博碩士論文 110521162 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.188.229.120
姓名 王聖閔(Sheng-Min Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可實現高溫資料保留、多層儲存單元與高耐久度鐵電電晶體之多功能閘極與HfO2/ZrO2超晶格堆疊研究
(Research on Multifunctional Metal Gate and HfO2/ZrO2 Superlattice Stacks in Ferroelectric Transistors for High-Temperature Data Retention, Multi-Level Cell Storage, and Long Endurance)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究通過結合TiN/Mo/2.5nm-TiN的金屬閘極與埃米層狀HZO鐵電薄膜,優化了後段製程相容的鐵電電容和鐵電電晶體性能。通過第一原理計算和XRD、XPS、TEM等物性分析鐵電薄膜與各元件的材料差異,並針對FeCaps與FeFETs的切換速度、功耗、耐久性、數據保留性以及多層儲存單元(Multi-Level Cell, MLC)操作進行電性比較分析。
實驗結果討論分為FeCap和FeFET兩部分。FeCap在耐用度上達到1011次循環,並在3.4 MV/cm電場保持34 μC/cm²的2Pr值。這得益於埃米堆疊HZO的氧空缺移動能障較高和相較固溶體HZO降低了6.86%的非結晶氧比例。金屬Mo因其低熱膨脹係數提升HZO的正交相比例,並且與TiN共同氧化形成高功函數電極,進一步降低漏電流,提升了五個量級的耐久度。透過NLS模型分析,儘管超薄TiN氧化稍微降低了極化值,但HZO晶粒尺寸增大,降低活化電場,使其在低電場操作下的切換速度提高28倍。Arrhenius方程擬合結果顯示,該電容在109.6°C下仍能保持十年的數據。通過調整寫入電壓實現部分極化切換,較高的蕭特基能障幫助減少電荷注入,因此各個極化狀態在109次循環下仍展現出穩定的耐久性,也展現了TLC操作的可行性。FeFET的金屬閘極部分同樣採用TiN/Mo/2.5nm-TiN,此結構由於Mo層的沉積導致氧氣從SiO2界面層遷移並形成MoOx,從而減少了低介電係數界面層的厚度,而嵌入超薄TiN能夠防止反應性金屬滲入HZO。由於此元件優化寫入有效電壓,使得外加電場集中於鐵電層,改善了介面缺陷造成的電荷捕捉效應,即便經過1011次的寫入/擦除循環,其記憶視窗仍保持在1.25V。通過閾值電壓切換公式擬合,推算出元件極限切換速度約為20ns。並展現出高可靠的108.9 oC十年資料保留性能,同時還具有QLC的高密度存儲潛力。在低寫入電壓下,八個閾值電壓分布在電場循環至108次後仍然不受讀取干擾。以上FeCap和FeFET的優勢有望應用於新興非揮發性的高密度存儲鐵電記憶體中。
摘要(英) In this study, we enhanced the performance of back-end-of-line process compatible FeCaps and FeFETs by integrating a TiN/Mo/2.5nm-TiN metal gate with angstrom-laminated HZO ferroelectric thin films. Material differences between the ferroelectric film and each component were analyzed through first-principles calculations and various physical characterization techniques including XRD, XPS, and TEM. A comparative electrical analysis was conducted on the FeCaps and FeFETs, focusing on switching speed, power consumption, endurance, data retention, and multi-level cell (MLC) operation capabilities.
