博碩士論文 111222015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.14.253.152
姓名 陳盈珊(Ying-Shan Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用數值方法模擬雷射與離子交互作用產生水窗波段之高階諧波
(Numerical Simulation of Ion-Based Water-Window High-Harmonic Generation)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 建造準相位匹配高階諧波產生的拍波脈衝串
★ 相位匹配之極紫外光高階諧波產生★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 超短極紫外線脈衝之單發式波形強度量測★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件
★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速★ 雷射電漿中無碰撞激震波的全域與局域量測
★ 極紫外光與近紅外光在電漿中四波混頻的前期實驗★ High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 雷射與氣體交互作用激發高階諧波是X射線生成的重要方法,雷射打在氣體靶材上產生游離的自由電子,在經歷加速及與離子再結合過程會釋放短波長光子,目前高階諧波產生相關研究主要關注如何延伸截止光子能量與提高轉換效率。
為延伸高階諧波的截止光子能量,可以選用游離能較高的氣體離子作為靶材,以提高有質動力勢。例如以氦氣為靶材,並利用一價氦離子當作高階諧波波源,其光子截止能量可達keV硬X光波段,然而高度游離的電漿雖然代表高密度的高階諧波源,但同時卻也代表著電漿色散難以被平衡,因此要達成高效率的高階諧波生成便成為一個挑戰。我們規劃利用高階諧波內在偶極子相位變化來補償電漿色散與幾何相位變化,以達成相位匹配與高轉換效率。
本研究透過求解二維軸對稱柱坐標混合對流-擴散電磁(EM)包絡方程,結合Keldysh的電離模型,模擬氦氣靶材中雷射的傳播,並且利用模擬結果計算相位匹配條件和高階諧波產量。我們使用405-nm、半高全寬50-fs持續脈衝驅動和氦氣作用,模擬結果顯示95階諧波(4.26-nm)的輸出產量達到了完美相位匹配條件的66%,169階諧波(2.4-nm)的輸出也達到了完美相位匹配條件的78%。此模擬研究證明,數值模擬可以在進行實驗之前了解雷射和氣體參數對相位匹配條件的影響,進而提高了實驗的效率和成功率。
摘要(英) The interaction between laser and gas to excite high-harmonics generation (HHG) is an important method of generating X-rays. The laser hits the gas target to generate free electrons, which will release short-wavelength photons during the process of acceleration and recombination with the parent ions. Currently, the researches related to the HHG mainly focuses on how to extend the cutoff photon energy and improve conversion efficiency.
In order to extend the cutoff photon energy of HHG, gaseous ions with higher ionization energy can be used as the interacting medium, which can increase the ponderomotive potential and thus the cutoff photon energy. For example, helium gas can be selected as the gas target, and HHG can be generated by singly ionized helium. The cutoff photon energy can reach keV hard x-ray range. However, the highly ionized plasma not only represents a high density HHG sources, but it also means that plasma dispersion is difficult to balance. Therefore, achieving high efficiency HHG remains a big challenge. Here we propose to utilize the HHG intrinsic dipole phase variation to balance the plasma dispersion and the geometrical phase shift. Then the phase-matching condition can be achieved and the conversion efficiency can be increased.
In this study, the propagation of laser in a helium target is simulated by solving the two-dimensional axisymmetric cylindrical coordinate with advective-diffusion electromagnetic (EM) envelope equation, combined with Keldysh′s optical field ionization model, and the simulation results are used to calculate the phase matching conditions, HHG yield. We used 405-nm, FWHM 50-fs driving laser to interact with helium gas. The simulation results show that the output yield of the 95th harmonic (4.26-nm) reaches 66% of the perfect phase matching condition, and the 169th harmonic (2.4-nm) output also reaches 78% of the perfect phase matching condition. This simulation study demonstrates that numerical experiments can know the effect of laser and gases’ parameters on phase matching conditions before conducting experiments, thereby improving the efficiency and success rate of experiments.
關鍵字(中) ★ 高階諧波
★ 雷射與電漿交互作用
★ 高游離電漿
★ 相位匹配條件
★ 數值模擬計算
關鍵字(英) ★ High-Harmonic Generation
★ Laser-Plasma Interaction
★ Highly-Ionized Plasma
★ Phase-Matching Condition
★ Numerical Simulation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
一、 緒論 1
1-1 引言 1
1-2 背景 2
1-2-1 典型高階諧波光譜 2
1-2-2 三步驟模型 2
1-2-3 相位匹配條件 5
1-3 模擬條件規劃 9
1-4 本論文的架構 9
二、 數值模擬方法和參數選擇 11
2-1 數值實驗流程 11
2-2 控制方程式 11
2-2-1 電場在電漿內傳播的波包方程式 11
2-2-2 游離模型與游離率 12
2-2-3 更新離子密度以及電子密度 13
2-3 差分方程式(Difference equation) 13
2-3-1 波包方程式 14
2-3-2 游離率 14
2-3-3 氣體密度 14
2-4 系統架設 15
2-4-1 實驗條件 15
2-5 初始條件 16
2-5-1 滑窗內的雷射場 16
2-5-2 滑窗內的氣體分佈 17
2-6 資料後處理方法 17
2-6-1 模擬結果 17
2-6-2 氣體密度 18
2-6-3 雷射強度 18
2-7 計算相位匹配條件 19
2-7-1 中性氣體色散 19
2-7-2 電漿色散 19
2-7-3 幾何相位變化 19
2-7-4 內在偶極子相位變化 20
2-8 計算高階諧波的產生與傳播 20
2-8-1 重建雷射場 20
2-8-2 計算高階諧波場 21
2-8-3 計算高階諧波的強度 21
2-8-4 完美相位匹配條件 22
三、 模擬結果 23
3-1 第95階高階諧波 23
3-1-1 系統參數和數值模擬結果 23
3-1-2 模擬結果診斷 25
3-1-3 相位匹配條件 27
3-1-4 生成與傳播過程 28
3-1-5 頻寬 29
3-2 第169階高階諧波 30
3-2-1 系統參數和數值模擬結果 30
3-2-2 模擬結果診斷 33
3-2-3 相位匹配條件 34
3-2-4 生成與傳播過程 35
3-2-5 頻寬 36
四、 結論 38
4-1 總結 38
4-2 討論 38
4-2-1 穩態解 38
4-2-2 氣體被游離的瞬間雷射的強度 39
4-2-3 相速度差異 39
參考文獻 41
附錄一 44
附錄二 47
附錄三 50
附錄四 53
附錄五 56
附錄六 64
參考文獻 1. Brabec, T. and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 2000. 72: p. 545.
