博碩士論文 102282002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.137.218.179
姓名 黃聖杰(Sheng-Chieh Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以第一原理計算探討應力下之複雜氧化物
(First-Principles investigations for complex oxides under stress)
相關論文
★ 固態甲烷在行星內部高壓下之熱性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-31以後開放)
摘要(中) 複雜氧化物的新穎性質是來自於電荷、晶格、自旋、和軌域的四個 自由度的相互作用。由於此類材料的強關聯性,使得理論計算具有挑 戰性。一種有效的方法是密度泛函理論加上 Hubbard U (DFT+U),其 中 Hubbard U 參數從第一原理自洽計算中得到 (Usc)。本論文中,我 們展示了對鈷酸鍶 SrCoO3 (塊材與薄膜) 和含鐵菱鎂礦 (Mg,Fe)CO3 的 DFT+Usc 計算結果,如下所述:
(1) 塊材 SrCoO3:近年來,SrCoO3 在催化和燃料電池等領域的潛 在應用,以及獨特的磁性性質而受人關注。實驗結果顯示,SrCoO3 在室 溫壓下是立方晶系鈣鈦礦結構,具有鐵磁性金屬特性,而且可維持立方 晶系鈣鈦礦結構至壓力約 60 GPa。中子粉末繞射實驗結果顯示 SrCoO3 的受壓小於 5.4 GPa 時,沒有自旋轉變的現象。我們的第一原理計算結 果顯示,SrCoO3 的基態是具有 d6L 特徵的中自旋態鐵磁性金屬,鈷的 價態幾乎像是三價鈷 (Co3+)。在約 7 GPa 壓力時,SrCoO3 會由中自旋 態的鐵磁性金屬轉變為低自旋態的鐵磁性半金屬,其中低自旋態的磁矩 主要貢獻來自氧原子,也展現了比中自旋態有著更多的 d6L 特徵。除此 之外,我們也分析 X 光繞射實驗結果,顯示在自旋轉變時,會有約 1% 的異常體積縮減。(2) 薄膜 SrCoO3:磊晶應變薄膜的物性,相較於塊材,常會有很大 的不同。SrCoO3 的高拉伸薄膜 (high tensile strain, ε ≳ 3%) 性質,至今 仍不清楚,早期的計算預測此薄膜為反鐵磁性,但是近期實驗結果則顯示其為鐵磁性絕緣體。我們使用第一原理計算,深入研究了 SrCoO3 的 拉伸薄膜,包括晶體結構、自旋態、磁性態,以及軌域態等方面。我們 計算結果顯示了高拉伸薄膜具有高自旋態鐵磁性絕緣體的獨特性質,這 一個獨特性質,必須同時滿足軌域有序、協同楊 − 泰勒效應以及八面體 傾斜這些條件才能得到。
(3) 含鐵菱鎂礦 (Mg,Fe)CO3:研究碳礦物的基本物理化學性質,將 有助於我們對地球內部碳循環的了解。一般而言,人們相信 (Mg,Fe)CO3 為地球下地函主要攜碳礦物之一,並且是地球內部碳循環的關鍵角色。 實驗結果顯示,(Mg,Fe)CO3 是菱形晶系結構,具有絕緣體性質,在約 44−52 GPa 的壓力下,會觀察到異常現象,例如:異常體積縮減和異常 彈性下降。我們的第一原理計算結果顯示,(Mg,Fe)CO3 的鐵含量不論是 多少,約在 45−50 GPa 的壓力範圍內,會有高 − 低自旋態的轉變,且 中自旋態不參與轉變過程。(Mg,Fe)CO3 在自旋轉變的過程中,也伴隨著 異常體積縮減與異常彈性下降,並且所有計算結果皆與實驗觀察結果相 符合。
摘要(英) Complex oxides are considered promising functional materials, owing to their unique properties emerging from the intricate interplay between charge, lattice, spin, and orbital degree of freedom exhibited in this class of materials. Theoretical treatment for these materials has been challenging due to their strongly correlated nature. One promising approach is the density functional theory plus Hubbard U (DFT+U) method with the Hubbard U parameter computed from the first principles self-consistently (Usc). In this dissertation, we present our DFT+Usc calculation results for strontium cobaltite SrCoO3 (bulk and thin films) and ferromagnesite (Mg,Fe)CO3, as described below:
(1) Bulk SrCoO3: In recent years, SrCoO3 has attracted significant attention due to its potential applications in catalysis, fuel cells, and other fields, as well as its unique magnetic properties. In experiments, bulk Sr- CoO3 has been confirmed to be a ferromagnetic (FM) metal at ambient conditions and remains in cubic perovskite structure up to 60 GPa. Our calculations show the ground state of bulk SrCoO3 is a FM metal in an intermediate-spin (IS) state with d6L character: nearly trivalent cobalt (Co3+) accompanied by spin-down O-2p electron holes. We also show that SrCoO3 undergoes a transition from IS state FM metal to a low-spin state (LS) FM half-metal at around 7 GPa. Compared to the metallic IS state, the half-metallic LS state exhibits even more prominent d6L character, in- cluding nearly nonmagnetic Co3+ and exceptionally large oxygen magnetic moments. By analyzing x-ray diffraction data of compressed single-crystal SrCoO3, we point out an anomalous volume reduction of 1% when IS-LS spin transition.
