博碩士論文 110221023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.15.214.244
姓名 徐孟凡(Meng-Fan Hsu)  查詢紙本館藏   畢業系所 數學系
論文名稱 機器與深度學習於中醫舌診辨證輔助判別系統-以氣虛證為例
(Classification System of Traditional Chinese Medicine Tongue Diagnosis Qi-Deficiency Syndrome with Machine and Deep Learning)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以機器學習與深度學習的方式,協助傳統中醫進行舌診分類,傳統中醫重視舌診,然而舌診的學習過程費時,且標準不易量化,透過機器學習能快速且客觀地進行分類。實驗分為特徵資料與影像資料,特徵資料目的為氣虛證二元分類,以舌頭特徵如舌體顏色、舌苔厚薄、舌下靜脈曲張等資料進行訓練,並以中醫師使用的「舌診辯證」為基礎特徵,與「AI 選取特徵」及「舌診辯證 & AI 特徵」進行比較,並以 Decision Tree、Random Forest 和 Support Vector Machine 進行訓練。影像資料目的是以 RGB 影像進行氣虛證二元分類,第一個實驗是使用 Single-Stage Transfer Learning、Multi-Stage Transfer Learning 和 Transfer Learning with Mixed Data 三種方式進行,將臨床資料當作「主要資料集」,並以書本上的影像當作「輔助資料集」,Single-Stage Transfer Learning 為傳統的遷移學習;Multi-Stage Transfer Learning 則是將輔助資料集當作 Stage 1 的訓練集,主要資料集當作 Stage 2 的訓練集,進行兩階段的遷移學習;Transfer Learning with Mixed Data 是將輔助資料集以特定比例加入主要資料集中,進行單階段的遷移學習。第二個實驗是調整訓練集的實驗對 Transfer Learning 和 Teachable Machine 兩種模型以 Transfer Learning with Mixed Data 的方式找到最適合的混合百分比。實驗結果顯示,在特徵資料中使用 Random Forest 搭配舌診辯證 & AI 特徵有最佳表現 (氣虛證: 88.89%);而影像資料的第一個實驗中Single-Stage、Multi-Stage、Mixed Data 準確率分別為 92.96%、95.93%、93.15%;第二個實驗兩個模型都在輔助資料集加入 85% 時表現最佳 (Transfer Learning: 93.15%, Teachable Machine: 94.44%)。從實驗中發現進行特徵選取時舌診辯證 & AI 特徵不僅能提高準確率,同時還能保留模型的解釋性。另外當可使用的輔助資料集數量多時使用Multi-Stage Transfer Learning 較為適合,輔助資料集數量少時 Transfer Learning with Mixed Data 則是比較好的選擇,適合的混合的比例可以提升模型準確率,但不恰當的比例反而會降低準確率。
摘要(英) This study utilizes machine learning and deep learning techniques to classify tongue diagnoses in Traditional Chinese Medicine (TCM). TCM emphasizes tongue diagnosis, which can be time-consuming and difficult to standardize. The classification process can be conducted quickly and objectively by employing machine learning. The experiments are divided into feature data and image data. The purpose of the feature data is to perform binary classification of “Qi Deficiency Syndrome” using tongue features such as tongue
color, thickness of tongue coating, and tongue curvature. The training is conducted based on the “Doc Features” used by Chinese medicine practitioners, and a comparison is made
between “AI features” and “Doc&AI features” using Decision Tree, Random Forest, and Support Vector Machine. For the image data, the goal is to perform binary classification
of “Qi Deficiency Syndrome” using RGB images. The first experiment involves three approaches: Single-Stage Transfer Learning, Multi-Stage Transfer Learning, and Transfer
Learning with Mixed Data. The clinical data is used as the “main dataset,” while textbook images are served as the “supporting dataset.” Single-stage transfer learning follows
the traditional transfer learning approach, while multi-stage transfer learning trains on the supporting dataset in stage 1 and the main dataset in stage 2, performing Two-Stage Transfer Learning. Transfer Learning with Mixed Data involves incorporating the supporting dataset into the main dataset at a specific ratio, conducting single-stage transfer learning. The second experiment involves adjusting the training set to find the optimal mixing percentage for transfer learning and the Teachable Machine model using transfer learning with mixed data. The experimental results demonstrate that for feature data in Qi Deficiency Syndrome, random forest combined with Doc&AI features achieved the best performance (Qi Deficiency Syndrome: 88.89%). In the image data experiments, the accuracies for Single-Stage, Multi-Stage, and Mixed Data are 92.96%, 95.93%, and 93.15%,
respectively. In the second experiment, both models perform best when the supporting dataset is incorporated at 85% (Transfer Learning: 93.15% and Teachable Machine: 94.44%). The experiments reveal that combining Doc&AI features improves accuracy and retains the model’s interpretability during feature selection. Furthermore, when a large amount of support data is available, multi-stage transfer learning is more suitable, while transfer learning with mixed data is a better choice when the number of support datasets is limited. The appropriate mixing ratio can enhance the model’s accuracy, but an inappropriate ratio may lead to decreased accuracy.
