博碩士論文 110521149 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.191.111.130
姓名 蔡凱翔(Kai-Hsiang Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 半橋氮化鎵驅動電路和功率電晶體積體化設計和其降壓器應用
(A Fully Integrated GaN Half-Bridge IC for Buck Converter)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鎵(GaN)電晶體由於其閘極電荷小,且內部沒有寄生pn 二極體(body diode),因 此可以達到非常快的切換速度與低硬切換損耗,非常適合應用於高壓電源轉換器。隨著 氮化鎵製程平台逐漸成熟,水平結構的氮化鎵電晶體能在單一晶片上實現閘極驅動器與 功率開關的積體化,從而降低電路的鎊線寄生效應。
本篇論文將氮化鎵功率開關與閘極驅動器積體化成半橋(half-bridge)晶片,並利用氮 化鎵電晶體反向傳導之特性將自舉開關同時進行積體化。透過分析功率開關切換過程的 能量轉換評估半橋晶片的損耗,並透過傳導損耗與輸出電荷(Qoss)之間的權衡選擇功率開 關的尺寸,並設計其閘極驅動器,在有足夠的驅動能力下也同時抑制閘極振鈴。
最後將此半橋晶片應用於降壓轉換器,此晶片能操作在500 kHz ~ 1 MHz 的切換頻 率,在切換頻率為1 MHz 時,可以實現48 V 到24 V 與12 V 的電壓轉換。操作於500 kHz 時可以實現100 V 到48 V 的電壓轉換。在48 V 到24 V 的電壓轉換與0.4 A 的輸出 電流下能達到91 %的峰值效率。
摘要(英) Gallium Nitride (GaN) transistors are highly suitable for high-voltage power converters due to their low gate charge and absence of a parasitic pn diode (body diode) within. These characteristics allow for rapid switching speeds and low switching losses, making them ideal for high-voltage power conversion applications. With the maturation of GaN fabrication processes, GaN transistors with lateral structures can be monolithically inte grated on a single chip, combining gate drivers and power switches to reduce circuit parasitics.
This paper integrates gallium nitride power switches and gate drivers into a half-bridge chip and utilizes the reverse conduction characteristics of gallium ni tride transistors to integrate the bootstrap switch simultaneously. The losses of the half-bridge chip are evaluated by analyzing the energy conversion during power switch transitions. The sizing of the power switches is chosen through a trade-off between conduction losses and output charge (Qoss ), and their gate drivers are designed to provide sufficient drive capability and suppress gate ringing.
Finally, this half-bridge chip is applied to a Buck converter. The chip can operate at switching frequencies between 500 kHz and 1 MHz. At a switching frequency of 1 MHz, it can achieve voltage conversions from 48 V to 24 V and 12 V. When operating at 500 kHz, it can achieve a voltage conversion from 100 V to 48 V. At a voltage conversion from 48 V to 24 V and an output current of 0.4 A, it can achieve a peak efficiency of 91%.
關鍵字(中) ★ 氮化鎵
★ 閘極驅動器
★ 降壓轉換器
★ 半橋
關鍵字(英) ★ Gallium Nitride
★ gate driver
★ Buck converter
★ half-bridge
論文目次 目錄
摘要 .................................................................................................................................... II
Abstract .............................................................................................................................III
致謝 .................................................................................................................................. IV
目錄 ....................................................................................................................................V
圖目錄 ............................................................................................................................ VIII
表目錄 ............................................................................................................................XIV
第一章 緒論 ...................................................................................................................... 1
1.1 前言 ..................................................................................................................... 1
1.2 P 型閘極電晶體與其驅動器的挑戰 ................................................................... 2
1.2.1 蕭特基與歐姆P 型閘極氮化鎵電晶體和其閘極驅動器之文獻回顧 .. 4
1.2.2 蕭特基與歐姆P 型閘極氮化鎵電晶體之差異 ...................................... 7
1.2.3 蕭特基P 型閘極電晶體硬切換損耗之論文回顧 .................................. 8
1.3 積體化氮化鎵驅動器與功率電晶體之重要性 ............................................... 10
1.3.1 全氮化鎵(all-GaN)製程平台之文獻回顧 ............................................ 11
1.3.2 積體化氮化鎵驅動器與功率電晶體之論文回顧 ................................ 13
1.4 研究動機與目的 ............................................................................................... 15
1.5 論文架構 ........................................................................................................... 16
第二章 氮化鎵積體電路製程平台的選擇與功率電晶體和閘極驅動器之設計 ........ 18
2.1 前言 ................................................................................................................... 18
2.2 高電壓氮化鎵製程平台 ................................................................................... 18
2.3 閘極驅動器原理與電路架構 ........................................................................... 20
2.3.1 閘極驅動器與電壓準位提升電路架構與設計 .................................... 21
2.3.2 DCFL 反向器與緩衝器之電晶體尺寸設計 .......................................... 22
2.4 最小功率開關通道寬度與所需驅動電流之設計 ........................................... 23
VI
2.4.1 氮化鎵功率電晶體之切換機制 ............................................................ 24
2.4.2 最小功率電晶體通道寬度選擇 ............................................................ 26
2.4.3 功率電晶體之驅動電流計算 ................................................................ 28