(2) SrCoO3 thin film: Materials properties can be dramatically altered by strains. With epitaxial strain, thin-film materials often exhibit novel properties not found in their bulk counterparts. Bulk SrCoO3 has been known a ferromagnetic metal. The magnetic properties of epitaxial SrCoO3 thin films, particularly under high tensile strain (ε ≳ 3%), remain unclear. Previous calculations had predicted antiferromagnetic (AFM) states to be more energetically favorable in this regime, but recent experiments have suggested a FM insulating state. Using first-principles calculations, we perform an extensive search for the structural, spin, magnetic, and orbital states of SrCoO3 thin films. Our calculations present a novel state ex- hibiting FM insulating behavior, and this FM insulating state is achieved through complicated orbital ordering, cooperative Jahn−Teller distortion, and octahedral tilts.
(3) (Mg,Fe)CO3: Knowledge of carbon minerals in the Earth’s interior is key to understanding the Earth’s deep carbon cycle. (Mg,Fe)CO3 is believed to be the major carbon carrier in the earth’s lower mantle and play a key role in the earth’s deep carbon cycle. Experiments reveal that (Mg,Fe)CO3 has a trigonal crystal structure (R ̄3c) and exhibits insulat- ing properties. At pressures around 44−52 GPa, anomalous behavior are observed, including volume reduction and elastic anomalies. Our calculations indicate a high-spin (HS) to LS transition at 45−50 GPa without passing through the IS state, regardless of the iron concentration. All key calculation results, including the transition pressure, volume and elastic anomalies associated with the HS-LS transition, are in great agreement with experiments.
關鍵字(中) ★ 八面體傾斜
★ 自旋轉變
★ 軌域有序
★ 楊泰勒效應
★ 金屬-絕緣體轉變
關鍵字(英) ★ Spin transition
★ Metal−insulator transition
★ Orbital ordering
★ Octahedral tilt
★ Cooperative Jahn−Teller distortion
論文目次 目錄
頁次 摘要 iii Abstract v
誌謝 目錄 圖目錄 表目錄
ix
xi xv
xxvii
一、 緒論 1
1.1 氧化物 ..................................................................... 1
1.2 Glazer notation .......................................................... 5
1.3 自旋態 ..................................................................... 8
1.4 楊 − 泰勒效應 ........................................................... 11
1.5 軌域有序與協同楊 − 泰勒效應 ...................................... 12
1.6 磁性 ........................................................................ 14
1.7 居里溫度 .................................................................. 17
1.8 塊材鈷酸鑭與塊材鈷酸鍶 ............................................. 18
1.9 論文架構 .................................................................. 19
二、 計算方法 21 2.1 Density Functional Theory............................................ 21 2.1.1 Born-Oppenheimer Approximation ........................ 23
2.1.2 Hohenberg−Kohn Theorem.................................. 24
2.1.3 Kohn−Sham equation ......................................... 26
2.1.4 Exchange-Correlation Energy ............................... 29
2.2 Force and Stress ......................................................... 31 2.2.1 Force .............................................................. 31 2.2.2 Stress.............................................................. 32
2.3 DFT+U method......................................................... 33
2.3.1 Hubbard model ................................................. 34
2.3.2 Formulation...................................................... 34