關鍵字(中) ★ 機器學習
★ 深度學習
★ 遷移學習
★ 特徵提取
★ 中醫舌診
★ 氣虛證
關鍵字(英)
論文目次 致謝 . . . . . vii
Tables . . . . . x
Figures . . . . . xi
1 緒論 . . . . . 1
2 方法 . . . . . 4
2.1 機器學習 . . . . . 4
2.1.1 特徵選取 . . . . . 4
2.1.2 決策樹 . . . . . 4
2.1.3 隨機森林法 . . . . . 5
2.1.4 支持向量機 . . . . . 6
2.2 深度學習 . . . . . 6
2.2.1 卷積神經網路 . . . . . 6
2.2.2 遷移學習模型 . . . . . 9
2.3 Teachable Machine . . . . . 10
3 實驗設計 . . . . . 11
3.1 資料收集 . . . . . 11
3.2 資料預處理 . . . . . 12
3.3 機器學習特徵選取方式比較 . . . . . 12
3.4 深度學習超參數調整與模型比較 . . . . . 12
3.5 訓練集構成調整 . . . . . 13
4 結果與討論 . . . . . 14
4.1 特徵資料 . . . . . 14
4.2 影像資料 . . . . . 16
4.2.1 Single-Stage Transfer Learning . . . . . 16
4.2.2 Multi-Stage Transfer Learning . . . . . 18
4.2.3 Transfer Learning with Mixed Data . . . . . 19
4.2.4 Teachable Machine . . . . . 21
4.2.5 橫向比較 . . . . . 21
5 結論與未來相關研究建議 . . . . . 24
References . . . . . 25
1 附錄 . . . . . 28
參考文獻 [1] Jing Chen, Chao Ye, Zheng Yang, Xiaolin Xue, Qingling Sun, Pinhui Li, and Huimin Yang. The correlation between the traditional Chinese medicine (TCM) syndrome and the concentration of adiponectin and peroxynitrite in dyslipidemia patients. European Journal of Integrative Medicine, 8(6):973–979, 2016.
[2] Bo Pang, David Zhang, and Kuanquan Wang. Tongue image analysis for appendicitis diagnosis. Information Sciences, 175(3):160–176, 2005.
[3] 薛敦品, 朱建福, and 黃升騰. 重症肌無力合併眼瞼下垂案例報告. J Chin Med, 24(1):167–174, 2013.
[4] Annapurni Jayam Trouth, Alok Dabi, Noha Solieman, Mohankumar Kurukumbi, and Janaki Kalyanam. Myasthenia gravis: a review. Autoimmune Diseases, 2012, 2012.
[5] Mei Zhao, Mengyao Duan, Dongran Han, Yihang Dong, Jing Wang, Boyan Mao, Zhixi Hu, and Xiaoqing Zhang. A new method for identification of traditional Chinese medicine constitutions based on data of tongue features with machine learning. Research Square, 2022.
[6] Xuemin Wang, Yingying Sun, Qiuyue Wang, and Zhifeng Yu. Research on tongue image collection and analysis based on smartphone. Chinese Journal of Biomedical Engineering, 29(2):1–9, 2020.
[7] Jiawei Li, Zhidong Zhang, Xiaolong Zhu, Yunlong Zhao, Yuhang Ma, Junbin Zang, Bo Li, Xiyuan Cao, and Chenyang Xue. Automatic classification framework of tongue feature based on convolutional neural networks. Micromachines, 13(4):501, 2022.
[8] Ratchadaporn Kanawong, Tayo Obafemi-Ajayi, Jun Yu, Dong Xu, Shao Li, and Ye Duan. Zheng classification in traditional Chinese medicine based on modified specular-free tongue images. In 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops, pages 288–294. IEEE, 2012.
