhydene.2012.09.027
[44] W.P. Pan, Z. Lü, K.F. Chen, X.B. Zhu, X.Q. Huang, Y.H. Zhang, B. Wei, W.H. Su, Paper-fibres used as a pore-former for anode substrate of solid oxide fuel cell, Fuel Cells, 11 (2011) 172-177, https://doi.org/10.1002/fuce.201000135
[45] M. Zunic, L. Chevallier, F. Deganello, A. D′Epifanio, S. Licoccia, E. Di Bartolomeo, E. Traversa, Electrophoretic deposition of dense BaCe0.9Y0.1O3-x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 190 (2009) 417-422, https://doi.org/10.1016/j.jpowsour.2009.01.046
[46] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog Mater Sci, 52 (2007) 1-61, https://doi.org/10.1016/j.pmatsci.2006.07.001
[47] L. Besra, C. Compson, M.L. Liu, Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell application, J. Power Sources, 173 (2007) 130-136, https://doi.org/10.1016/j.jpowsour.2007.04.061
[48] S. Lee, I. Park, H. Lee, D. Shin, Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells, Int. J. Hydrogen Energ., 39 (2014) 14342-14348, https://doi.org/10.1016/j.ijhydene.2014.03.135
[49] K. Bae, S. Lee, D.Y. Jang, H.J. Kim, H. Lee, D. Shin, J.W. Son, J.H. Shim, High-performance protonic ceramic fFuel cells with thin-film yttrium-doped barium cerate-zirconate electrolytes on compositionally gradient anodes, ACS Appl. Mater. Interfaces, 8 (2016) 9097-9103, https://doi.org/10.1021/acsami.6b00512
[50] D. Kek, N. Bonanos, M. Mogensen, S. Pejovnik, Effect of electrode material on the oxidation of H2 at the metal-Sr0.995Ce0.95Y0.05O2.970 interface, Solid State Ion., 131 (2000) 249-259, https://doi.org/10.1016/S0167-2738(00)00669-X
[51] E.K. Shin, E. Anggia, A.S. Parveen, J.S. Park, Optimization of the protonic ceramic composition in composite electrodes for high-performance protonic ceramic fuel cells, Int. J. Hydrogen Energ., 44 (2019) 31323-31332, https://doi.org/10.1016/j.ijhydene.2019.09.247
[52] S.P. Jiang, S.P.S. Badwal, Hydrogen oxidation at the nickel and platinum electrodes on yttria-tetragonal zirconia electrolyte, J. Electrochem. Soc., 144 (1997) 3777-3784, https://doi.org/10.1149/1.1838091
[53] J.M. Jing, Z. Lei, Z.W. Zheng, H.R. Wang, Z.B. Yang, S.P. Peng, Tuning oxygen vacancy of the Ba0.95La0.05FeO3−δ perovskite toward enhanced cathode activity for protonic ceramic fuel cells, Int. J. Hydrogen Energ., 47 (2022) 35449-35457, https://doi.org/10.1016/j.ijhydene.2022.08.118
[54] R. Song, X.Y. Zhang, D.M. Huan, X.Y. Li, N. Shi, C.R. Xia, R.R. Peng, Y.L. Lu, A novel triple-conductive cathode with high efficiency and stability for protonic ceramic fuel cells, Int. J. Hydrogen Energ., 48 (2023) 32943-32954, https://doi.org/10.1016/j.ijhydene.2023.04.351
[55] Z.L. Wei, J.P. Wang, X.C. Yu, Z.B.A. Li, Y.J. Zhao, J.L. Chai, Study on Ce and Y co-doped BaFeO3-δ cubic perovskite as free-cobalt cathode for proton-conducting solid oxide fuel cells, Int. J. Hydrogen Energ., 46 (2021) 23868-23878, https://doi.org/10.1016/j.ijhydene.2021.04.188
[56] X. Xu, H.Q. Wang, M. Fronzi, X.F. Wang, L. Bi, E. Traversa, Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance, J. Mater. Chem. A, 7 (2019) 20624-20632, https://doi.org/10.1039/C9TA05300J
[57] J.Y. Chen, J. Li, L.C. Jia, I. Moussa, B. Chi, J. Pu, J. Li, A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells, J Power Sources, 428 (2019) 13-19, https://doi.org/10.1016/j.jpowsour.2019.04.104
指導教授 陳賜原(Szu-yuan Chen) 審核日期 2024-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明