博碩士論文 106222606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.147.27.140
姓名 米亞當(John Adams S. Villamoran)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Search for H-> γ*γ->μμγ with Full Run-2 Data at the LHC using the CMS Detector)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ Assembly and Beam Test Analysis of sPHENIX INTT Detector
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-1以後開放)
摘要(中) 本篇論文研究了希格斯玻色子衰變為真實光子和虛光子的搜尋。研究也考慮了虛光子轉換成兩個μ介子的內部轉換。分析是根據大型強子對撞機上的 CMS 實驗在整個 Run-2 期間從質心能量為 13 TeV 的質子-質子對撞中收集到的數據進行的,對應於 137.1 fb^{-1} 的總亮度。與標準模型預測值相比,H-> γ*γ->μμγ 的分支比的預期上限被設定為1.09,標準模型希格斯玻色子的預期顯著性為 1.83σ。
摘要(英) A search for a Higgs boson decaying to a real and a virtual photon is studied. The internal conversion of a virtual photon into two muons is considered. The analysis is performed on data collected by the CMS experiment at the LHC from proton-proton collisions with a center-of-mass energy of 13 TeV during the full Run-2 period, corresponding to an integrated luminosity of 137.1 fb^{-1}. An expected upper limit was set on the ratio of the branching fraction of H->γ*γ->μμγ with respect to the Standard Model prediction to be 1.09, with an expected significance of 1.83σ for the Standard Model Higgs boson.
關鍵字(中) ★ 大型強子對撞機
★ 稀有衰變
★ 希格斯玻色子
★ 緊湊渺子線圈
關鍵字(英) ★ Higgs boson
★ LHC
★ CMS
★ Rare decay
★ Dalitz decay
論文目次 1 Introduction 1
1.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . 1
1.1.1 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . 4
1.1.3 Electroweak Theory and the Higgs Mechanism . . . . . . . 4
1.1.4 Summary of the Standard Model . . . . . . . . . . . . . . . 10
1.2 Higgs Dalitz Decays . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Feature of the Decay . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Background Compposition . . . . . . . . . . . . . . . . . . 14
1.2.3 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Experimental Apparatus 19
2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Compact Muon Solenoid Detector . . . . . . . . . . . . . . . . 20
2.2.1 CMS Tracker System . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . 23
2.2.3 Hadron Calorimteter (HCAL) . . . . . . . . . . . . . . . . . 24
2.2.4 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 Trigger and Data Acquisition System . . . . . . . . . . . . 25
3 Physics Analysis 27
3.1 Data and Simulated Samples and Triggers . . . . . . . . . . . . . . 27
3.1.1 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Simulated Samples . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Muon17-Photon30 (MuPho) Trigger . . . . . . . . . . . . . 31
IsoMu27 (SingleMu) Trigger . . . . . . . . . . . . . . . . . . 35
3.2 Object Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Muon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Event Categorization . . . . . . . . . . . . . . . . . . . . . . 46
Dimuon Mass Bin Optimization . . . . . . . . . . . . . . . 49
3.4 Signal and Background modeling . . . . . . . . . . . . . . . . . . . 53
3.4.1 Signal modeling . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Background modeling . . . . . . . . . . . . . . . . . . . . . 53
F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Envelope Method . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . 62
3.5.2 Normalization Uncertainties . . . . . . . . . . . . . . . . . 62
3.5.3 Shape Uncertainties . . . . . . . . . . . . . . . . . . . . . . 64
3.5.4 Correlation Between Different Years . . . . . . . . . . . . . 65
3.6 Statistical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Results and Conclusion 71
4.0.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.0.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A Signal Fits 83
Bibliography 123
參考文獻 [1] Georges Aad et al. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”. In:
Phys. Lett. B 716 (2012), pp. 1–29. DOI: 10.1016/j.physletb.2012.
08.020. arXiv: 1207.7214 [hep-ex].
[2] Serguei Chatrchyan et al. “Observation of a New Boson at a Mass of 125
GeV with the CMS Experiment at the LHC”. In: Phys. Lett. B 716 (2012),
pp. 30–61. DOI: 10.1016/j.physletb.2012.08.021. arXiv: 1207.