2.3.3 Compute U (Linear response approach) .................. 38
2.3.4 Computation .................................................... 40
三、 塊材鈷酸鍶 41
3.1 簡介 ........................................................................ 41
3.2 計算結果與討論 ......................................................... 43
3.3 小結 ........................................................................ 54
四、 薄膜鈷酸鍶 55
4.1 簡介 ........................................................................ 55
4.2 計算結果與討論 ......................................................... 61
4.3 小結 ........................................................................ 72
五、 含鐵菱鎂礦 73
5.1 簡介 ........................................................................ 73
5.2 計算結果與討論 ......................................................... 76
5.2.1 結論 ............................................................... 84
六、 總結 參考文獻
85 87
附錄 A 補充資料 99 A.1 Thermodynamic of the mixed spin state........................... 99
A.2 塊材鈷酸鍶的補充資料 ................................................ 101
A.2.1 磁矩 ............................................................... 101
A.2.2 U 值對轉換壓力的影響....................................... 102
A.2.3 實驗 XRD 數據................................................. 102
A.3 薄膜鈷酸鍶的補充資料 ................................................ 103
A.3.1 Pseudopotential convergence test...........................103 A.3.2 無八面體傾斜條件下的相對能量表與投影狀態密度
圖 ........................................................................... 105 A.3.3 IS-hm and HS-o3 在平衡體積下的電子結構與自旋
密度 ........................................................................ 107
A.3.4 HS-o3 在拉伸 3% 下的狀態密度............................ 110
A.3.5 HS-o3, HS-rs, and HS-c 在拉伸 3% 下的總磁化強度 . . 112
A.3.6 U 值是否對總能量高低排序與能帶結構有影響......... 114
A.3.7 居里溫度 ......................................................... 116
A.4 Calculation of exchange interaction and curie temperature ... 118
A.4.1 Exchange interaction (J).....................................118
A.4.2 Curie temperature..............................................124
參考文獻 [1] V. M. Goldschmidt, Die Gesetze der Krystallochemie., Naturwissenschaften 14, 477 (1926).
[2] L. M. Feng et al., J. Phys. Chem. Solids 69, 967 (2008).
[3] J. Hemberger et al., Phys. Rev. Lett. 91, 66403 (2003).
[4] G. R. Blake et al., Phys. Rev. Lett. 87, 245501 (2001).
[5] J. Fujioka et al., Phys. Rev. B 72, 024460 (2005).
[6] H. T. Jeng et al., Phys. Rev. Lett. 93, 156403 (2004).
[7] H. T. Jeng et al., Phys. Rev. Lett. 97, 067002 (2006).
[8] S. B. Wilkins et al., Phys. Rev. Lett. 91, 167205 (2003).
[9] H. Kim et al., Sci. Adv. 3, eaao0362 (2017).
[10] P. A. Lee et al., Rev. Mod. Phys. 78, 17 (2006).
[11] X. Zhou et al., Nat. Rev. Phys. 3, 462 (2021).
[12] Zhong Fang and Kiyoyuki Terakura, J. Phys.: Condens. Matter 14, 3001 (2002).
[13] J. F. Lin et al., Rev. Geophys. 51, 244 (2013).
[14] L. W. Martin and A. M. Rappe, Nat. Rev. Mater. 2, 1 (2016).
[15] J. H. Lee et al., Nature 466, 954 (2010).
[16] D. G. Schlom et al., MRS Bull 39, 118 (2014).
[17] E. Dagotto et al., Phys. Rep. 344, 1 (2001).
[18] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[19] M. Imada et al., Rev. Mod. Phys. 70, 1039 (1998).
[20] C. N. R. Rao, Annu. Rev. Phys. Chem. 40, 291 (1989).
[21] M. A. Korotin et al., Phys. Rev. B. 54, 5309 (1996).
[22] S. Yamaguchi et al., Phys. Rev. B. 55, R8666 (1997). [23] I. A. Nekrasov et al., Phys. Rev. B. 68, 235113 (2003). [24] K. Knizek et al., Phys. Rev. B. 71, 054420 (2005).
