博碩士論文 103281002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.145.1.182
姓名 蘇逸鎮(Yi-Zhen Su)  查詢紙本館藏   畢業系所 數學系
論文名稱 利用機器學習方法對肝纖維化進行早期檢測和分類:基於影像的生物標記和數據驅動的計算技術在動態對比增強磁共振成像
(Early Detection and Classification of Liver Fibrosis with Machine Learning Methods: Image-Based Biomarkers and Data-driven Computational Techniques in Dynamic Contrast-Enhanced MRI)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 近期,慢性肝病已成為對健康產生嚴重影響的疾病。在肝纖維化的早期,有效的 治療和適當的飲食管理可能有助於康復。然而,目前常用的無侵入性診斷方法,如血 液檢查和腹部超聲,對於肝纖維化的早期階段檢測並不十分靈敏。因此,在這項研究 中,我們提出了使用機器學習(ML)技術,透過特徵提取的方式,以預測肝纖維化階 段的方法。此研究結果有兩個部分,分別為動物的小鼠實驗與人類臨床數據。
小鼠實驗部分,分為健康(A0 )、輕度(A1 )、中度(A2 )或重度(A3 )四類。具 體來說,我們採用支持向量機作為分類器。使用兩種類型的特徵,即來自小鼠磁共振 (MR)成像的歐拉數(EN)與肝纖維化相關的估計孔隙率,用於訓練分類器。這兩種 特徵提取的基本想法源自於肝臟成像的幾何和拓撲特性。在參數調整之後,最終,在
模型比較方面,使用兩種特徵分別為 binary(Acc=63.2%)和 grayscale(Acc=64.5%) 影像給 CNN 模型訓練,和在 SVM 模型上,不同特徵作為訓練,分別為單獨的估計孔 隙率(Acc=93.3%)、單獨的歐拉特徵數(Acc=74.6%)和全部特徵(Acc=90.9%)。使用單獨的估計孔隙率特徵的模型在四類別的綜合表現上優於其他模型,特別是在輕度(A1 )類別中表現卓越。
進一步地,我們轉向人類肝纖維化分類,使用了 62 位病人的臨床數據,包括血 液檢查和 DCE-MRI 訊號曲線。為了增加準確性,我們引入了模擬肝臟的新特徵,如 孔隙率、擴散率、肝門靜脈和肝動脈的流速。通過結合這些特徵,我們使用 KNN 和 Naive Bayes 模型在 F0-3 vs F4-6 和 F0-5 vs F6 分類中取得了優異的結果,綜合三類精 確度保持在 69.4%。這項研究強調了模擬肝臟訊號濃度模型在肝纖維化評估中的潛在價 值,同時提供了生物醫學研究者更深入的理解和新的研究方向。
摘要(英) In recent years, chronic liver disease has emerged as a condition significantly impacting health. Effective treatment and proper dietary management in the early stages of liver fibrosis may contribute to recovery. However, non-invasive diagnostic methods such as blood tests and abdominal ultrasound are not highly sensitive for detecting early stages of liver fibrosis. Therefore, in this study, we propose using machine learning (ML) techniques, employing feature extraction, to predict the stages of liver fibrosis. The study comprises experiments on mice and clinical data from human subjects.
In the mouse experiment section, mice were categorized into healthy (A0), mild (A1), moderate (A2), or severe (A3) stages. Specifically, we utilized support vector machines as classifiers, using two types of features: Euler numbers (EN) from mouse magnetic resonance (MR) imaging and estimated porosity related to liver fibrosis. The basic idea behind these feature extractions stems from the geometric and topological properties of liver imaging. After parameter tuning, the final model comparisons showed that using the two features separately for binary (Acc=63.2%) and grayscale (Acc=64.5%) images for training CNN models, as well as on SVM models using different features—solely esti- mated porosity (Acc=93.3%), solely Euler characteristic numbers (Acc=74.6%), and all features combined (Acc=90.9%). The model using solely estimated porosity as a feature outperformed other models’ overall performance across the four categories, particularly excelling in the mild (A1) category.
