博碩士論文 107521037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.178.240
姓名 蔡騰輝(Teng-Huei Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以訊號自參考生成技術實現10 Gb/s單端不歸零訊號等化器應用於高雜訊通道
(A 10-Gb/s Single-Ended NRZ Equalizer with Data Self-Referenced Technique for High Noise Channel)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-19以後開放)
摘要(中) 隨著近年雲端運算、邊緣運算、人工智慧等資通產業的蓬勃發展,其技術對運算需求快速提升,對資料傳輸速度與環境雜訊複雜度的要求也有所提升。然而高速串列傳輸速度提升,資料受到傳遞距離衰減影響越為嚴重,雜訊占總體訊號比例也隨所傳遞距離提升迅速放大,訊號品質因此下降,因此等化器如何使訊號在傳輸過程能還原其完整度就顯得十分重要。
本論文提出訊號自參考生成技術,以此來輔助單端輸入資料進行邏輯判斷,其利用資料振幅的電壓位準變換方向來判斷資料極性,並藉由所提出跟蹤-延續-再生比較器解決連續資料問題,實現自參考生成技術,以節省硬體複雜度並提升等化器對高雜訊環境的適應力,並搭配自適應系統,使等化器於高雜訊高通道衰減環境下,自參考生成技術都能輔助自適應系統與DFE對訊號進行合理的補償,並還原出正確的資料,使等化器在使用上能適用於更複雜之環境。
本論文使用TSMC 90 nm (TN90GUTM) 1P9M之CMOS製程來實現,電路操作電壓為1 V,輸入之資料速率為10 Gbps之單端NRZ 資料訊號,輸入時脈採用單端5 GHz 時脈訊號,並藉由內部電路生成半速率差動5 GHz 時脈訊號,等化器於含有雜訊之使用環境最高可使用通道衰減為24dB,當輸入資料振幅為250mV時,最高可抵禦之低頻正弦波(100MHz)雜訊振幅為50mV,經自參考生成技術等化器還原後之資料速率為10 Gbps之單端NRZ 資料訊號,於佈局後模擬在通道衰減14 dB 時,還原後之資料抖動峰對峰值為27.63 ps;佈局後模擬在通道衰減24 dB時,還原後之資料抖動峰對峰值為22.51 ps。整體功率消耗為43.97 mW,其中等化器CTLE 、1-tap SR DFE與跟蹤-延續-再生比較器之功耗為19.73 mW,自適應系統之功耗為24.24 mW。整體面積為0.9×0.9 mm2,其中核心電路之面積約為0.103 mm2。
摘要(英) With the rapid development of information and communication industries such as cloud computing, edge computing, and artificial intelligence in recent years, the demand for computing power has increased rapidly, and the requirements for data transmission speed and environmental noise complexity have also increased. However, as the transmission speed increases, the data is more seriously affected by the transmission distance, and the proportion of noise in the total signal also increases, resulting in a decrease in signal quality. Therefore, it is very important for equalizers to restore the integrity of the signal in the transmission process.
This paper proposes a signal Self-Reference generation technology to assist in the logical judgment of single-ended input data. It uses the voltage level change direction of the data amplitude to judge the data polarity. By using an innovative Track-Extend-Regenerate Slicer to solve the continuous data problem, the self-reference generation technology is realized to save hardware complexity and improve the adaptability of the equalizer to high-noise environments. In addition, it is combined with an adaptive system to ensure that the Self-Reference generation technology can assist the adaptive system and DFE to compensate the signal reasonably in high noise and high channel-loss environments, and restore the correct data.
This paper is implemented using TSMC 90 nm (TN90GUTM) 1P9M CMOS process. The circuit operating voltage is 1 V. The input data rate is 10 Gbps single-ended NRZ data signal. The input clock adopts a single-ended 5 GHz clock signal, and a half-rate differential 5 GHz clock signal is generated by the internal circuit. The equalizer can be used in a noisy environment with a maximum channel-loss of 24 dB. When the input data amplitude is 250 mV, the maximum low-frequency sine wave (100 MHz) noise amplitude that can be resisted is 50 mV. After the signal Self-Reference generation technology equalizer restores the 10 Gbps single-ended NRZ data signal, the post-layout simulation shows that the peak-to-peak jitter of the restored data is 27.63 ps when the channel-loss is 14 dB. The post-layout simulation shows that the peak-to-peak jitter of the restored data is 22.51 ps when the channel-loss is 24 dB. The overall power consumption is 43.97 mW, of which the power consumption of the equalizer CTLE, 1-tap SR DFE, and Track-Extend-Regenerate Slicer is 19.73 mW, and the power consumption of the adaptive system is 24.24 mW. The overall area is 0.9 × 0.9 mm2, of which the area of the core circuit is approximately 0.103 mm2.