2.5 DE Driver 設計 .................................................................................................. 29
2.5.1 快速切換導致下橋功率開關誤啟動與過負閘極偏壓 ........................ 32
2.5.2 上橋功率開關開啟過程之振鈴 ............................................................ 35
2.5.3 回沈電晶體之導通損耗 ........................................................................ 38
2.6 本章總結 ........................................................................................................... 39
第三章 半橋氮化鎵驅動電路和功率氮化鎵電晶體積體化設計和其降壓器應用模擬
分析 .......................................................................................................................................... 40
3.1 自舉式電路(bootstrap circuit) .......................................................................... 40
3.1.1 氮化鎵蕭特基電晶體的反向傳導特性與自舉二極體積體化 ............ 41
3.1.2 二極體通道寬度與電容選擇 ................................................................ 42
3.2 降壓電路架構與原理 ....................................................................................... 45
3.2.1 降壓電路之被動元件選擇 .................................................................... 47
3.2.2 同步整流半橋降壓轉換器與外部續流二極體 .................................... 50
3.3 功率開關損耗與切換時的能量轉換 ............................................................... 51
3.3.1 功率開關損耗計算 ................................................................................ 51
3.3.2 半橋電路之功率開關損耗 .................................................................... 52
3.4 寄生電容和導通電阻之權衡與功率開關尺寸的選擇 ................................... 57
3.4.1 不同通道寬度的儲存電荷與導通電阻之關係 .................................... 58
3.4.2 寄生電容與導通電阻之權衡 ................................................................ 59
3.4.3 功率開關尺寸的選擇 ............................................................................ 65
3.5 本章總結 ........................................................................................................... 65
第四章 電路實現 ............................................................................................................ 66
4.1 模擬結果 ........................................................................................................... 66
VII
4.1.1 前模擬 .................................................................................................... 67
4.1.2 晶片佈局 ................................................................................................ 73
4.1.3 後模擬 .................................................................................................... 76
4.2 晶片印刷電路板建立 ....................................................................................... 79
4.3 晶片量測環境建立 ........................................................................................... 83
4.4 晶片量測結果 ................................................................................................... 84
4.5 量測結果討論與分析 ....................................................................................... 90
4.5.1 Corner 模擬與量測結果比較與討論 ..................................................... 90
4.5.2 積體化自舉開關與使用外部自舉二極體比較與討論 ...................... 102
第五章 結論與未來展望 .............................................................................................. 106
5.1 結論 ................................................................................................................. 106
5.2 未來展望 ......................................................................................................... 107
5.2.1 改善上橋驅動器的架構 ...................................................................... 107
5.2.2 改善晶片散熱 ...................................................................................... 109
5.2.3 背閘極效應(back-gating effect) .......................................................... 109
5.2.4 上橋Qoss 之過衝電流 .......................................................................... 109
5.2.5 半橋晶片並聯架構 .............................................................................. 109
參考文獻 ........................................................................................................................ 110
參考文獻 [1] Kevin J. Chen, Oliver Häberlen, Alex Lidow, Chun lin Tsai, Tetsuzo Ueda, Yasuhiro Uemoto and Yifeng Wu, "GaN-on-Si Power Technology: Devices and Applications," in IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, March 2017, doi: 10.1109/TED.2017.2657579.
[2] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto and H. Shimawaki, "A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424398.
[3] Hsien-Chin Chiu, Chia-Hao Liu, Yi-Sheng Chang, Hsuan-Ling Kao, Rong Xuan, Chih-Wei Hu and Feng-Tso Chien, "Dynamic Behavior Improvement of Normally-Off p-GaN High-Electron-Mobility Transistor Through a Low-Temperature Microwave Annealing Process," in IEEE Journal of the Electron Devices Society, vol. 7, pp. 984-989, 2019, doi: 10.1109/JEDS.2019.2941519.
[4] Y. Uemoto, Masahiro Hikita, Hiroaki Ueno, Hisayoshi Matsuo, Hidetoshi Ishida, Manabu Yanagihara, Tetsuzo Ueda, Tsuyoshi Tanaka and Daisuke Ueda, "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," in IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec. 2007, doi: 10.1109/TED.2007.908601.