Furthermore, we turned to human liver fibrosis classification, utilizing clinical data from 62 patients, including blood tests and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) signal curves. To enhance accuracy, we introduced new features simulating liver properties, such as porosity, diffusion rate, and flow speeds of the portal vein and hepatic artery. Combining these features, we used KNN and Naive Bayes models to achieve excellent results in F0-3 vs. F4-6 and F0-5 vs. F6 classifications, with an overall three-class accuracy of 69.4%. This study underscores the potential value of simulating liver signal concentration models in liver fibrosis assessment, providing biomedical researchers with a deeper understanding and new avenues for research.
關鍵字(中) ★ 肝纖維化
★ 磁振造影
★ 動態對比增強磁振造影
★ 多孔介質
★ 達西方程式
★ 對流擴散方程式
★ 最佳化演算法
關鍵字(英) ★ liver fibrosis
★ MRI
★ DCE-MRI
★ porous medium
★ Darcy equation
★ convection-diffusion equation
★ Optimization Algorithm
論文目次 致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表目錄........................................... xi
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1緒論.......................................... 1
1.1 肝臟的功能與慢性肝病............................. 1
1.2 臨床慢性肝病檢測 ............................... 2
1.3 肝纖維化分期.................................. 3
1.4 磁共振成像技術原理.............................. 4
1.5 動態對比增強磁振造影............................. 5
1.6 研究動機與目的................................. 7
1.7 本論文章節架構計畫.............................. 8
2 數據分析方法..................................... 9
2.1 統計分析工具.................................. 9
2.1.1 敘述統計和卡方檢定.......................... 10
2.1.2 變異數分析和Kruskal-WallisH檢定................. 10
2.1.3 Logistic迴歸 .............................. 11
2.2 機器學習 .................................... 13
2.2.1 分類方法:支持向量機(Support Vector Machine,SVM) . . . . 14
2.2.2 特徵選取(featureSelection) .................... 17
2.3 深度學習:卷積神經網路(Convolutional Neural Network, CNN) . . . . 18
2.3.1 卷積層.................................. 19
viii
2.3.2 池化層.................................. 20
2.3.3 全連接層 ................................ 22
2.3.4 超參數(hyperparameter) ...................... 22
2.3.5 深度學習可視化算法.......................... 28
2.4 資料增廣 .................................... 29
2.5 衡量指標 .................................... 31
2.5.1 混淆矩陣 ................................ 31
2.5.2 ROC曲線................................ 32
2.6 最佳化演算法.................................. 33
3 文獻回顧:人工智慧在醫學相關領域的應用 .................... 36
3.1 人工智慧在肝病診斷技術 ........................... 37
3.2 人工智慧在肝纖維化分期診斷技術 ...................... 37
3.2.1 臨床肝纖維化分期 ........................... 37
3.2.2 動物肝纖維化研究 ........................... 39
4 文獻回顧:肝臟數值模擬 .............................. 41
4.1 肝臟微觀模擬.................................. 41
4.2 肝臟巨觀模擬.................................. 42
5 動物實驗樣本..................................... 43
5.1 小鼠肝纖維化模型和MRI量測........................ 43
5.2 組織學程序................................... 43
5.3 小鼠肝纖維化組織學評估 ........................... 44
5.4 肝纖維化評估結果與MRI影像分析 ..................... 44
6 數值小鼠模型實驗設計................................ 47
6.1 預處理流程................................... 47
6.1.1 肝臟分割的圖像預處理 ........................ 48
6.1.2 資料增廣 ................................ 48
6.1.3 特徵提取 ................................ 49
6.2 CNN模型訓練流程............................... 52
6.3 SVM模型訓練流程............................... 53
7 結果與討論 ...................................... 55
7.1 統計分析 .................................... 55
7.2 CNN結果.................................... 56
7.2.1 binaryandgrayscale的結果...................... 62
7.3 SVM結果.................................... 62
7.4 我們的方法與其他研究結果的比較 ...................... 67
8 基於動態對比增強 MRI 的數據驅動計算技術,用於早期檢測慢性肝病 . . . . 70
8.1 達西方程式................................... 71
8.2 隨時間變化的對流擴散方程式......................... 73
8.2.1 求解演算法............................... 74
8.3 MATLAB程式碼驗證 ............................. 76
8.4 肝內部訊號模擬演算法............................. 83
8.5 病人資料 .................................... 87
8.6 特徵提取 .................................... 87
9 結論與未來相關研究建議 .............................. 97
參考文獻 .........................................100
1 附錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
參考文獻 [1] Claire M Steppan and Mitchell A Lazar. The current biology of resistin. Journal of Internal Medicine, 255:439–447, 2004.
