博碩士論文 109323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:52.14.26.141
姓名 林驛軒(Yi-Xuan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒形狀在簡單滑道與複雜滑道流動行為的影響研究
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-4以後開放)
摘要(中) 本研究使用離散元素法 (Discrete Element Method, DEM) 探討不同長寬比顆粒體 (長寬比1.0、長寬比1.5、長寬比2.0、長寬比2.5及長寬比3.0) 在簡單滑道與複雜滑道的流動行為,並分析顆粒流的流速、能量分佈、應力與摩擦啟動因子,以了解顆粒形狀對顆粒流傳輸性質與內部性質的影響,研究結果顯示在簡單滑道中非球形顆粒體因為互鎖效應較強,顆粒間傾向聚集流動,導致沿深度方向的速度梯度較小,在複雜滑道條件下,顆粒流流速隨長寬比的增加而減少。顆粒流耗能機制主要有兩種,摩擦耗能與碰撞耗能,不論在簡單滑道或是複雜滑道,不同形狀顆粒流皆以摩擦為主要耗能機制,且摩擦耗能占比隨長寬比的增加而增加,碰撞耗能占比則隨長寬比的增加而減少。在滑道沒有障礙物的條件下,不論簡單滑道或複雜滑道,顆粒流的應力沿流動方向呈現長寬比越大應力值越低的現象,主要是因為互鎖效應隨長寬比增加而增加,顆粒間傾向聚集流動,顆粒間劇烈碰撞減少,導致應力值下降。球形顆粒流摩擦啟動因子分佈較為平均,主要以滾動摩擦為主,因此流速較快,非球形顆粒流則因為摩擦啟動因子多分佈於0.8~1.0之間,因此流速較慢,且不同長寬比顆粒流流速差距較小。由研究結果得知在互鎖效應強弱的影響下,球形顆粒體(長寬比1.0)與非球形顆粒體(長寬比1.5、長寬比2.0、長寬比2.5及長寬比3.0)的流動行為差異較大,但非球形顆粒體間的流動行為差異較小。
摘要(英) The aim of this study is to investigate the effect of particle shape on transport properties and internal stresses as well as energy dissipation of granular flows down a simple chute and a complex chute by using Discrete Element Method (DEM) modeling. The aspect ratio of particles was varied between 1.0 and 3.0 with an increment of 0.5. Results reveal that non-spherical particles tend to gather and flow due to interlocking effect between particles, resulting in a small velocity gradient along the flowing depth. Especially in the complex chute, the particle flow velocity decreases with the increase of the aspect ratio. In the simple chute or the complex chute, friction is the main mechanism of energy dissipation for granular flows. The proportion of frictional energy dissipation increases with aspect ratio, while that of collision energy dissipation decreases with the increase of aspect ratio. In the granular flows down the simple chute or the complex chute, the granular stress decreases with the increase of the aspect ratio, mainly because the interlocking effect increases with aspect ratio. The interlocking effect causes the particles to reduce their velocities, and the intensive collisions between particles decrease, leading to a decrease in the stress value. The spherical granular flows exhibit more uniform probability distributions in the mobilized friction, indicating that the contacts between particles mainly lie in rolling friction regime. However, the contact mobilized friction in the non-spherical granular flows is mostly distributed between 0.8 and 1.0, approaching sliding friction regime. The flow behaviors between spherical and non-spherical granular flows are significantly different due to the interlocking effect, but those between non-spherical granular flows with the aspect ratio larger than 1.5 are small.
關鍵字(中) ★ 滑道顆粒流
★ 形狀效應
★ 離散元素法
★ 流速分佈
★ 顆粒流能量分佈
★ 應力分佈
★ 摩擦啟動因子
關鍵字(英) ★ granular chute flow
★ particle shape affect
★ discrete element method
★ velocity profiles
★ energy distribution
★ stress distribution
★ contact mobilized friction
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
第一章 緒論 1
1-1 顆粒流傳輸性質與顆粒形狀效應相關研究 1
1-2 顆粒流內部應力相關研究 3
1-3 研究動機 4
第二章 研究方法 5
2-1 離散元素法(Discrete Element Method) 5
2-1-1 剛體運動方程式 5
2-1-2 接觸力模型 7
2-1-3 時間步 8
2-2 離散元素模型 9
2-2-1 簡單滑道模型設立 9
2-2-2 複雜滑道模型設立 10
2-2-3 顆粒體的沉積 11
2-2-4 顆粒體的崩塌滑動 11
2-3 傳輸性質計算 11
2-3-1 流速分佈 11
2-4 內部性質計算 12
2-4-1 能量計算 12
2-4-2 應力 14
2-4-3 摩擦啟動因子 15
第三章 結果與討論 16
3-1 顆粒形狀對顆粒體在簡單滑道中流動行為的影響 16
3-1-1 流速分佈 17
3-1-2 能量 18
3-1-3 應力 20
3-1-4 摩擦啟動因子 22
3-2顆粒形狀對顆粒體在複雜滑道中流動行為的影響 23
3-2-1 流速分佈 23
3-2-2 能量 24
3-2-3 應力 25
3-2-4 摩擦啟動因子 26
第四章 結論 27
參考文獻 29
參考文獻 [1] C.Y. Lo, M.D. Bolton, Y.P. Cheng, Velocity fields of granular flows down a rough incline: a DEM investigation, Granular Matter, (2010) 12, 477-482.