The experimental results discussion is divided into two parts: FeCaps and FeFETs. The FeCap achieved an endurance of 1011 cycles, maintaining a 2Pr value of 34 μC/cm² under an electric field of 3.4 MV/cm. This is attributed to the higher energy barrier for oxygen vacancy migration in angstrom-stacked HZO and a 6.86% reduction in non-lattice oxygen ratio compared to solid-solution HZO. The metal Mo, with its low thermal expansion coefficient, enhances the orthorhombic phase proportion of HZO and forms high work function electrodes in oxidation with TiN, further reducing leakage current and improving endurance by five orders of magnitude. Through the NLS model analysis, although the ultra-thin TiN oxidation slightly reduced the polarization value, the increased grain size of HZO reduced the activation field, resulting in a 28-fold increase in switching speed under low electric fields. Arrhenius equation fitting shows that the capacitor can maintain data for ten years at 109.6°C. By adjusting the writing voltage to achieve partial polarization switching, the higher Schottky barrier helps reduce charge injection, hence maintaining stable endurance after 109 cycles for each polarization state, also demonstrating the feasibility of TLC operation. The metal gate part of the FeFET also adopts the TiN/Mo/2.5nm-TiN structure, where the deposition of the Mo layer causes oxygen migration from the SiO2 interface layer forming MoOx, thereby reducing the thickness of the low dielectric constant interface layer. The embedded ultra-thin TiN prevents the diffusion of reactive metal into HZO. This device, optimized for effective writing voltage, concentrates the external electric field on the ferroelectric layer, mitigating the charge trapping effects caused by interface defects, and maintains a memory window of 1.25V even after 1011 write/erase cycles. Through threshold voltage switching formula fitting, the device′s ultimate switching speed is estimated to be about 20 ns. It also exhibits a highly reliable data retention capability of ten years at 108.9°C and has the potential for high-density storage as QLC. Under low writing voltage, eight threshold voltages distributed still show no disturbance by reading after 108 cycles. The advantages of these FeCaps and FeFETs are expected to be applied in emerging non-volatile, high-density storage ferroelectric memory.
關鍵字(中) ★ 鐵電記憶體
★ 鐵電電晶體
★ 鐵電電容
★ 多層儲存單元操作
★ 新興非揮發記憶體
關鍵字(英) ★ Ferroelectric Memory
★ Ferroelectric Transistor
★ Ferroelectric Capacitor
★ Multi-Level Cell Storage Operation
★ Emerging Non-Volatile Memory
論文目次 摘要……………………………………………………………………………………i
Abstract………………………………………………………………………ii
致謝…………………………………………………………………………………iv
目錄……………………………………………………………………………………v
圖目錄……………………………………………………………………………viii
表目錄………………………………………………………………………………xiii
第一章 序論與文獻回顧...1
1.1 新興非揮發性記憶體(Emerging Non-volatile Memories)...1
1.1.1 相變記憶體(Phase Change Memory, PCM)...1
1.1.2 電阻式隨機存取記憶體(Resistive Random Access Memory, RRAM)...2
1.1.3 磁阻式隨機存取記憶體(Magnetic Random Access Memory, MRAM)...3
1.1.4 鐵電記憶體(Ferroelectric Memories)...4
1.1.4.1 鐵電隨機存取記憶體(FeRAM)...5
1.1.4.2鐵電場效電晶體(FeFET)...7
1.1.4.3 鐵電快閃記憶體(FE-NAND)...8
1.1.4.4 鐵電靜態隨機存取記憶體(FE-SRAM)...8
1.1.4.5 三維鐵電場效電晶體(3D-FeFET)...10
1.2 鐵電材料與特性...11
1.3 新穎氧化鉿鋯鐵電薄膜(FE-Hf1-xZrxO2, HZO)...14
1.4 鐵電極化機制模型...16
1.5 氧化鉿鋯鐵電材料面臨的難題...16
1.5.1氧空缺(Oxygen Vacancy)/喚醒與疲勞(Wake-up、Fatigue)/電荷捕捉效應(Charge Trapping Effect)...16
1.5.2 去極化電場(Depolarization Field)/印痕效應(Imprint
Effect)...19
第二章 鐵電電容及電晶體電性量測...41
2.1 鐵電電容PUND量測...41
2.2 鐵電電容切換速度量測...41
2.3 鐵電電容資料保留度量測...42
2.4 鐵電電容耐久度量測...42
2.5 鐵電電容多層儲存單元操作量測...42
2.6 鐵電電晶體ID-VG量測...43
2.7 鐵電電晶體切換速度量測...43
2.8 鐵電電晶體資料保留度量測...44
2.9 鐵電電晶體耐久度量測...44
2.10 鐵電電晶體多層儲存單元操作量測...44
第三章 實驗製程步驟...51
3.1 實驗流程...51
3.1.1 鐵電電容(FeCap)實驗流程...52
3.1.2 鐵電電晶體(FeFET)實驗流程...53
第四章 實驗結果與討論...55
4.1 鐵電電容實驗結果與討論...55
4.1.1 埃米層狀堆疊HZO...55
4.1.2 低熱膨脹係數金屬電極對鐵電電容影響...57
4.1.3 高功函數介面對鐵電電容耐久度影響...58
4.1.4 不同電容結構下的極化切換動力學分析...60
4.1.5 不同電容結構下的高溫資料保留度測試...62
4.1.6 高可靠度的鐵電電容三層儲存單元操作...63
4.2 鐵電電晶體結果與討論...78
4.2.1 遠程氧捕捉電極對鐵電氧化層及半導體界面影響...78
4.2.2 鐵電電晶體的讀取方式與破壞機制...80
4.2.3 不同電晶體結構下的耐久度分析...81
4.2.4 不同電晶體結構下的操作速度...83
4.2.5 電晶體高溫四層儲存單元的資料保留度分析...84
4.2.6 高可靠度的鐵電電晶體三層儲存單元操作...86
第五章 結論與未來展望...96
參考文獻...97
參考文獻 [1] Yu, Shimeng. Semiconductor Memory Devices and Circuits. CRC Press, 2022.