[2] Lane H Wilson, Jun-Ho Cho, Ana Estrella, Joan A Smyth, Rong Wu, Tayoot Cheng-supanimit, Laurie M Brown, David A Weinstein, and Young Mok Lee. Liver glycogen phosphorylase deficiency leads to profibrogenic phenotype in a murine model of glycogen storage disease type VI. Hepatology Communications, 3:1544–1555, 2019.
[3] A Geetha, MD Lakshmi Priya, S Annie Jeyachristy, and R Surendran. Level of oxidative stress in the red blood cells of patients with liver cirrhosis. Indian Journal of Medical Research, 126:204, 2007.
[4] SG Genes. Role of the liver in hormone metabolism and in the regulation of their content in the blood. Arkhiv Patologii, 39:74–80, 1977.
[5] David E Johnston. Special considerations in interpreting liver function tests. American Family Physician, 59:2223–2230, 1999.
[6] Ronald J Maughan, Alan E Donnelly, Michael Gleeson, Paul H Whiting, Kim A Walker, and Peter J Clough. Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 12:332–336, 1989.
[7] Hisham Tchelepi, Philip W Ralls, Randall Radin, and Edward Grant. Sonography of diffuse liver disease. Journal of Ultrasound in Medicine, 21:1023–1032, 2002.
[8] Andrew M Prentice and Susan A Jebb. Beyond body mass index. Obesity Reviews, 2:141–147, 2001.
[9] Eldad S Bialecki, Amobi M Ezenekwe, Elizabeth M Brunt, Brian T Collins, T Brent Ponder, B Kirke Bieneman, and Adrian M Di Bisceglie. Comparison of liver biopsy and noninvasive methods for diagnosis of hepatocellular carcinoma. Clinical Gastroenterology and Hepatology, 4:361–368, 2006.
[10] Youyong Kong, Yue Deng, and Qionghai Dai. Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Processing Letters, 22:573–577, 2014.
[11] Matthew C Clark, Lawrence O Hall, Dmitry B Goldgof, Laurence P Clarke, Robert P Velthuizen, and Martin S Silbiger. MRI segmentation using fuzzy clustering techniques. IEEE Engineering in Medicine and Biology Magazine, 13:730–742, 1994.
[12] Grace C Lo, Cecilia Besa, Michael J King, Martin Kang, Ashley Stueck, Swan Thung, Mathilde Wagner, Andrew D Smith, and Bachir Taouli. Feasibility and reproducibility of liver surface nodularity quantification for the assessment of liver cirrhosis using CT and MRI. European Journal of Radiology Open, 4:95–100, 2017.
[13] Kumi Ozaki, Osamu Matsui, Satoshi Kobayashi, Tetsuya Minami, Azusa Kitao, and Toshifumi Gabata. Morphometric changes in liver cirrhosis: aetiological differences correlated with progression. British Journal of Radiology, 89:20150896, 2016.
[14] R A Standish, E Cholongitas, A Dhillon, A K Burroughs, and A P Dhillon. An appraisal of the histopathological assessment of liver fibrosis. Gut, 55:569–578, 2006.
[15] Carmen F Braticevici, Raluca Papacocea, Laura Tribus, and Anca Badarau. Can we replace liver biopsy with non-invasive procedures? Liver Biopsy, 6:225–240, 2011.
[16] Kenneth P Batts and Jurgen Ludwig. An update on terminology and reporting. The American Journal of Surgical Pathology, 19:1409–1417, 1995.
[17] Marc G Ghany, Doris B Strader, David L Thomas, and Leonard B Seeff. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology, 49:1335, 2009.
[18] Zhi-Pei Liang and Paul C Lauterbur. Principles of Magnetic Resonance Imaging. SPIE Optical Engineering Press Belllingham, WA, 2000.
[19] Dow-Mu Koh and David J Collins. Diffusion-weighted MRI in the body: applications and challenges in oncology. American Journal of Roentgenology, 188:1622–1635, 2007.
