參考文獻 |
1. Martinez, A.W., et al., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie-International Edition, 2007. 46(8): p. 1318-1320.
2. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82.
3. Nishat, S., et al., Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical, 2021. 336: p. 129681.
4. Toda, H., et al., Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices. Micromachines, 2022. 13(5): p. 690.
5. Toley, B.J., et al., A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab on a Chip, 2015. 15(6): p. 1432-1444.
6. Fratzl, M., et al., Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices. Acs Omega, 2018. 3(2): p. 2049-2057.
7. He, P.J.W., et al., Engineering fluidic delays in paper-based devices using laser direct-writing. Lab on a Chip, 2015. 15(20): p. 4054-4061.
8. Martinez, A.W., et al., Programmable diagnostic devices made from paper and tape (vol 10, pg 2499, 2010). Lab on a Chip, 2010. 10(24): p. 3428-3428.
9. Dornelas, K.L., N. Dossi, and E. Piccin, A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Analytica Chimica Acta, 2015. 858: p. 82-90.
10. Liu, H. and R.M. Crooks, Three-dimensional paper microfluidic devices assembled using the principles of origami. Journal of the American Chemical Society, 2011. 133 44: p. 17564-6.
11. Agarwal, T., et al., Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS Applied Bio Materials, 2020. 3(7): p. 3956-3974.
12. Carrell, C., et al., Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectronic Engineering, 2019. 206: p. 45-54.
13. Wang, C.-C., et al., A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Analytical chemistry, 2016. 88(12): p. 6326-6333.
14. ter Schiphorst, J., et al., Light-responsive polymers for microfluidic applications. Lab on a Chip, 2018. 18(5): p. 699-709.
15. Hulme, S.E., S.S. Shevkoplyas, and G.M. Whitesides, Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab on a Chip, 2009. 9(1): p. 79-86.
16. Zheng, Y.Z., W. Dai, and H.K. Wu, A screw-actuated pneumatic valve for portable, disposable microfluidics. Lab on a Chip, 2009. 9(3): p. 469-472.
17. Weibel, D.B., et al., Torque-actuated valves for microfluidics. Analytical Chemistry, 2005. 77(15): p. 4726-4733.
18. 蘇裕昌, 上膠的基本理論及最近內部上膠技術的發展.
19. Organization, W.H. Cardiovascular diseases (CVDs). 2021.
20. Mathur, A., et al., In vitro cardiac tissue models: Current status and future prospects. Advanced Drug Delivery Reviews, 2016. 96: p. 203-213.
21. Kappler, B., et al., Investigating the physiology of normothermic ex vivo heart perfusion in an isolated slaughterhouse porcine model used for device testing and training. BMC Cardiovascular Disorders, 2019. 19(1): p. 254.
22. Paez-Mayorga, J., et al., Bioreactors for Cardiac Tissue Engineering. Adv Healthc Mater, 2019. 8(7): p. e1701504.
23. Abdelsayed, G., et al., 2D and 3D in-Vitro models for mimicking cardiac physiology. Applications in Engineering Science, 2022. 12: p. 100115.
24. Savoji, H., et al., Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019. 198: p. 3-26.
25. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 2000. 21(1): p. 27-40.
26. Rhee, S.W., et al., Patterned cell culture inside microfluidic devices. Lab on a Chip, 2005. 5(1): p. 102-107.
27. Hossain, M.M. and T. Rahman, Low Cost Micro Milling Machine for Prototyping Plastic Microfluidic Devices. Proceedings, 2018. 2(13): p. 707.
28. Yang, J.W., et al., Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter. Frontiers in Bioengineering and Biotechnology, 2020. 8.
29. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.
30. Kamei, K.-i., et al., Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC advances, 2017. 7(58): p. 36777-36786.
31. Ergir, E., et al., Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues. Frontiers in Physiology, 2018. 9.
32. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. 2008.
33. Canadas, R.F., et al., Bioreactors and Microfluidics for Osteochondral Interface Maturation. Adv Exp Med Biol, 2018. 1059: p. 395-420.
34. Bayir, E., et al., Bioreactors in tissue engineering: mimicking the microenvironment, in Biomaterials for Organ and Tissue Regeneration. 2020, Elsevier. p. 709-752.
35. Serena, E., et al., Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 2009. 315(20): p. 3611-3619.
36. Tseng, S.-J., et al., Studies of osteoblast-like MG-63 cellular proliferation and differentiation with cyclic stretching cell culture system on biomimetic hydrophilic layers modified polydimethylsiloxane substrate. Biochemical Engineering Journal, 2021. 168: p. 107946.
37. Nepagene. NST-140-XY Cell Stretching Systems;.
38. STREX. STB-190-XY Microscope Mountable Biaxial Stretching System.
39. Thompson, C.L., et al., Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models (vol 8, 602646, 2020). Frontiers in Bioengineering and Biotechnology, 2021. 9.
40. Huh, D., et al., Microfabrication of human organs-on-chips. Nat Protoc, 2013. 8(11): p. 2135-57.
41. Stucki, J.D., et al., Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 2018. 8(1): p. 14359.
42. Brown, T.D., Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 2000. 33(1): p. 3-14.
43. Plunkett, N. and F.J. O′Brien, Bioreactors in tissue engineering. Technology and Health Care, 2011. 19(1): p. 55-69.
44. Smith, A.F., et al. Design and Development of a Robotic Bioreactor for In Vitro Tissue Engineering. in 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021. IEEE.
45. Gérémie, L., et al., Evolution of a confluent gut epithelium under on-chip cyclic stretching. Physical Review Research, 2022. 4(2): p. 023032.
46. Sato, K., M. Nitta, and A. Ogawa, A Microfluidic Cell Stretch Device to Investigate the Effects of Stretching Stress on Artery Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Inventions, 2019. 4(1): p. 1.
47. Thakral, G., et al., Electrical stimulation to accelerate wound healing. Diabetic foot & ankle, 2013. 4(1): p. 22081.
48. Manabe, Y., et al., Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PloS one, 2012. 7(12): p. e52592.
49. Barash, Y., Electric Field Stimulation Integrated into Perfusion Bioreactor for Cardiac Tissue Engineering. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1417-1426.
50. Mooney, E., et al., The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 2012. 33(26): p. 6132-6139.
51. Hu, W.-W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C, 2014. 37: p. 28-36.
52. Hu, W.-W., et al., The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019. 107(5): p. 1607-1619.
53. Dong, H.-W., Multiplex physical stress bioreactor control and automation. 2020.
54. RC Charging Circuit. Available from: https://www.electronics-tutorials.ws/rc/rc_1.html.
|