[2] Wong, H-S. Philip, et al. "Phase change memory." Proceedings of the IEEE 98.12 (2010): 2201-2227.
[3] Pan, Feng, et al. "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance." Materials Science and Engineering: R: Reports 83 (2014): 1-59.
[4] Sousa, Ricardo C., and I. Lucian Prejbeanu. "Non-volatile magnetic random access memories (MRAM)." Comptes Rendus Physique 6.9 (2005): 1013-1021.
[5] M. Trentzsch et al., “A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs,” in IEDM Tech. Dig., Dec. 2016, pp. 294–297.
[6] S. Dunkel et al., “A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond,” in IEDM Tech. Dig., Dec. 2017, pp. 485–488
[7] Deng, Shan, et al. "Overview of ferroelectric memory devices and reliability aware design optimization." Proceedings of the 2021 on Great Lakes Symposium on VLSI. 2021.
[8] Schenk, Tony, and Stefan Mueller. "A new generation of memory devices enabled by ferroelectric hafnia and zirconia." 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF). IEEE, 2021.
[9] Park, Ju Yong, et al. "Revival of Ferroelectric Memories Based on Emerging Fluorite‐Structured Ferroelectrics." Advanced Materials (2022): 2204904.
[10] Takeuchi, Ken, and An Chen. "Ferroelectric FET Memory." Emerging Nanoelectronic Devices (2014): 110-122.
[11] A. Sheikholeslami and P. G. Gulak, "A survey of circuit innovations in ferroelectric random-access memories," in Proceedings of the IEEE, vol. 88, no. 5, pp. 667-689, May 2000.
[12] Toprasertpong, K., Takenaka, M. & Takagi, S. On the strong coupling of polarization and charge trapping in HfO2/Si-based ferroelectric field-effect transistors: overview of device operation and reliability. Appl. Phys. A 128, 1114 (2022).
[13] Sakai, S., Takahashi, M., Takeuchi, K., Li, Q.H., Horiuchi, T., Wang, S., Yun, K.Y., Takamiya, M., and Sakurai, T. (May. 2008) Highly Scalable Fe(Ferroelectric)-NAND Cell with MFIS(Metal-Ferroelectric-Insulator-Semiconductor) Structure for Sub-10nm Tera-Bit Capacity NAND Flash Memories, Non-Volatile Semiconductor Memory Workshop (NVSMW), pp. 103–104.
[14] S. Tanakamaru, T. Hatanaka, R. Yajima, M. Takahashi, S. Sakai and K. Takeuchi, "A 0.5V operation, 32% lower active power, 42% lower leakage current, ferroelectric 6T-SRAM with VTH self-adjusting function for 60% larger St atic Noise Margin," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4.
[15] S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, in 2017 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2017.
[16] H. Bae, S. G. Nam, T. Moon, Y. Lee, S. Jo, D.-H. Choe, S. Kim, K.-H. Lee, J. Heo, in 2020 IEEE Int. Electron Devices Meeting (IEDM), IEEE, Piscataway, NJ, USA 2020.