[25] D. Phelan et al., Phys. Rev. Lett. 96, 027201 (2006). [26] G. Vanko et al., Phys. Rev. B. 73, 024424 (2006).
[27] R. F. Klie et al., Phys. Rev. Lett. 99, 047203 (2007).
[28] T. Takami et al., Phys. Rev. B. 76, 144116 (2007).
[29] M. M. Altarawneh et al., Phys. Rev. Lett. 109, 037201 (2012). [30] P. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967). [31] S. Noguchi et al., Phys. Rev. B. 66, 094404 (2002).
[32] Z. Ropka and R. J. Radwanski, Phys. Rev. B. 67, 172401 (2003). [33] K. Knizek et al., J. Phys.: Condens. Matter 18, 3285 (2006).
[34] M. W. Haverkort et al., Phys. Rev. Lett. 97, 176405 (2006).
[35] A. Podlesnyak et al., Phys. Rev. Lett. 97, 247208 (2006).
[36] H. Hsu et al., Phys. Rev. B. 79, 125124 (2009).
[37] K. Knizek et al., Phys. Rev. B. 79, 014430 (2009).
[38] Y. Jiang et al., Phys. Rev. B. 80, 144423 (2009).
[39] R. Eder, Phys. Rev. B. 81, 035101 (2010).
[40] H. Hsu et al., Phys. Rev. B. 82, 100406(R) (2010).
[41] V. Krapek et al., Phys. Rev. B. 86, 195104 (2012).
[42] G. Zhang et al., Phys. Rev. B. 86, 184413 (2012).
[43] S. Mukhopadhyay et al., Phys. Rev. B. 87, 125132 (2013).
[44] M. Karolak et al., Phys. Rev. Lett. 115, 046401 (2015).
[45] J. Buckeridge et al., Phys. Rev. B. 93, 155123 (2016).
[46] K. Tomiyasu et al., Phys. Rev. Lett. 119, 196402 (2017).
[47] Y. Shimizu et al., Phys. Rev. Lett. 119, 267203 (2017).
[48] B. Chakrabarti et al., Phys. Rev. Mater. 1, 064403 (2017).
[49] A. Ikeda et al., Phys. Rev. Lett. 125, 177202 (2020).
[50] R. H. Potze et al., Phys. Rev. B. 51, 11501 (1995).
[51] M. Zhuang et al., Phys. Rev. B. 57, 13655 (1998).
[52] J. Kunes et al., Phys. Rev. Lett. 109, 117206 (2012).
[53] M. Abbate et al., Phys. Rev. B. 65, 165120 (2002).
[54] Y. Long et al., J. Phys.: Condens. Matter 23, 245601 (2011). [55] J. -Y. Yang et al., Phys. Rev. B. 92, 195147 (2015).
[56] S. Balamurugan et al., Phys. Rev. B. 74, 172406 (2006).
[57] P. Rivero and C. Cazorla, Phys. Chem. Chem. Phys. 18, 30686 (2016). [58] H. A. Jahn and E. Teller, Proc. Roy. Soc. London Ser. A 161, 220 (1937). [59] G. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1 (1975).
[60] J. B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004)
[61] A. M. Glazer, Acta Cryst. B28, 3384 (1972)
[62] P. M. Woodward et al., Acta Cryst. B53, 32 (1997).
[63] C. J. Howard and H. T. Stokes, Acta Cryst. B54, 782 (1998).
[64] H. Bethe, Annalen der Physik 395, 133 (1929).
[65] J. H. Van Vleck, Phys. Rev. 41, 208 (1932).
[66] E. Pavarini et al., Phys. Rev. Lett. 101, 266405 (2008).
[67] J. Hemberger et al., Phys. Rev. Lett. 91, 066403 (2003).
[68] Y. Murakami et al., Phys. Rev. Lett. 81, 582 (1998).
[69] J. Kanamori, J. Appl. Phys. 31, S14 (1960).
[70] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
[71] P. Curie, J. Phys. Theor. Appl. 3, 393 (1894).
[72] E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).
[73] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).
[74] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
[75] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[76] W. Kohn, and L. J. Sham Phys. Rev 140, A1133 (1965).