2. Corkum, P.B., Plasma perspective on strong field multiphoton ionization. Phys Rev Lett, 1993. 71(13): p. 1994-1997.
3. L′Huillier, A., K.J. Schafer, and K.C. Kulander, Theoretical aspects of intense field harmonic generation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991. 24: p. 3315.
4. Lewenstein, M., et al., Theory of high-harmonic generation by low-frequency laser fields. Phys Rev A, 1994. 49(3): p. 2117-2132.
5. Pirri, A., C. Corsi, and M. Bellini, Enhancing the yield of high-order harmonics with an array of gas jets. Physical Review A, 2008. 78(1).
6. Willner, A., et al., Coherent control of high harmonic generation via dual-gas multijet arrays. Phys. Rev. Lett., 2011. 107(17): p. 175002.
7. Paul, A., et al., Quasi-phase-matched generation of coherent extreme-ultraviolet light. Nature, 2003. 421: p. 51.
8. Peatross, J., S. Voronov, and I. Prokopovich, Selective zoning of high harmonic emission using counter-propagating light. Opt. Express, 1997. 1(5): p. 114.
9. Robinson, T., et al., Generation and control of ultrafast pulse trains for quasi-phase-matching high-harmonic generation. Opt. Soc. Am. B, 2010. 27(4): p. 763.
10. Voronov, S.L., et al., Control of laser high-harmonic generation with counterpropagating light. Phys. Rev. Lett., 2001. 87(13): p. 133902.
11. O′Keeffe, K., D.T. Lloyd, and S.M. Hooker, Quasi-phase-matched high-order harmonic generation using tunable pulse trains. Opt Express, 2014. 22(7): p. 7722-32.
12. Hareli, L., et al., On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam. Phys Rev Lett, 2018. 120(18): p. 183902.
13. Liu, Y.L., J. Wang, and H.H. Chu, Ion-based high-order harmonic generation from water window to keV region with a transverse disruptive pulse for quasi-phase-matching. Opt. Express, 2022. 30(2): p. 1365-1380.
14. Liu, Y.-L., et al., Tomographic analysis of high-order harmonic generation by integrating a phase-matching profile measurement with disruptive interaction-length control. Physical Review A, 2021. 104(2).
15. Hareli, L., G. Shoulga, and A. Bahabad, Phase matching and quasi-phase matching of high-order harmonic generation—a tutorial. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020. 53.
16. Gibbon, P., Short Pulse Laser Interactions with Matter. 2005.
17. High Harmonic Generation. Available from: https://academic-accelerator.com/encyclopedia/high-harmonic-generation.
18. Gibson, E.A., Quasi-Phase Matching of Soft X-ray Light from High-Order Harmonic Generation using Waveguide Structures. 2004, University of Colorado.
19. Arpin, P., et al., Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression. Phys Rev Lett, 2009. 103(14): p. 143901.
20. Gibson, E.A., et al., High-order harmonic generation up to 250 eV from highly ionized argon. Phys Rev Lett, 2004. 92(3): p. 033001.
21. Zepf, M., et al., Bright quasi-phase-matched soft-X-ray harmonic radiation from argon ions. Phys Rev Lett, 2007. 99(14): p. 143901.
22. Frolov, M.V., N.L. Manakov, and A.F. Starace, Wavelength scaling of high-harmonic yield: threshold phenomena and bound state symmetry dependence. Phys Rev Lett, 2008. 100(17): p. 173001.
23. ́ndez, J.A.P.r.-H., L. Roso, and L. Plaja, Harmonic generation beyond the Strong-Field Approximation: the physics behind the short-wave-infrared scaling laws. Opt. Express, 2009. 17(12): p. 9891.
24. Tate, J., et al., Scaling of wave-packet dynamics in an intense midinfrared field. Phys Rev Lett, 2007. 98(1): p. 013901.
25. Chu, H.-h., Memorandum Phase matching of high-harmonic generation. 2021.
26. Heyl, C.M., J. Güdde, A. L’Huillier, and U. Höfer, High-order harmonic generation with μJ laser pulses at high repetition rates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012. 45(7).
27. Liu, C.S. and V.K. Tripathi, Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas. Physics of Plasmas, 2000. 7(11): p. 4360-4363.
28. Keldysh, L.V., IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE. Sov. Phys. JETP, 1965. 20: p. 1307.
29. Hung, T.-S., et al., A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction. Applied Physics B, 2014. 117(4): p. 1189-1200.
指導教授 朱旭新(Hsu-hsin Chu) 審核日期 2024-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明