[20] Feng Chen and Yi-Cheng Ni. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: An update. World Journal of Radiology, 4:63, 2012.
[21] Cristina Lavini, Maarten S Buiter, and Mario Maas. Use of dynamic contrast enhanced time intensity curve shape analysis in MRI: theory and practice. Reports in Medical Imaging, 6:71–82, 2013.
[22] Fahmi Khalifa, Ahmed Soliman, Ayman El-Baz, Mohamed A El-Ghar, Tarek El-Diasty, Georgy Gimel’farb, Rosemary Ouseph, and Amy C Dwyer. Models and methods for analyzing DCE-MRI: A review. Medical Physics, 41:124301, 2014.
[23] Yu-San Liao, Li-Wen Lee, Ping-Hsien Yang, Liang-Mou Kuo, Li-Ying Kuan, Wen Yih Isaac Tseng, and Dennis W. Hwang. Assessment of liver cirrhosis for patients with Child’s A classification before hepatectomy using dynamic contrast-enhanced MRI. Clinical Radiology, 74:407–e11, 2019.
[24] Wei Zhang, Xiang Kong, Zhen J Wang, Song Luo, Wei Huang, and Long Jiang Zhang. Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis induced by carbon tetrachloride in rats. PLOS One, 10:e0129621, 2015.
[25] Mei-Lin Yu, Yueliang L Guo, Chen-Chin Hsu, and Walter J Rogan. Increased mortality from chronic liver disease and cirrhosis 13 years after the Taiwan “yucheng”(“oil disease”) incident. American Journal of Industrial Medicine, 31:172–175, 1997.
[26] Hartmut Jaeschke. Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. American Journal of Physiology. Gastrointestinal and liver physiology, 273:G602–G611, 1997.
[27] Ramón Bataller, David A Brenner, et al. Liver fibrosis. Journal of Clinical Investigation, 115:209–218, 2005.
[28] Scott L Friedman. Liver fibrosis–from bench to bedside. Journal of Hepatology, 38:38–53, 2003.
[29] Murray J Fisher and Andrea P Marshall. Understanding descriptive statistics. Australian Critical Care, 22:93–97, 2009.
[30] Albert Satorra and Peter M Bentler. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66:507–514, 2001.
[31] Ellen R Girden. ANOVA: Repeated Measures. Sage Publications, Newbury Park, 1992.
[32] Morton B Brown and Alan B Forsythe. Robust tests for the equality of variances. Journal of the American Statistical Association, 69:364–367, 1974.
[33] Maurice S Bartlett. Tests of significance in factor analysis. British Journal of Psychology, 3:77–85, 1950.
[34] Samuel S Shapiro and Martin B Wilk. An analysis of variance test for normality (complete samples). Biometrika, 52:591–611, 1965.
[35] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46:68–78, 1951.
[36] Fritz W Scholz and Michael A Stephens. K-sample Anderson–Darling tests. Journal of the American Statistical Association, 82:918–924, 1987.
[37] Martin B Wilk and Ram Gnanadesikan. Probability plotting methods for the analysis for the analysis of data. Biometrika, 55:1–17, 1968.
[38] Elvar Theodorsson-Norheim. Kruskal-Wallis test: Basic computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Computer Methods and Programs in Biomedicine, 23:57–62, 1986.
[39] András Vargha and Harold D Delaney. The kruskal-wallis test and stochastic homogeneity. Journal of Educational and Behavioral Statistics, 23:170–192, 1998.
[40] Scott Menard. Applied Logistic Regression Analysis. Sage Publications, Thousand Oaks, 2002.
[41] David Haussler, Jyrki Kivinen, and Manfred K Warmuth. Sequential prediction of individual sequences under general loss functions. IEEE Transactions on Information Theory, 44:1906–1925, 1998.
[42] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical Statistics, pages 400–407, 1951.
[43] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In International Conference on Machine Learning, pages 1139–1147, 2013.
[44] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.
[45] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.
[46] Diederik P Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[47] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2921– 2929, 2016.
[48] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan- tam, Devi Parikh, and Dhruv Batra. GRAD-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, pages 618–626, 2017.
[49] Jakub Nalepa, Michal Marcinkiewicz, and Michal Kawulok. Data augmentation for brain-tumor segmentation: a review. Frontiers in Computational Neuroscience, 13:83, 2019.