[77] M. Born and J. R. Oppenheimer, Ann. Physik 389, 457-484 (1927).
[78] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, 2nd Edi- tion.
[79] J. P. Perdew and A. Zunger, Phys. Rev. B 23 , 5048 (1981).
[80] A. D. Becke, Phys. Rev. A 38 , 3098 (1988).
[81] J. P. Perdew, Physica B 172, 1-6 (1991).
[82] J. P. Perdew et al., Phys. Rev. Lett. 77, 3865 (1996).
[83] H. Hellmann, Einfuhrung in die Quantumchemie, Franz Duetsche, Leipzig (1937).
[84] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[85] O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780 (1985).
[86] I. G. Austin and N. F. Mott, Science 168, 71 (1970).
[87] J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963).
[88] J. Hubbard, Proc. R. Soc. Lond. A 277, 237 (1964).
[89] J. Hubbard, Proc. R. Soc. Lond. A 281, 401 (1964).
[90] J. Hubbard, Proc. R. Soc. Lond. A 285, 542 (1965).
[91] J. Hubbard, Proc. R. Soc. Lond. A 296, 82 (1966).
[92] J. Hubbard, Proc. R. Soc. Lond. A 296, 100 (1966).
[93] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[94] V. I. Anisimov et al., J. Phys.: Condens. Matter 9, 767 (1997).
[95] V. I. Anisimov et al., Phys. Rev. B. 48, 16929 (1993).
[96] V. I. Anisimov and O. Gunnarsson, Phys. Rev. B. 43, 7570 (1991).
[97] V. I. Anisimov et al., Phys. Rev. B. 44, 943 (1991).
[98] I. V. Solovyev et al., Phys. Rev. B. 50, 16861 (1994).
[99] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[100] A. I. Liechtenstein et al., Phys. Rev. B. 52, (R)5467 (1995).
[101] B. R. Judd. Operator Techniques in Atomic Spectroscopy. McGraw-Hill, (1963). [102] J. Hubbard, Proc. R. Soc. Lond. A 154, 656 (1936).
[103] J. Hubbard, Proc. R. Soc. Lond. A 169, 339 (1939).
[104] S. L. Dudarev et al., Phys. Rev. B. 57, 1505 (1998).
[105] E. Bousquet and N. Spaldin, Phys. Rev. B. 82, 220402 (2010).
[106] T. Jeong and W.E. Pickett, J. Phys.: Condens. Matter 18, 6289 (2006). [107] M. Cococcioni and S. de Gironcoli, Phys. Rev. B. 71, 035105 (2005). [108] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
[109] B. Himmetoglu et al., Int. J. Quantum. Chem. 114, 14 (2014).
[110] R. A. de Groot et al., Phys. Rev. Lett. 50, 2024 (1983).
[111] M. I. Katsnelson et al., Rev. Mod. Phys. 80, 315 (2008).
[112] S. A. Wolf et al., Science 294, 1488 (2001).
[113] B. Balke et al., Phys. Rev. B. 74, 104405 (2006).
[114] R. Shan et al., Phys. Rev. Lett. 102, 246601 (2009).
[115] S. Picozzi et al., Phys. Rev. B. 66, 094421 (2002).
[116] Yu. S. Dedkov et al., Phys. Rev. B. 65, 064417 (2002).
[117] Y. Tomioka et al., Phys. Rev. B. 61, 422 (2000).
[118] H. Wu, Phys. Rev. B. 64, 125126 (2001).
[119] H.-T. Jeng and G. Y. Guo, Phys. Rev. B. 67, 094438 (2003).
[120] J. B. Philipp et al., Phys. Rev. B. 68, 144431 (2003).
[121] V. Pardo and W. E. Pickett, Phys. Rev. B. 80, 054415 (2009).
[122] K. -I. Kobayashi et al., Nature 395, 677 (1998).
[123] S. Naghavi et al., Phys. Rev. B. 85, 205125 (2012).
[124] C. T. Tanaka et al., J. Appl. Phys. 86, 6239 (1999).
[125] J. M. D. Coey and M. Venkatesan, J. Appl. Phys. 91, 8345 (2002). [126] K. Schwarz, J. Phys. F: Met. Phys. 16, L211 (1986).
[127] J. -H. Park et al., Nature 392, 794 (1998).