關鍵字(中) ★ 等化器
★ 自參考技術
★ 序列器/解除序列器
★ 雜訊
★ 不歸零訊號
關鍵字(英) ★ Equalizer
★ Self-Referenced
★ SerDes
★ Noise
★ NRZ
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 5
第2章 高速串列傳輸之訊號完整性 6
2.1 基本觀念 6
2.1.1 隨機二位元資料特性 6
2.1.2 資料格式與編排形式 7
2.1.3 傳輸線理論[13] 10
2.2 抖動分析 17
2.2.1 隨機抖動(Random Jitter, RJ) 18
2.2.2 定量性抖動(Deterministic Jitter, DJ) 19
2.2.2.1 週期性抖動(Period Jitter, PJ) 19
2.2.2.2 工作週期失真(Duty Cycle Distortion, DCD) 19
2.2.2.3 資料相關抖動(Data Dependent Jitter, DDJ) 20
2.3 單一位元脈衝響應與等化器之關係 21
2.4 眼圖分析 24
2.5 誤碼率[1] 25
第3章 各型等化器之背景簡介 28
3.1 等化器電路的總類 28
3.1.1 連續時間線性等化器(CTLE) 29
3.1.2 決策回授等化器(DFE) 31
3.1.3 前饋式回授等化器(FFE) 34
3.1.4 離散時間線性等化器(DTLE) 35
3.2 自適應機制的種類 36
3.2.1 頻譜平衡技術(Spectrum Balancing Technique) 36
3.2.2 最小均方演算法(LMS) 37
3.2.2.1 SS-LMS之電路架構實現與限制 40
3.2.3 逼零演算法(Zero-Forcing Algorithm) 43
3.2.4 眼廓演算法 44
3.3 單端等化器電路文獻回顧 45
3.3.1 參考電位決策回授等化器(Equalized VREF) 45
3.3.2 非對稱上拉/下拉權重決策回授等化器(Asymmetric DFE) 46
3.3.3 自參考生成技術決策回授等化器(Self-Referenced DFE) 47
3.4 比較與討論 49
第4章 自參考生成技術之等化器架構設計與實現 50
4.1 設計流程 50
4.2 電路架構 51
4.3 操作說明 53
4.3.1 等化器補償情況 53
4.3.2 自參考生成技術 54
4.4 行為模擬 57
4.5 系統子電路實現與介紹 60
4.5.1 連續時間線性等化器(CTLE) 60
4.5.2 一階自參考生成技術決策回授等化器(1-Tap SR DFE) 62
4.5.3 自適應演算法(Adaptive Algorithm) 65
4.5.3.1 訊號序列檢測器(Data Pattern Detector) 66
4.5.3.2 自適應演算法(Adaptive Algorithm) 67
4.5.3.3 增益調整電路(Gain Adjuster) 70
4.5.3.4 自適應輔助迴路切換電路(Adaptive Loop Switch) 72
4.6 模擬結果 73
4.6.1 通道模型 73
4.6.2 自參考生成技術之10 Gbps等化器模擬 76
4.6.2.1 佈局前模擬 76
4.6.2.1.1 長通道無雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 76
4.6.2.1.2 長通道有雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 79
4.6.2.1.3 短通道無雜訊模擬(Channel Loss = 14 dB @ 5 GHz) 82
4.6.2.1.4 短通道有雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 85
4.6.2.2 佈局後模擬 88
4.6.2.2.1 長通道無雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 88
4.6.2.2.2 長通道有雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 91
4.6.2.2.3 短通道無雜訊模擬(Channel Loss = 14 dB @ 5 GHz) 94
4.6.2.2.4 短通道有雜訊模擬(Channel Loss = 24 dB @ 5 GHz) 97
4.6.3 模擬結果整理與問題分析 100
第5章 晶片佈局與量測考量 102
5.1 電路佈局 102
5.1.1 晶片封裝 103
5.1.2 佈局規劃與電源規劃 105
5.2 量測考量 106
5.2.1 量測環境 106
5.2.2 高頻輸出緩衝器 107
5.2.3 高頻時脈輸入端 108
5.2.4 M8048A ISI通道 109
5.3 規格比較表 110
第6章 結論 112
6.1 結論 112
6.2 未來研究方向 113
參考文獻 114
附錄 117
參考文獻 [1] 孫世洋, “以符碼間干擾偵測技術實現自適應等化器之5 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2016.