[9] Xu Wang, Jingwei Liu, Chaoyong Wu, Junhong Liu, Qianqian Li, Yufeng Chen, Xinrong Wang, Xinli Chen, Xiaohan Pang, Binglong Chang, Lin. Jiaying, Zhao. Shifeng, Li. Zhihong, Deng. Qingqiong, Lu. Yi, Zhao. Dongbin, and Chen. Jianxin.Artificial intelligence in tongue diagnosis: Using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark. Computational and Structural Biotechnology Journal, 18:973–980, 2020.
[10] Yu-lin Shi, Jia-yi Liu, Xiao-juan Hu, Li-ping Tu, Ji Cui, Jun Li, Zi-juan Bi, Jia-cai Li, Ling Xu, and Jia-tuo Xu. A new method for syndrome classification of non-smallcell lung cancer based on data of tongue and pulse with machine mearning. BioMed Research International, 2021:1–14, 2021.
[11] Changzheng Ma, Chaofei Gao, Siyu Hou, and Shao Li. Development of attentionbased robust deep learning model for tongue diagnosis by smartphone. bioRxiv, pages 2023–02, 2023.
[12] Tao Jiang, Zhou Lu, Xiaojuan Hu, Lingzhi Zeng, Xuxiang Ma, Jingbin Huang, Ji Cui, Liping Tu, Changle Zhou, Xinghua Yao, and Jiatuo Xu. Deep learning multi-label tongue image analysis and its application in a population undergoing routine medical checkup. Evidence-Based Complementary and Alternative Medicine, 2022, 2022.
[13] Zibin Yang, Yuping Zhao, Jiarui Yu, Xiaobo Mao, Huaxing Xu, and Luqi Huang. An intelligent tongue diagnosis system via deep learning on the android platform. Diagnostics, 12(10):2451, 2022.
[14] Jianfeng Zhang, Jiatuo Xu, Xiaojuan Hu, Qingguang Chen, Liping Tu, Jingbin Huang, and Ji Cui. Diagnostic method of diabetes based on support vector machine and tongue images. BioMed Research International, 2017, 2017.
[15] Yang Xiang, Lai Shujin, Chang Hongfang, Wen Yinping, Yu Dawei, Dong Zhou, and Li Zhiqing. Artificial intelligence-based diagnosis of diabetes mellitus: Combining fundus photography with traditional Chinese medicine diagnostic methodology. BioMed Research International, 2021:1–7, 2021.
[16] Dan Meng, Guitao Cao, Ye Duan, Minghua Zhu, Liping Tu, Dong Xu, and Jiatuo Xu. Tongue images classification based on constrained high dispersal network. EvidenceBased Complementary and Alternative Medicine, 2017, 2017.
[17] Xiaolong Zhu, Yuhang Ma, Dong Guo, Jiuzhang Men, Chenyang Xue, Xiyuan Cao, and Zhidong Zhang. A framework to predict gastric cancer based on tongue features and deep learning. Micromachines, 14(1):53, 2022.
[18] Jun Li, Pei Yuan, Xiaojuan Hu, Jingbin Huang, Longtao Cui, Ji Cui, Xuxiang Ma,
Tao Jiang, Xinghua Yao, Jiacai Li, Shi. Yulin, Bi. Zijuan, Wang. Yu, Fu. Hongyuan, Wang. Jue, Lin. Yenting, Pai. ChingHsuan, Guo. Xiaojing, Zhou. Changle, Tu. Liping, and Xu. Jiatou. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. Journal of Biomedical Informatics, 115:103693, 2021.
[19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.
[20] Ravi K Samala, Heang-Ping Chan, Lubomir Hadjiiski, Mark A Helvie, Caleb D Richter, and Kenny H Cha. Breast cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on multi-stage transfer learning using deep neural nets. IEEE Transactions on Medical Imaging, 38(3):686–696, 2018.
[21] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell, Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. Teachable machine: Approachable web-based tool for exploring machine learning classification. In Extended Abstracts of The 2020 CHI Conference on Human Factors in Computing Systems, pages 1–8, 2020.
[22] 許家佗. 中醫舌診臨床圖解. 文光圖書有限公司, 2018.
[23] 吳中朝. 零基礎學舌診. 萬里機構-萬里書店, 2019.
[24] 袁磊. 中醫舌診. 合記圖書出版社, 2007.
指導教授 黃楓南 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明