[128] Y. -W. Son et al., Nature 444, 347 (2006).
[129] P. Rivero et al., Phys. Rev. B. 93, 094409 (2016).
[130] S. Lv et al., J. Comput. Chem. 33, 1433 (2012).
[131] N. Zu et al., J. Phys. Chem. C 117, 7231 (2013).
[132] J. Wang et al., J. Appl. Phys. 114, 163705 (2013).
[133] X. Ou et al., Appl. Phys. Lett. 108, 092402 (2016).
[134] B. Raveau and Md. M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics
(Wiley-VCH, Weinheim, 2012).
[135] D. Fuchs et al., Phys. Rev. B. 75, 144042 (2007).
[136] D. Fuchs et al., Phys. Rev. B. 77, 014434 (2008).
[137] J. W. Freeland et al., Appl. Phys. Lett. 93, 212501 (2008).
[138] C. Pinta et al., Phys. Rev. B. 78, 174402 (2008).
[139] K. Gupta and P. Mahadevan, Phys. Rev. B. 79, 020406(R) (2009). [140] S. Park et al., Appl. Phys. Lett. 95, 072508 (2009).
[141] A. Herklotz et al., Phys. Rev. B. 79, 092409 (2009).
[142] V. V. Mehta et al., J. Appl. Phys. 105, 07E503 (2009).
[143] D. Fuchs et al., Phys. Rev. B. 79, 024424 (2009).
[144] J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B. 79, 054409 (2009). [145] A. Posadas et al., Appl. Phys. Lett. 98, 053104 (2011).
[146] G. E. Sterbinsky et al., Phys. Rev. B. 85, 020403(R) (2012).
[147] F. Rivadulla et al., Chem. Mater. 25, 55 (2013).
[148] L. Qiao et al., Nano Lett. 15, 4677 (2015).
[149] M. Merz et al., Phys. Rev. B. 82, 174416 (2010).
[150] H. Hsu et al., Phys. Rev. B. 85, 140404(R) (2012).
[151] H. Seo et al., Phys. Rev. B. 86, 014430 (2012).
[152] J. Bielecki et al., Phys. Rev. B. 89, 035129 (2014).
[153] W. S. Choi et al., Nano Lett. 12, 4966 (2012).
[154] J. Fujioka et al., Phys. Rev. Lett. 111, 027206 (2013).
[155] J. Fujioka et al., Phys. Rev. B. 92, 195115 (2015).
[156] A. Kushima et al., Phys. Rev. B. 82, 115435 (2010).
[157] N. Biskup et al., Phys. Rev. Lett. 112, 087202 (2014).
[158] V. V. Mehta et al., Phys. Rev. B. 91, 144418 (2015).
[159] A. O. Fumega and V. Pardo, Phys. Rev. Mater. 1, 054403 (2017).
[160] T. Takeda and H. Watanabe, J. Phys. Soc. Jpn. 33, 973 (1972). [161] H. Taguchi et al., Mater. Res. Bull. 13, 1225 (1978).
[162] S. J. May et al., Phys. Rev. B. 82, 014110 (2010).
[163] A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014).
[164] W. S. Choi et al., Phys. Rev. Lett. 111, 097401 (2013). [165] N. Lu et al., Nature 546, 124 (2017).
[166] J. Badro et al., Science 300, 789 (2003).
[167] A. F. Goncharov et al., Science 312, 1205 (2006).
[168] S. S. Lobanov et al., J. Geophys. Res. Solid Earth 122, 3565 (2017). [169] J. -F. Lin et al., Science 317, 1740 (2007).
[170] J. -F. Lin et al., Nature 436, 377 (2005).
[171] T. Tsuchiya et al., Phys. Rev. Lett. 96, 198501 (2006).
[172] B. Lavina et al., Phys. Rev. B. 82, 064110 (2010).
[173] Y. Wu et al., Earth Planet. Sci. Lett. 434, 91 (2016).
[174] H. Hsu et al., Phys. Rev. Lett. 106, 118501 (2011).
[175] H. Hsu and S. C. Huang, Phys. Rev. B. 94, 060404(R) (2016).
[176] H. Hsu, Phys. Rev. B. 95, 020406(R) (2017).