[2] VESA DisplayPort Standard, Version 2.0, Jun. 2019.
[3] Universal Serial Bus 4 Specification, Version 1.0, May 2021.
[4] Serial ATA Specification, Revision 3.5a, SATA-IO, Mar. 2021.
[5] PCI Express® Base Specification, Revision 6.0, Version 1.0, PCI-SIG, Jan. 2022.
[6] DDR5 SDRAM Specification, Revision 0.1, JEDEC, Aug. 2022.
[7] J. Seo, J. Ko, K. Lim, S. Lee, J. Y. Sim, H. J. Park and B. Kim “A 7.8 Gb/s 2.9 pJ/b Single-Ended Receiver With 20 tap DFE for Highly-Reflective Channels,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no, 3, pp. 818-822, Mar. 2020.
[8] T. Oh and R. Harjani, “A 12-Gb/s Multichannel I/O Using MIMO Crosstalk Cancellation and Signal Reutilization in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1383-1397, Jun. 2013.
[9] J. Im et al., “A 40-to-56 Gb/s PAM-4 receiver with ten-tap direct decision-feedback equalization in 16-nm FinFET,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3486-3502, Dec. 2017.
[10] H. C. Seol, J. Y. Song, K. S. Kwak and O. K. Kwon, “A 3.2Gbps single-ended receiver using self-reference generation technique for DRAM interface,” IEEE 17th International Conference on Electronics, Circuits and Syst., pp. 671-674, Dec. 2010.
[11] B. Razavi, “Basic concepts,” in Design of Integrated Circuits for Optical Communications, 1st ed. New York, NY, USA: McGraw-Hill, 2003, ch. 2, sec. 1, pp. 8-11.
[12] A. X. Widmer, and P. A. Franaszek, “A DC-balanced, partitioned-block, 8b/10b reansmission code,” IBM J. Res and Develop., vol. 27, pp. 440-451, Sep. 1983.
[13] F. T. Ulaby and U. Ravaioli, “Transmission Lines,” in Fundamentals of Applied Electromagnetics, 6th ed. United Kingdom: Pearson, 2015, ch. 2, pp. 62-134.
[14] Tektronix, “Anatomy of Jitter”.
[15] B. Razavi, “Noise,” in Design of Analog CMOS Integrated Circuits, 2nd ed. New York, NY, USA: McGraw-Hill, 2017, ch. 7, pp. 201-239.
[16] R. Sarpeshkar, T. Delbruck and C. A. Mead, “White noise in MOS transistors and resistors,” IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23-29, Nov. 1993.
[17] Agilent Technologies, “Jitter Fundamentals: Agilent 81250 ParBERT Jitter Injection and Analysis Capabilities,” Application Note: 5988-9756EN, July 17, 2003.
[18] N. Radhakrishnan, B. Achkir, J. Fan and J. L. Drewniak, “Stressed jitter analysis for physical link characterization,” in Proc. IEEE International Symposium on Electromagnetic Compatibility, Feb. 2010, pp. 568-572.
[19] Agilent Technologies, “Finding sources of jitter with real-time jitter analysis,” 2008.
[20] Y. Wu, “An improved statistical analysis method for duty cycle distortion jitter analysis,” in Proc. IEEE International Symposium on Consumer Electronics (ISCE), Jun. 2013, pp. 31-32.
[21] N. Na, D. M. Dreps and J. A. Hejase, “DC wander effect of DC blocking capacitors on PCIe Gen3 signal integrity,” in Proc. IEEE 63rd Electronic Components and Technology Conference, May 2013, pp. 2063-2068.
[22] SHF Communication Technologies AG, “Application Note AN-JITTER-1-Jitter Analysis using SHF 10000 Series Bit Error Rate Testers,” 2005.