[17] K. Lee, S. Kim, J. -H. Lee, B. -G. Park and D. Kwon, "Ferroelectric-Metal Field-Effect Transistor With Recessed Channel for 1T-DRAM Application," in IEEE Journal of the Electron Devices Society, vol. 10, pp. 13-18, 2022.
[18] S.-Y. Lee, C.-C. Lee, Y.-S. Kuo, S.-W. Li, T.-S. Chao, IEEE J. Electron Devices Soc. 2021, 9, 236.
[19] C.-Y. Liao, K.-Y. Hsiang, Z.-F. Lou, H.-C. Tseng, C.-Y. Lin, Z.-X. Li, F.-C. Hsieh, C.-C. Wang, F.-S. Chang, W.-C. Ray, Y.-Y. Tseng, S. T. Chang, T.-C. Chen, M. H. Lee, in IEEE 2022 Symposium on VLSI Technology. Circuits Digest of Technical Papers, IEEE, Piscataway, NJ, USA 2022
[20] J. Valasek, “Piezoelectric and Allied Phenomena in Rochelle Salt,” Phys. Rev., 17, 475–81 (1921).
[21] D. A. Buck, “Ferroelectrics for digital information storage and switching,” MIT Digit. Comput. Lab., Cambridge, MA, USA, Tech. Rep. 555, 1952.
[22] T. Mikolajick, U. Schroeder and S. Slesazeck, "The Past, the Present, and the Future of Ferroelectric Memories," in IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1434-1443, April 2020.
[23] P. Gnadinger, “High speed nonvolatile memories employing ferroelectric technology,” in Proc. VLSI Comput. Peripherals, 1989, pp. 1-20–1-23.
[24] D. Takashima, “Overview of FeRAMs: Trends and perspectives,” in Proc. 11th Annu. Non-Volatile Memory Technol. Symp., Nov. 2011, pp. 1–6.
[25] K. R. Udayakumar et al., “Low-power ferroelectric random access memory embedded in 180 nm analog friendly CMOS technology,” in Proc. 5th IEEE Int. Memory Workshop, May 2013, pp. 128–131.
[26] S. Yoshiro et al., “High-density and high-speed 128 Mb chain FeRAM with SDRAM-compatible DDR2 interface,” in Proc. Symp. VLSI Technol., pp. 218–219, 2009
[27] J. Müller, E. Yurchuk, T. Schlösser et al., “ Ferroelectricity in HfO2 enables nonvolatile 78 data storage in 28 nm HKMG.” Symposium on VLSI Technology (VLSI), pp. 25-26, 2012.
[28] T. Böscke, J. Müller, D. Braeuhaus, et al., “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters, vol. 99, pp. 102903-102903, 2011.
[29] J. Müller, T. S. Böscke, U. Schröder, et al., “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, pp. 4318-4323, 2012.
[30] T. Y. Kim, S. K. Kim, and S. W. Kim, “Application of ferroelectric materials for improving output power of energy harvesters,” Nano Convergence, vol. 5, pp. 30, 2018
[31] S. Mueller, C. Adelmann, A. Singh, et al., “Ferroelectricity in Gd-Doped HfO2 Thin 79 Films,” ECS Journal of Solid State Science and Technology, vol. 1, pp. N123-N126, 2012.
[32] T. Olsen, U. Schröder, S. Müller, et al., “Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties,” Applied Physics Letters, vol. 101, pp. 082905, 2012.
[33] S. Mueller, J. Mueller, A. Singh, et al., “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films” Advanced Functional Materials, vol. 22, pp. 2412-2417, 2012.
[34] M. H. Park, Y. H. Lee, H. J. Kim, et al., “Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment,” Nanoscale, vol. 9, pp. 9973-9986, 2017
[35] T. Shimizu et al., “Ferroelectricity in HfO2 and related ferroelectrics,” Journal of the Ceramic Society of Japan, 2018, 126, 667-674.
[36] M. Si et al., “Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide,” Applied Physics Letters, 2019, 115, 072107.
[37] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, "Ferroelectricity and Antiferroelectricity of doped thin HfO2-based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, 2015.