[177] S. Fu et al., Phys. Rev. Lett. 118, 036402 (2017).
[178] H. Hsu et al., Phys. Rev. B. 103, 054401 (2021).
[179] J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011).
[180] D. G. Schlom et al., MRS Bull. 39, 118 (2014).
[181] C. Lu et al., Appl. Phys. Rev. 2, 021304 (2015).
[182] A. R. Damodaran et al., J. Phys.: Condens. Matter 28, 263001 (2016). [183] Daniel Sando, J. Phys.: Condens. Matter 34, 153001 (2022).
[184] J. Hwang et al., Mater. Today 31, 100 (2019).
[185] C. A. F. Vaz et al., Appl. Phys. Rev. 8, 041308 (2021).
[186] G. Catalan, Phase Transit. 81, 729 (2008).
[187] S. Catalano et al., Rep. Prog. Phys. 81, 046501 (2018).
[188] M. L. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997). [189] J. Son et al., Appl. Phys. Lett. 96, 062114 (2010).
[190] A. X. Gray et al., Phys. Rev. B. 84, 075104 (2011).
[191] R. Scherwitzl et al., Phys. Rev. Lett. 106, 246403 (2011). [192] E. Cappelli et al., APL Mater. 8, 051102 (2020).
[193] F. Y. Bruno et al., Phys. Rev. B. 88, 195108 (2013). [194] S. Catalano et al., APL Mater. 2, 116110 (2014). [195] D. Meyers et al., Phys. Rev. B. 88, 075116 (2013). [196] C. He et al., Phys. Rev. B. 86, 081401 (2012).
[197] F. J. Wong et al., Phys. Rev. B. 81, 161101 (2010).
[198] P. Murugavel et al., Appl. Phys. Lett. 82, 1908 (2003).
[199] X. R. Wang et al., Science 349, 716 (2015).
[200] S. Yoon et al., Nano Lett. 21, 4006 (2021).
[201] Y. R. Barcelay et al., Mater. Lett. 70, 167 (2012).
[202] X. Li et al., Sci. Rep. 4, 7019 (2014).
[203] V. V. Mehta et al., Phys. Rev. B. 87, 020405 (2013).
[204] J. H. Haeni et al., Nature 430, 758 (2004).
[205] N. A. Pertsev et al., Phys. Rev. B. 61, 825 (2000).
[206] C. J. Fennie et al., Phys. Rev. Lett. 97, 267602 (2006).
[207] J. H. Lee et al., Nature 466, 954 (2010).
[208] F. Wang et al., Appl. Phys. Lett. 109, 052403 (2016).
[209] L. Maurel et al., Phys. Rev. B. 92, 024419 (2015).
[210] J. W. Guo et al., Phys. Rev. B. 97, 235135 (2018).
[211] Y. Kobayashi et al., Spin-Crossover Cobaltite (Springer, Singapore, 2021). [212] T. Watanabe et al., Phys. Rev. B. 106, 144432 (2022).
[213] D. Meng et al., Proc. Natl. Acad. Sci. USA 115, 2873 (2018).
[214] G. E. Sterbinsky et al., Phys. Rev. Lett. 120, 197201 (2018).
[215] R.-P. Wang et al., Phys. Rev. B. 100, 165148 (2019).
[216] J. H. Lee and K. M. Rabe, Phys. Rev. Lett. 107, 067601 (2011). [217] H. A. Tahini et al., ACS Catal. 6, 5565 (2016).
[218] Q. Lu et al., Nat. Mater. 19, 655 (2020).
[219] H. Jeen et al., Nat. Mater. 12, 1057 (2013).
[220] H. Jeen et al., Adv. Mater. 25, 3651 (2013).
[221] Y. Gu et al., J. Magn. Magn. Mater. 454, 228 (2018).
[222] S. Hu et al., ACS Appl. Mater. Interfaces 10, 22348 (2018).
[223] S. Hu et al., Chem. Mater. 31, 6117 (2019).
[224] S. Hu et al., Adv. Mater. Interfaces 2, 1500012 (2015).
[225] S. J. Callori et al., Phys. Rev. B. 91, 140405(R) (2015).
[226] J. R. Petrie et al., Adv. Funct. Mater. 26, 1564 (2016).