7235 [hep-ex].
[3] Serguei Chatrchyan et al. “Observation of a New Boson with Mass Near
125 GeV in pp Collisions at
p
s = 7 and 8 TeV”. In: JHEP 06 (2013), p. 081.
DOI: 10.1007/JHEP06(2013)081. arXiv: 1303.4571 [hep-ex].
[4] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Phys. Rev. Lett. 13 (9 1964), pp. 321–323. DOI: 10.1103/
PhysRevLett.13.321. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.13.321.
[5] PeterW. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In:
Phys. Rev. Lett. 13 (16 1964), pp. 508–509. DOI: 10.1103/PhysRevLett.
13 . 508. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.13.508.
[6] P.W. Higgs. “Broken symmetries, massless particles and gauge fields”. In:
Physics Letters 12.2 (1964), pp. 132 –133. ISSN: 0031-9163. DOI: https :
/ / doi . org / 10 . 1016 / 0031 - 9163(64 ) 91136 - 9. URL:
http : / / www . sciencedirect . com / science / article / pii /
0031916364911369.
[7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. “Global Conservation
Laws and Massless Particles”. In: Phys. Rev. Lett. 13 (20 1964), pp. 585–587.
DOI: 10.1103/PhysRevLett.13.585. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.13.585.
[8] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless
Bosons”. In: Phys. Rev. 145 (4 1966), pp. 1156–1163. DOI: 10 . 1103 /
PhysRev.145.1156. URL: https://link.aps.org/doi/10.1103/
PhysRev.145.1156.
[9] T. W. B. Kibble. “Symmetry Breaking in Non-Abelian Gauge Theories”.
In: Phys. Rev. 155 (5 1967), pp. 1554–1561. DOI: 10.1103/PhysRev.155.
1554. URL: https://link.aps.org/doi/10.1103/PhysRev.155.
1554.
[10] Marcela Carena, Ian Low, and Carlos E. M. Wagner. “Implications of
a modified Higgs to diphoton decay width”. In: Journal of High Energy
Physics 2012.8 (2012), p. 60. ISSN: 1029-8479. DOI: 10 . 1007 /
JHEP08(2012 ) 060. URL: https : / / doi . org / 10 . 1007 /
JHEP08(2012)060.
[11] Chian-Shu Chen et al. “New scalar contributions to h ! Z
”. In: Phys. Rev.
D 87 (7 2013), p. 075019. DOI: 10.1103/PhysRevD.87.075019. URL:
https://link.aps.org/doi/10.1103/PhysRevD.87.075019.
[12] Ian Low, Joseph Lykken, and Gabe Shaughnessy. “Singlet scalars as Higgs
boson imposters at the Large Hadron Collider”. In: Phys. Rev.D84 (3 2011),
p. 035027. DOI: 10 . 1103 / PhysRevD . 84 . 035027. URL: https : / /
link.aps.org/doi/10.1103/PhysRevD.84.035027.
[13] Martin Bauer, Matthias Neubert, and Andrea Thamm. “LHC as an Axion
Factory: Probing an Axion Explanation for (g ? 2)  with Exotic Higgs
Decays”. In: Phys. Rev. Lett. 119 (3 2017), p. 031802. DOI: 10 . 1103 /
PhysRevLett.119.031802. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.119.031802.
[14] Alexander Yu. Korchin and Vladimir A. Kovalchuk. “Angular distribution
and forward–backward asymmetry of the Higgs-boson decay to photon
and lepton pair”. In: The European Physical Journal C 74.11 (2014), p. 3141.
ISSN: 1434-6052. DOI: 10.1140/epjc/s10052- 014- 3141- 7. URL:
https://doi.org/10.1140/epjc/s10052-014-3141-7.
[15] Cheng-Wei Chiang and Kei Yagyu. “Higgs boson decays to

and Z
in
models with Higgs extensions”. In: Phys. Rev. D 87 (3 2013), p. 033003. DOI:
10.1103/PhysRevD.87.033003. URL: https://link.aps.org/
doi/10.1103/PhysRevD.87.033003.