[38] X. Liu, L. Yao, Y. Cheng, and B. Xiao, "High annealing temperature assisted broadening of the ferroelectric concentration window in Al:HfO2 MFS structures," Japanese Journal of Applied Physics, vol. 58, no. 9, p. 090903, 2019.
[39] C. Richter, T. Schenk, M. H. Park, F. A. Tscharntke, E. D. Grimley, J. M. LeBeau, C. Zhou, C. M. Fancher, J. L. Jones, T. Mikolajick, and U. Schroeder, "Si doped hafnium oxide—A “fragile” ferroelectric system," Advanced Electronic Materials, vol. 3, no. 10, p. 1700131, 2017.
[40] S. J. Kim, D. Narayan, J.-G. Lee, J. Mohan, J. S. Lee, J. Lee, H. S. Kim, Y.-C. Byun, A. T. Lucero, C. D. Young, S. R. Summerfelt, T. San, L. Colombo, and J. Kim, "Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget," Applied Physics Letters, vol. 111, no. 24, p. 242901, 2017.
[41] D. Lehninger, R. Olivo, T. Ali, M. Lederer, T. Kämpfe, C. Mart, K. Biedermann, K. Kühnel, L. Roy, M. Kalkani, and K. Seidel, "Back-end-of-line compatible lowtemperature furnace anneal for ferroelectric hafnium zirconium oxide formation," physica status solidi (a), vol. 217, no. 8, p. 1900840, 2020
[42] S. J. Kim, J. Mohan, J. Lee, J. S. Lee, A. T. Lucero, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, and J. Kim, "Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400°C) Hf0.5Zr0.5O2 films," Applied Physics Letters, vol. 112, no. 17, p. 172902, 2018
[43] S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, "Enhanced ferroelectricity in ultrathin films grown directly on silicon," Nature, vol. 580, no. 7804, pp. 478-482, 2020.
[44] J. Müller, T. S. Böscke, D. Bräuhaus, et al., “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 99, pp. 112901, 2011
[45] Park, Min Hyuk, et al. "A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices." Applied Physics Reviews 6.4 (2019).
[46] Lu, Y.; Shieh, J.; Tsai, F. Induction of ferroelectricity in nanoscale ZrO2/HfO2 bilayer thin films on Pt/Ti/SiO2/Si substrates. Acta Mater. 2016, 115, 68– 75
[47] Weeks, S. L.; Pal, A.; Narasimhan, V. K.; Littau, K. A.; Chiang, T. Engineering of ferroelectric HfO2–ZrO2 nanolaminates. ACS Appl. Mater. Interfaces 2017, 9 (15), 13440– 13447
[48] Park, M. H.; Kim, H. J.; Lee, G.; Park, J.; Lee, Y. H.; Kim, Y. J.; Moon, T.; Kim, K. D.; Hyun, S. D.; Park, H. W.A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. Appl. Phys. Rev. 2019, 6 (4), 041403,
[49] Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Do Kim, K.; Hyun, S. D.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films. Nanoscale 2018, 10 (2), 716– 725
[50] Park, M. H.; Lee, Y. H.; Hwang, C. S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory. Nanoscale 2019, 11 (41), 19477– 19487
[51] Park, M. H.; Lee, Y. H.; Mikolajick, T.; Schroeder, U.; Hwang, C. S. Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides. Adv. Electron. Materials 2019, 5 (3), 1800522
[52] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B, vol. 82, pp. 014109, 2010
[53] M. Hoffmann, M. Pešić, K. Chatterjee, et al., “Direct Observation of Negative Capacitance in Polycrystalline Ferroelectric HfO2,” Advanced Functional Materials, vol. 26, pp. 8643-8649, 2016.
[54] S. Zhukov, Y. A. Genenko, O. Hirsch, et al., “Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism,” Physical Review B vol. 82, pp. 014109, 2010.
[55] N. Gong, X. Sun, H. Jiang, et al., “Nucleation limited switching (NLS) model for HfO2- based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics,” Applied Physics Letters, vol. 112, pp. 262903, 2018.