[23] B. Razavi, “The Design of an Equalizer—Part One [The Analog Mind],” in IEEE Solid-State Circuits Magazine, vol. 13, no. 4, pp. 7-160, Nov. 2021.
[24] A. Manian and B. Razavi, “A 40-Gb/s 14-mW CMOS Wireline Receiver,” in IEEE J. Solid-State Circuits, vol. 52, no. 9, pp. 2407-2421, Sep. 2017.
[25] B. Razavi, “The Design of an Equalizer—Part Two [The Analog Mind],” in IEEE Solid-State Circuits Magazine, vol. 14, no. 1, pp. 7-12, Jan. 2022.
[26] X. Zheng et al., “A 50–112-Gb/s PAM-4 Transmitter With a Fractional-Spaced FFE in 65-nm CMOS,” in IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1864-1876, Jul. 2020.
[27] 許馥淳, “應用在序列傳輸系統之 10-Gbps 離散時間適應性等化器,”碩士論文, 國立交通大學, 2009.
[28] D. Lee, D. Lee and Y. H. Kim et al., “A 10.8 Gb/s Quarter-Rate 1 FIR 1 IIR Direct DFE With Non-Time-Overlapping Data Generation for 4:1 CMOS Clockless Multiplexer, ” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 67, no. 1, pp. 67-71, Jan. 2020.
[29] 陳紫宜, “具高通濾波補償之10 Gb/s 全速率自適應四階脈波振幅調變等化器,”碩士論文, 國立中央大學, 2019.
[30] K. -Y. Chen, W. -Y. Chen and S. -I. Liu, "A 0.035-pJ/bit/dB 20-Gb/s Adaptive Linear Equalizer With an Adaptation Time of 2.68 μs ," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 64, no. 6, pp. 645-649, June 2017.
[31] S. Haykin, “Wiener Filters,” in Adaptive Filter Theory, 5th ed., United Kingdom: Pearson, 2012, ch. 2, pp. 90-122.
[32] Y. Hidaka et al., “A 4-channel 1.25-10.3 Gb/s backplane transceiver macro with 35 dB equalizer and sign-based zero-forcing adaptive control,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3547-3559, Dec. 2009.
[33] H. Won et al., “A 28-Gb/s receiver with self-contained adaptive equalization and sampling point control using stochastic sigma-tracking eye-opening monitor,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 64, no. 3, pp. 664-674, March 2017.
[34] 陳俊諺, “以逼零演算法實現無外部校正之單一自適應系統之5 Gbps 全速率連續時間線性等化器與決策回授等化器,” 碩士論文, 國立中央大學, 2018.
[35] W. -H. Shin, Y. -H. Jun and B. -S. Kong, “A DFE Receiver With Equalized VREF for Multidrop Single-Ended Signaling,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 60, no. 7, pp. 412-416, July 2013.
[36] J. -H. Chae and M. Kim et al., “A 10.4-Gb/s 1-Tap Decision Feedback Equalizer With Different Pull-Up and Pull-Down Tap Weights for Asymmetric Memory Interfaces,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 67, no. 2, pp. 220-224, Feb. 2020.
[37] S. Kim, J. Sim, H. Park and Y. Choi, et al., “A 15-Gb/s Single-Ended NRZ Receiver Using Self-Referenced Technique With 1-Tap Latched DFE for DRAM Interfaces," IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 70, no. 1, pp. 101-105, Jan. 2023.
[38] S. Li, Y. Jiang and P. Liu, “An adaptive PAM-4 analog equalizer with boosting-state detection in the time domain,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2907-2916, Oct. 2017.
[39] Keysight, “M8048A ISI Channels - Data Sheet”.
[40] J. Song, S. Hwang, H. Lee and C. Kim, “A 1-V 10-Gb/s/pin single-ended transceiver with controllable active-inductor-based driver and adaptively calibrated cascaded-equalizer for post-LPDDR4 interfaces,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 65, no. 1, pp. 331-342, Jan. 2018.
[41] M.-K. Chae and H.-J. Kwon et al., “A duo-binary transceiver with time-based receiver and voltage-mode time-interleaved mixing transmitter for DRAM interface,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 68, no. 7, pp. 2409-2413, Jul. 2021.
[42] H. Lee et al., “A 16.8 Gbps/channel single-ended transceiver in 65 nm CMOS for SiP-based DRAM interface on Si-carrier channel,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2613-2624, Nov. 2015.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2024-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明