[16] S. Dawson and P. P. Giardino. “Higgs decays to ZZ and Z
in the standard
model effective field theory: An NLO analysis”. In: Phys. Rev. D97 (9 2018),
p. 093003. DOI: 10 . 1103 / PhysRevD . 97 . 093003. URL: https : / /
link.aps.org/doi/10.1103/PhysRevD.97.093003.
[17] Yi Sun, Hao-Ran Chang, and Dao-Neng Gao. “Higgs decays to
l+l in the
standard model”. In: Journal of High Energy Physics 2013.5 (2013), p. 61.
ISSN: 1029-8479. DOI: 10.1007/JHEP05(2013)061. URL: https://
doi.org/10.1007/JHEP05(2013)061.
[18] Ali Abbasabadi et al. “Radiative Higgs boson decays H ! ff
”. In: Phys.
Rev. D 55 (9 1997), pp. 5647–5656. DOI: 10.1103/PhysRevD.55.5647.
URL: https://link.aps.org/doi/10.1103/PhysRevD.55.5647.
[19] Long-Bin Chen, Cong-Feng Qiao, and Rui-Lin Zhu. “Reconstructing the
125 GeV SM Higgs boson through l l
”. In: Physics Letters B 726.1 (2013),
pp. 306 –311. ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.
physletb.2013.08.050. URL: http://www.sciencedirect.com/
science/article/pii/S0370269313006898.
[20] Giampiero Passarino. “Higgs boson production and decay: Dalitz sector”.
In: Physics Letters B 727.4 (2013), pp. 424 –431. ISSN: 0370-2693. DOI:
https://doi.org/10.1016/j.physletb.2013.10.052. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0370269313008599.
[21] Alexander Yu. Korchin and Vladimir A. Kovalchuk. “Angular distribution
and forward–backward asymmetry of the Higgs-boson decay to photon
and lepton pair”. In: The European Physical Journal C 74.11 (2014), p. 3141.
DOI: 10.1140/epjc/s10052- 014- 3141- 7. URL: https://doi.
org/10.1140/epjc/s10052-014-3141-7.
[22] D. de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. Deciphering
the Nature of the Higgs Sector”. In: (2016). DOI: 10.2172/1345634,
10.23731/CYRM-2017-002. arXiv: 1610.07922 [hep-ph].
[23] John M. Campbell and R.K. Ellis. “MCFM for the Tevatron and the LHC”.
In: Nuclear Physics B - Proceedings Supplements 205-206 (2010). Loops and
Legs in Quantum Field Theory, pp. 10 –15. ISSN: 0920-5632. DOI: https:
/ / doi . org / 10 . 1016 / j . nuclphysbps . 2010 . 08 . 011. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0920563210001945.
[24] Chatryan et al. “Search for a Higgs boson decaying into
 
! ll

with low dilepton mass in pp collisions at
p
s = 8 TeV”. In: Physics
Letters B 753 (2016), pp. 341 –362. ISSN: 0370-2693. DOI: https : / /
doi . org / 10 . 1016 / j . physletb . 2015 . 12 . 039. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0370269315009879.
[25] Chatryan et al. “Search for the decay of a Higgs boson in the ll
channel in
proton-proton collisions at
p
s = 13 TeV”. In: Journal of High Energy Physics
2018.11 (2018), p. 152. ISSN: 1029-8479. DOI: 10.1007/JHEP11(2018)
152. URL: https://doi.org/10.1007/JHEP11(2018)152.
[26] Georges Aad et al. “Evidence for Higgs boson decays to a low-mass dilepton
system and a photon in pp collisions at s=13 TeV with the ATLAS
detector”. In: Phys. Lett. B 819 (2021), p. 136412. DOI: 10 . 1016 / j .
physletb.2021.136412. arXiv: 2103.10322 [hep-ex].
[27] “LHC Machine”. In: JINST 3 (2008). Ed. by Lyndon Evans and Philip
Bryant, S08001. DOI: 10.1088/1748-0221/3/08/S08001.