[5] Injun Hwang, Jongseob Kim, Hyuk Soon Choi, Hyoji Choi, Jaewon Lee, Kyung Yeon Kim, Jong-Bong Park, Jae Cheol Lee, Jongbong Ha, Jaejoon Oh, Jaikwang Shin and U-In Chung, "p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current," in IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, Feb. 2013, doi: 10.1109/LED.2012.2230312.
[6] Achim Seidel and Bernhard Wicht, "Integrated Gate Drivers Based on High-Voltage Energy Storing for GaN Transistors," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3446-3454, Dec. 2018, doi: 10.1109/JSSC.2018.2866948.
[7] Ruoyu Hou, Juncheng Lu and Di Chen, "Parasitic capacitance Eqoss loss mechanism, calculation, and measurement in hard-switching for GaN HEMTs," 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 2018, pp. 919-924, doi: 10.1109/APEC.2018.8341124.
[8] Achim Seidel, Bernhard Wicht (2021). Highly Integrated Gate Drivers for Si and GaN Power Transistors. Berlin, Germany; Springer
[9] X. Li, N. Amirifar, K. Geens, M. Zhao, W. Guo, H. Liang, S. You, N. Posthuma, B. De Jaeger, S. Stoffels, B. Bakeroot, D. Wellekens, B. Vanhove, T. Cosnier, R. Langer, D. Marcon, G. Groeseneken and S. Decoutere, "GaN-on-SOI: Monolithically Integrated All-GaN ICs for Power Conversion," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 4.4.1-4.4.4, doi: 10.1109/IEDM19573.2019.8993572.
[10] Maik Kaufmann and Bernhard Wicht, "A Monolithic GaN-IC With Integrated Control Loop for 400-V Offline Buck Operation Achieving 95.6% Peak Efficiency," in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3169-3178, Dec. 2020, doi: 10.1109/JSSC.2020.3018404.
[11] Tz-Wun Wang, Yu-Yung Kao, Sheng-Hsi Hung, Yong-Hwa Wen, Tzu-Hsien Yang, Si-Yi Li, Ke-Horng Chen, Kuo-Lin Zheng, Ying-Hsi Lin, Shian-Ru Lin and Tsung-Yen Tsai, "Monolithic GaN-Based Driver and GaN Switch With Diode-Emulated GaN Technique for 50-MHz Operation and Sub-0.2-ns Deadtime Control," in IEEE Journal of Solid-State Circuits, vol. 57, no. 12, pp. 3877-3888, Dec. 2022, doi: 10.1109/JSSC.2022.3200381.
[12] Xugang Ke, Joseph Sankman, Yingping Chen, Lenian He and D. Brian Ma, "A Tri-Slope Gate Driving GaN DC–DC Converter With Spurious Noise Compression and Ringing Suppression for Automotive Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 247-260, Jan. 2018, doi: 10.1109/JSSC.2017.2749041.
[13] 國立中正大學精緻電能應用研究中心 (2015)。《電力電子學綜論 第二版》。新北:全華圖書
[14] 王信雄 (2015)。《開關轉換器:控制理論與設計實務》。新北:城邦印書館
[15] “GS66508B Datasheet, ” GaN Systems Inc., 2018.
[16] “GS-065-030-2-L Datasheet, ” GaN Systems Inc., 2018.
[17] Jin Wei, Meng Zhang, Gang Lyu and Kevin J. Chen, "GaN Integrated Bridge Circuits on Bulk Silicon Substrate: Issues and Proposed Solution," in IEEE Journal of the Electron Devices Society, vol. 9, pp. 545-551, 2021, doi: 10.1109/JEDS.2021.3077273.
[18] EPC, “Development Board EPC9205,” Quick Start Guide, 2018. Accessed on Nov. 08, 2023, <https://epc-co.com/epc/Portals/0/epc/documents/guides/EPC9205_qsg.pdf>.
[19] Jan Gottschlich and Rik W. De Doncker, "A programmable gate driver for power semiconductor switching loss characterization," 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, Australia, 2015, pp. 456-461, doi: 10.1109/PEDS.2015.7203542.
[20] Qi Cheng, Lin Cong and Hoi Lee, "A 48–80-V Input 2-MHz Adaptive ZVT-Assisted Bus Converter With Light-Load Efficiency Improvement," in IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 2196-2207, July 2022, doi: 10.1109/JSSC.2021.3130020.
[21] Yole group, “Power GaN 2019: Epitaxy, Devices, Applications & Technology Trends,” Market & Technology Report, 2019. Accessed on Nov. 08, 2023, <https://s3.i-micronews.com/uploads/2019/11/YD19056_Power_GaN_2019_Epitaxy_Devices_Applications_Technology_Trends_Yole_Nov2019_Flyer.pdf>.
指導教授 辛裕明 夏勤(Yue-Ming Hsin Chin Hsia) 審核日期 2023-11-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明