[56] Yang, Sang Mo, et al. "Nanoscale observation of time‐dependent domain wall pinning as the origin of polarization fatigue." Advanced Functional Materials 22.11 (2012): 2310-2317.
[57] Song, Seul Ji, et al. "Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors." Scientific reports 6.1 (2016): 20825.
[58] Lim, So Yeon, et al. "Nonlinear domain wall velocity in ferroelectric Si-doped HfO2 thin film capacitors." Applied Physics Letters 118.10 (2021).
[59] M. Materano, P. D. Lomenzo, A. Kersch, et al., “Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics,” Inorganic Chemistry Frontiers, vol. 8, pp. 2650-2672, 2021.
[60] Lomenzo, Patrick D., et al. "TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films." Journal of Applied Physics 117.13 (2015).
[61] Umezawa, N., et al. "First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics." Applied Physics Letters 86.14 (2005).
[62] S. Li, D. Zhou, Z. Shi, et al., “Involvement of Unsaturated Switching in the Endurance Cycling of Si-doped HfO2 Ferroelectric Thin Films,” Advanced Electronic Materials, vol. 6, pp. 2000264, 2020.
[63] i, D. Zhou, Z. Shi, et al., “Temperature-Dependent Subcycling Behavior of SiDoped HfO2 Ferroelectric Thin Films,” ACS Applied Electronic Materials, vol. 3, pp. 2415- 2422, 2021.
[64] N. Gong, and T. Ma. “A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation,” IEEE Electron Device Letters, vol. 39, pp. 15-18, 2018.
[65] R. A. Izmailov, J. W. Strand, L. Larcher, et al., “Electron trapping in ferroelectric HfO2,” Physical Review Materials, vol. 5, pp. 034415, 2021
[66] T. P. Ma, and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive ?,” Electron Device Letters, IEEE, vol. 23, pp. 386-388, 2002.
[67] X. Pan, and T. P. Ma. “Retention mechanism study of the ferroelectric field effect transistor,” Applied Physics Letters, vol. 99, pp. 013505, 2011.
[68] N. Gong, and T. Ma, “Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective,” IEEE Electron Device Letters, vol. 37, pp. 1123-1126, 2016.
[69] Yuan, Peng, et al. "Microscopic mechanism of imprint in hafnium oxide-based ferroelectrics." Nano Research 15.4 (2022): 3667-3674.
[70]Buragohain, P. Erickson, A.; Kariuki, P.; Mittmann, T.; Richter, C.;Lomenzo, P. D.; Lu, H.D.; Schenk, T.; Mikolajick, T.; Schroeder,U. et al. Fluid imprint and inertial switching in ferroelectric La: HfO2 capacitors. ACS Appl. Mater. Interfaces 2019, 11, 35115–35121.
[71] Alireza Kashir et al 2021 Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering ACS Appl. Electron. Mater 3 629–638.
[72] Mihaela Ioana Popovici et al 2022 High-Endurance Ferroelectric (La, Y) and (La, Gd) Co-Doped Hafnium Zirconate Grown by Atomic Layer Deposition ACS Appl. Electron. Mater 4 1823–1831.
[73] Y. Lee et al 2021 The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia in IEEE Transactions on Electron Devices 68 523-528.
[74] Xuepei Wang et al 2023 Understanding the Effect of Top Electrode on Ferroelectricity in Atomic Layer Deposited Hf0.5Zr0.5O2 Thin Films ACS Appl. Mater. Interfaces 15 15657−15667.
[75] Shinji Migita et al 2021 Accelerated ferroelectric phase transformation in HfO2/ZrO2 nanolaminates Appl. Phys. Express 14 051006-1-051006-4.
[76] Ruiting Zhao et al 2022 Impact of Molybdenum Oxide Electrode on the Ferroelectricity of Doped-Hafnia Oxide Capacitors in IEEE Transactions on Electron Devices 69 1492-1496.
[77] Katia F. Albertin et al 2010 Study of TiOxNy MOS Capacitors ECS Trans. 31 349.
[78] Nanbo Gong and Tso-Ping Ma 2016 Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective in IEEE Electron Device Letters 37 1123-1126. [79] Uday M. Basheer et al 2016 Current Issues and Problems in the Joining of Ceramic to Metal In book Joining Technologies 8 35.