[28] Esma Mobs. “The CERN accelerator complex. Complexe des accélérateurs
du CERN”. In: (2016). General Photo. URL: https://cds.cern.ch/
record/2197559.
[29] S. Chatrchyan et al. “The CMS Experiment at the CERN LHC”. In: JINST
3 (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[30] Tai Sakuma and Thomas McCauley. Detector and event visualization with
SketchUp at the CMS experiment. Tech. rep. Comments: 5 pages, 6 figures,
Proceedings for CHEP 2013, 20th International Conference on Computing
in High Energy and Nuclear Physics. Geneva: CERN, 2014. DOI: 10.
1088/1742-6596/513/2/022032. arXiv: 1311.4942. URL: https:
//cds.cern.ch/record/1626816.
[31] CMS Collaboration. “Particle-flow reconstruction and global event description
with the CMS detector. Particle-flow reconstruction and global
event description with the CMS detector”. In: JINST 12.10 (2017). Replaced
with the published version. Added the journal reference and DOI. All the
figures and tables can be found at http://cms-results.web.cern.ch/cmsresults/
public-results/publications/PRF-14-001 (CMS Public Pages),
P10003. DOI: 10 . 1088 / 1748 - 0221 / 12 / 10 / P10003. arXiv:
1706.04965. URL: https://cds.cern.ch/record/2270046.
[32] The CMS Collaboration. “Description and performance of track and
primary-vertex reconstruction with the CMS tracker”. In: Journal of Instrumentation
9.10 (2014), P10009. DOI: 10.1088/1748-0221/9/10/
P10009. URL: https://dx.doi.org/10.1088/1748-0221/9/10/
P10009.
[33] Mia Tosi. The CMS trigger in Run 2. Tech. rep. Geneva: CERN, 2018. DOI:
10.22323/1.314.0523. URL: https://cds.cern.ch/record/
2290106.
[34] J. Alwall et al. “The automated computation of tree-level and next-toleading
order differential cross sections, and their matching to parton
shower simulations”. In: Journal of High Energy Physics 2014.7 (2014). ISSN:
1029-8479. DOI: 10.1007/jhep07(2014)079. URL: http://dx.doi.
org/10.1007/JHEP07(2014)079.
[35] A. Bodek et al. “Extracting muon momentum scale corrections for hadron
collider experiments”. In: The European Physical Journal C 72.10 (2012),
p. 2194. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-012-2194-8.
URL: https://doi.org/10.1140/epjc/s10052-012-2194-8.
[36] https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCHXSWG/
Higgs_XSBR_YR4_update.xlsx.
[37] URL: https://twiki.cern.ch/twiki/bin/view/CMS/TWikiLUM#
LumiComb.
[38] Mingshui Chen and et al. “Higgs measurements in the H to ZZ to 4l
channel using kinematic fitting technique”. In: CMS Analysis Note 15/286
(2015).
[39] URL: https : / / twiki . cern . ch / twiki / bin / view /
CMS / EgammaRunIIRecommendations # Recommendations _ on _
Combining_Sys.
[40] Procedure for the LHC Higgs boson search combination in Summer 2011. Tech.
rep. Geneva: CERN, 2011. URL: https://cds.cern.ch/record/
1379837.
[41] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new
physics”. In: The European Physical Journal C 71.2 (Feb. 2011). ISSN: 1434-
6052. DOI: 10.1140/epjc/s10052-011-1554-0. URL: http://dx.
doi.org/10.1140/epjc/s10052-011-1554-0.
[42] J. Neyman and E. S. Pearson. “On the Problem of the Most Efficient Tests
of Statistical Hypotheses”. In: Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical Character
231 (1933), pp. 289–337. ISSN: 02643952. URL: http://www.jstor.org/
stable/91247.
[43] Abraham Wald. “Tests of Statistical Hypotheses Concerning Several Parameters
When the Number of Observations is Large”. In: Transactions of
the American Mathematical Society 54.3 (1943), pp. 426–482. ISSN: 00029947.
URL: http : / / www . jstor . org / stable / 1990256 (visited on
01/04/2024).
指導教授 郭家銘(Kuo, Chia-Ming) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明