[2] H. Teufelsbauer, Y. Wang, S. P. Pudasaini, DEM simulation of impact force exerted by granular flow on rigid structures, Acta Geotechnica, (2011) 6, 119-133.
[3] G.G.D. Zhou, Q.C. Sun, Three-dimensional numerical study on flow regimes of dry granular flows by DEM, Power Technology, (2013) 239, 115-127.
[4] N. Gaudel, S. K. D. Richter, Effect of vibrations on granular material flows down an inclined plane using DEM simulations, Powder Technology, (2019) 346, 256-264.
[5] Y. Zhu, R. Delannay, A. Valance, High speed confined granular flows down smooth inclines: scaling and wall friction laws, Granular Matter, (2020) 22, 82.
[6] A. Albaba, S. Lambert, F. Nicot, B. Chareyre, Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling, Granular Matter, (2015) 17, 603-616.
[7] F. Wu, Y. Fan, L. Liang, C. Wang, Numerical simulation of dry granular flow impacting a rigid wall using the discrete element method, PLoS ONE, (2016) 11, 0160756.
[8] S. Mandal, D.V. Khakhar, A study of the rheology of planar granular flow of dumbbells using discrete element method simulations, Physics of Fluids, (2016) 28, 103301.
[9] R.C. Hidalgo, S.M. Rubio-Largo, F. Alonso-Marroquin, T. Weinhart, Non-spherical granular flows down inclined chutes, EPJ Web of Conferences, (2017) 140, 03007.
[10] S. Mandal, D.V. Khakhar, Dense granular flow of mixtures of spheres and dumbbells down a rough inclined plane: segregation and rheology, Physics of Fluids, (2019) 31, 023304.
[11] T. Weinhart, C. Labra, S. Luding, J.Y. Ooi, Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow, Powder Technology, (2016) 293, 138-148.
[12] M. Pasha, C. Hare, M. Ghadiri, A. Gunadi, P.M. Piccione, Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater, Powder Technology, (2016) 296, 29-36.
[13] C. Xie, H. Ma, Y. Zhao, Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction, Engineering Analysis with Boundary Elements, (2019) 105, 207-220.
[14] B.J. Glasser, I. Goldhirsch, Scale dependence, correlations, and fluctuations of stresses in rapid granular flows, Physics of Fluids, (2001) 13, 407.
[15] C.S. Chang, M.R. Kuhn, On virtual work and stress in granular media, International Journal of Solids and Structures, (2005) 42, 3773-3793.
[16] R. Blumenfeld, S.F. Edwards, On granular stress statistics: compactivity, angoricity, and some open issues, The Journal of Physical Chemistry B, (2009) 113, 3981-3987.
[17] I. Goldhirsch, Stress, stress asymmetry and couple stress: from discrete particles to continuous fields, Granular Matter, (2010) 12, 239-252.
[18] D.M. Wood, D. Le´sniewska, Stresses in granular materials, Granular Matter, (2011) 13, 395-415.
[19] F. Nicot, N. Hadda, M. Guessasma, J. Fortin, O. Millet, On the definition of the stress tensor in granular media, International Journal of Solids and Structures, (2013) 50, 2508-2517.
[20] T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface, Physics of Fluids, (2013) 25, 070605.
[21] F. Kneib, T. Faug, G. Nicolet, N. Eckert, M. Naaim, Force fluctuations on a wall in interaction with a granular lid-driven cavity flow, Physical Review E, (2017) 96, 042906.
[22] B. Yan, R.A. Regueiro, Definition and symmetry of averaged stress tensor in granular media and its 3D DEM inspection under static and dynamic conditions, International Journal of Solids and Structures, (2019) 161, 243-266.
[23] P. A. Cundall, O. D. L. Strack, Discrete numerical model for granular assemblies, Geotechnique, (1979) 29, 47-65.
[24] J.L. Meriam, L.G. Kraige, Engineering mechanics dynamics, 7th edition, Wiley, New York, 2012.
[25] Y. Tsuji, T. Tanaka, T. Ishiba, Lagrangian numerical simulation of plug flow of conhesionless particles in a horizontal pipe, Powder Technology, (1992) 73, 239-250.
[26] Y. C. Chung, C. W. Wu, C. Y. Kuo, S. S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Applied Mathematical Modelling, (2019) 74, 540-568.
[27] C. Thornton, C. W. Randall, Application of theoretical contact mechanics to solid particle system simulation, Studies in Applied Mechanics, (1988) 20, 133-142.
[28] 吳朝旺, 顆粒體在具阻礙物滑道中流動行為研究: DEM的實驗驗證及傳輸性質與內部性質探討,國立中央大學碩士論文 (2017).
[29] 林昊勳, 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討,國立中央大學碩士論文 (2019).
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2023-1-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明