[80] Aniruddh Vashisth et al 2018 Effect of chemical structure on thermos-mechanical properties of epoxy polymers: Comparison of accelerated ReaxFF simulations and experiments Polymer 158 354-363.
[81] R. Materlik et al 2015 The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model Journal of Applied Physics 117 134109.
[82] Hyuk Park et al 2014 The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity Applied Physics Letters 104 072901.
[83] Beom Yong Kim et al 2023 Top Electrode Engineering for High-Performance Ferroelectric Hf0.5Zr0.5O2 Capacitors Adv. Mater. Technol 2300146.
[84] Youngin Goh et al 2020 Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrodeNanoscale, 12, 9024.
[85] Seung Dam Hyun et al 2018 Dispersion in Ferroelectric Switching Performance of Polycrystalline Hf0.5Zr0.5O2 Thin Films ACS Appl. Mater. Interfaces. 10 35374–35384.
[86] K. He, N. Chen et al 2018 Method for determining crystal grain size by X-ray diffraction Cryst. Res. Technol 53 1700157.
[87] Mimura, T et al 2019 Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl. Phys. Lett 115 032901
[88] J. Y. Jo et al 2007 “Domain switching kinetics in disordered ferroelectric thin films Phys. Rev. Lett 99 267602.
[89] Kobayashi et al 2022 Mesoscopic-scale grain formation in HfO2-based ferroelectric thin films and its impact on electrical characteristics. Nano Convergence 9 50.
[90] Schroeder, U. et al 2022 Temperature‐Dependent Phase Transitions in HfxZr1‐xO2 Mixed Oxides: Indications of a Proper Ferroelectric Material. Adv. Electron. Mater 385 2200265.
[91] M. Vopsaroiu et al 2010 Thermally activated switching kinetics in second-order phase transition ferroelectrics Phys. Rev. B. 82 024109.
[92] Loy, D.J.J. et al. 2018 Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices. Sci Rep 8 14774.
[93] Liang, Y. et al 2022 ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability. IEEE Electron Device Lett 43 1451–1454.
[94] Irfan Irfan et al 2012 Work function recovery of air exposed molybdenum oxide thin films Appl. Phys. Lett. 101 093305.
[95] Zhang, Shenglong, et al 2023 First-principles study of thermal transport properties in ferroelectric HfO2 and related fluorite-structure ferroelectrics Physical Chemistry Chemical Physics 25, 17257-17263.
[96] HU, Run, et al. 2020 Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Physical Review X 10.2: 021050.
[97] O′DWYER, Colm, et al. 2017 Scientific and technical challenges in thermal transport and thermoelectric materials and devices. ECS Journal of Solid State Science and Technology 6.3: N3058.
[98] Kavrik, M. S.; Thomson, E.; Chagarov, E.; Tang, K.; Ueda, S.T.; Hou, V.; Aoki, T.; Kim, M.; Fruhberger, B.; Taur, Y.; McIntyre, P.C.; Kummel, A. C. Ultralow Defect Density at Sub-0.5nm HfO2/SiGe Interfaces via Selective Oxygen Scavenging. ACS Appl. Mater. Interfaces 2018, 10 (36), 30794−30802.
[99] Kim, H.; McIntyre, P. C.; On Chui, C.; Saraswat, K. C.;Stemmer, S. Engineering Chemically Abrupt High-k Metal Oxide/silicon Interfaces Using an Oxygen-Gettering Metal Overlayer. J. Appl.Phys. 2004, 96 (6), 3467−3472.
[100] Ando, T. Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? Materials 2012, 5 (12), 478−500.
[101] Ohler, Nicholas, and Alexis T. Bell. "A Study of the Redox Properties of MoO x/SiO2." The Journal of Physical Chemistry B 109.49 (2005): 23419-23429.
[102] Tasneem, Nujhat, et al. "Remote Oxygen Scavenging of the Interfacial Oxide Layer in Ferroelectric Hafnium–Zirconium Oxide-Based Metal–Oxide–Semiconductor Structures." ACS Applied Materials & Interfaces 14.38 (2022): 43897-43906.