[227] Y. Wang et al., Phys. Rev. X 10, 021030 (2020).
[228] M. Hoffmann et al., Phys. Rev. B. 92, 094427 (2015).
[229] J. Lim and J. Yu, Phys. Rev. B. 98, 085106 (2018).
[230] H. Hsu and S.-C. Huang, Phys. Rev. Materials 2, 111401(R) (2018). [231] K. Sarkar et al., J. Comput. Phys. 347, 39 (2017).
[232] K. Sarkar et al., Comput. Phys. Commun. 233, 110 (2018).
[233] C. J. Howard et al., Acta Cryst. B59, 463 (2003).
[234] M. A. Carpenter and C. J. Howard, Acta Cryst. B65, 134 (2009). [235] S. Chowdhury et al., ACS Appl. Electron. Mater. 3, 5095 (2021). [236] S. Chowdhury et al., J. Alloys Compd. 869, 159296 (2021).
[237] H. Han et al., ACS Nano 16, 6206 (2022).
[238] C. Etz et al., Phys. Rev. B. 86, 064441 (2012).
[239] Q. Han et al., Phys. Rev. B. 93, 155103 (2016).
[240] H. S. Lu and G. Y. Guo, Phys. Rev. B. 100, 054443 (2019).
[241] I. V. Maznichenko et al., Phys. Rev. B. 93, 024411 (2016).
[242] A. K. Nandy et al., AIP Conf. Proc. 1003, 166 (2008).
[243] Y. Qian et al., J. Appl. Phys. 112, 103712 (2012).
[244] P. Sanyal et al., Phys. Rev. B. 94, 035132 (2016).
[245] N. Zu et al., J. Alloys Compd. 636, 257 (2015).
[246] H. J. Zhao et al., AIP Adv. 2, 022115 (2012).
[247] H. J. Zhao and X. M. Chen, AIP Adv. 2, 042143 (2012).
[248] Carbon in Earth, edited by R. M. Hazen et al., special issue of Rev. Mineral. Geochem. 75, 1 (2013).
[249] M. Isshiki et al., Nature 427, 60 (2004).
[250] A. R. Oganov et al., Earth Planet. Sci. Lett. 273, 38 (2008).
[251] C. J. Pickard and R. J. Needs, Phys. Rev. B 91, 104101 (2015).
[252] E. Boulard et al., Proc. Natl. Acad. Sci. USA 108, 5184 (2011).
[253] J. Liu et al., Sci. Rep. 5, 7640 (2015).
[254] E. Boulard et al., Nat. Commun. 6, 6311 (2015).
[255] V. Cerantola et al., Nat. Commun. 8, 15960 (2017).
[256] M. Merlini et al., Am. Mineral. 100, 2001 (2015).
[257] Z. Li and S. Stackhouse, Earth Planet. Sci. Lett. 531, 115959 (2020). [258] J. Tsuchyia et al., Minerals 10, 54 (2020).
[259] J. Crowhurst et al., Science 319, 451 (2008).
[260] R. M. Wentzcovitch et al., Proc. Natl. Acad. Sci. USA 106, 8447 (2009). [261] H. Marquardt et al., Science 324, 224 (2009).
[262] D. Antonangeli et al., Science 331, 64 (2011).
[263] E. Holmstrom and L. Stixrude, Phys. Rev. Lett. 114, 117202 (2015). [264] Z. Wu et al., Phys. Rev. Lett. 110, 228501 (2013).
[265] B. Lavina et al., High Press. Res. 30, 224 (2010).
[266] J. Liu et al., Am. Min. 99, 84 (2014).
[267] J. -F. Lin et al., Am. Min. 97, 1421 (2012).
[268] T. Nagai et al., J. Phy.: Conf. Ser. 215, 012002 (2010).
[269] J. -F. Lin et al., Am. Min. 97, 583 (2012).
[270] H. Hsu et al., Rev. Mineral. Geochem. 71, 169 (2010).
[271] W. Heisenberg, Z.Physik 38, 411 (1926)
[272] W. Heisenberg, Z.Physik 49, 619 (1928)
[273] P. W. Anderson, Solid State Physics 14, 99 (1963)
指導教授 徐翰 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明