[103] Mulaosmanovic, Halid, et al. "Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance." IEEE Transactions on Electron Devices 66.9 (2019): 3828-3833.
[104] Albertin, Katia Franklin, and Inés Pereyra. "Study of metal‐oxide‐semiconductor capacitors with rf magnetron sputtering TiOxNy films dielectric layer." physica status solidi c 7.3‐4 (2010): 937-940.
[105] Holler, Brian A., et al. "2D semiconductor transistors with van der Waals oxide MoO3 as integrated high‐κ gate dielectric." Advanced Electronic Materials 6.10 (2020): 2000635.
[106] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, 2020.
[107] Cai, Zuocheng, et al. "HZO Scaling and Fatigue Recovery in FeFET with Low Voltage Operation: Evidence of Transition from Interface Degradation to Ferroelectric Fatigue." 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE, 2023.
[108] Lo, Chieh, et al. "Fabrication of Bilayer Stacked Antiferroelectric/Ferroelectric HfxZr1-xO2 FeRAM and FeFET with Improved Leakage Current and Robust Reliability by Modifying Atomic Layer Deposition Temperatures." IEEE Electron Device Letters (2023).
[109] Ni, Kai, et al. "Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance." IEEE Transactions on Electron Devices 65.6 (2018): 2461-2469.
[110] Mulaosmanovic, Halid, et al. "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors." ACS applied materials & interfaces 9.4 (2017): 3792-3798.
[111] Dahan, Mor Mordechai, et al. "Sub-Nanosecond Switching of Si: HfO2 Ferroelectric Field-Effect Transistor." Nano Letters 23.4 (2023): 1395-1400.
[112] Mulaosmanovic, Halid, et al. "Interplay between switching and retention in HfO 2-based ferroelectric FETs." IEEE Transactions on Electron Devices 67.8 (2020): 3466-3471.
[113] Lyu, X., et al. "Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density." 2019 Symposium on VLSI Technology. IEEE, 2019.
[114] Chen, Yu–Chen, et al. "NLS based modeling and characterization of switching dynamics for antiferroelectric/ferroelectric hafnium zirconium oxides." 2021 IEEE International Electron Devices Meeting (IEDM). IEEE, 2021.
[115] Ma, T. P., and Jin-Ping Han. "Why is nonvolatile ferroelectric memory field-effect transistor still elusive ?." IEEE Electron Device Letters 23.7 (2002): 386-388.
[116] Toprasertpong, Kasidit, Mitsuru Takenaka, and Shinichi Takagi. "On the strong coupling of polarization and charge trapping in HfO2/Si-based ferroelectric field-effect transistors: overview of device operation and reliability." Applied Physics A 128.12 (2022): 1114.
[117] Mulaosmanovic, Halid, et al. "Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read." Nanoscale 13.38 (2021): 16258-16266.
[118] Mulaosmanovic, H., et al. "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells." 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015.
[119] Ali, Tarek, et al. "Impact of the Nonlinear Dielectric Hysteresis Properties of a Charge Trap Layer in a Novel Hybrid High-Speed and Low-Power Ferroelectric or Antiferroelectric HSO/HZO Boosted Charge Trap Memory." IEEE Transactions on Electron Devices 68.4 (2021): 2098-2106.
[120] Yan, Siao-Cheng, et al. "Multilevel Cell Ferroelectric HfZrO FinFET With High Speed and Large Memory Window Using AlON Interfacial Layer." IEEE Electron Device Letters 44.1 (2022): 44-47.
[121] Liao, C-Y., et al. "Multibit ferroelectric FET based on nonidentical double HfZrO 2 for high-density nonvolatile memory." IEEE Electron Device Letters 42.4 (2021): 617-620.
[122] Peng, Hao-Kai, et al. "Improved Immunity to Sub-Cycling Induced Instability for Triple-Level Cell Ferroelectric FET Memory by Depositing HfZrOₓ on NH₃ Plasma-Treated Si." IEEE Electron Device Letters 43.8 (2022): 1219-1222.
[123] Ali, T., et al. "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage." 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019.
[124] C. -Y. Liao et al., "Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589.
指導教授 唐英瓚(Ying-Tsan Tang) 審核日期 2023-12-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明