[50] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340, 2017.
[51] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 321:321–331, 2018.
[52] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21:1087–1092, 1953.
[53] Scott Kirkpatrick, C D Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.
[54] David E Goldberg and Chie Hsiung Kuo. Genetic algorithms in pipeline optimization. Journal of Computing in Civil Engineering, 1:128–141, 1987.
[55] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE, 1995.
[56] Li-Qiang Zhou, Jia-Yu Wang, Song-Yuan Yu, Ge-Ge Wu, Qi Wei, You-Bin Deng, Xing-Long Wu, Xin-Wu Cui, and Christoph F Dietrich. Artificial intelligence in medical imaging of the liver. World Journal of Gastroenterology, 25:672, 2019.
[57] Oleg S Pianykh, Georg Langs, Marc Dewey, Dieter R Enzmann, Christian J Herold, Stefan O Schoenberg, and James A Brink. Continuous learning AI in radiology: implementation principles and early applications. Radiology, 297:6–14, 2020.
[58] Young Joon Kwon, Danielle Toussie, Mark Finkelstein, Mario A Cedillo, Samuel Z Maron, Sayan Manna, Nicholas Voutsinas, Corey Eber, Adam Jacobi, Adam Bernheim, et al. Combining initial radiographs and clinical variables improves deep learning prognostication in patients with COVID-19 from the emergency department. Radiology: Artificial Intelligence, 3:e200098, 2020.
[59] Chuan-Shen Hu, Austin Lawson, Jung-Sheng Chen, Yu-Min Chung, Clifford Smyth, and Shih-Min Yang. Toporesnet: A hybrid deep learning architecture and its application to skin lesion classification. Mathematics, 9:2924, 2021.
[60] Rahul Kapoor, Stephen P Walters, and Lama A Al-Aswad. The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 64:233–240, 2019.
[61] Kao-Lang Liu, Tinghui Wu, Po-Ting Chen, Yuhsiang M Tsai, Holger Roth, Ming- Shiang Wu, Wei-Chih Liao, and Weichung Wang. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. The Lancet Digital Health, 2:e303–e313, 2020.
[62] Joseph C Ahn, Zachi I Attia, Puru Rattan, Aidan F Mullan, Seth Buryska, Alina M Allen, Patrick S Kamath, Paul A Friedman, Vijay H Shah, Peter A Noseworthy, and Douglas A Simonetto. Development of the AI-Cirrhosis-ECG (ACE) Score: an electrocardiogram-based deep learning model in cirrhosis. The American Journal of Gastroenterology, 117:424, 2022.
[63] Sebastian Nowak, Narine Mesropyan, Anton Faron, Wolfgang Block, Martin Reuter, Ulrike I Attenberger, Julian A Luetkens, and Alois M Sprinkart. Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning. European Radi- ology, 31:8807–8815, 2021.
[64] Yang Chen, Yan Luo, Wei Huang, Die Hu, Rong-Qin Zheng, Shu-Zhen Cong, Fan- Kun Meng, Hong Yang, Hong-Jun Lin, Yan Sun, Xiu-Yan Wang, Tao Wu, Jie Ren,
Shu-Fang Pei, Ying Zheng, Yun He, Yu Hu, Na Yang, and Hongmei Yan. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B. Computers in Biology and Medicine, 89:18–23, 2017.
[65] Zheng Jiang, Kazunobu Yamauchi, Kentaro Yoshioka, Kazuma Aoki, Susumu Kuroy- anagi, Akira Iwata, Jun Yang, and Kai Wang. Support vector machine-based feature selection for classification of liver fibrosis grade in chronic hepatitis C. Journal of Medical Systems, 30:389–394, 2006.
[66] Kun Wang, Xue Lu, Hui Zhou, Yongyan Gao, Jian Zheng, Minghui Tong, Changjun Wu, Changzhu Liu, Liping Huang, Tian’an Jiang, Fankun Meng, Yongping Lu, Hong Ai, Xiao-Yan Xie, Li-ping Yin, Ping Liang, Jie Tian, and Rongqin Zheng. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut, 68:729–741, 2019.
[67] Koichiro Yasaka, Hiroyuki Akai, Akira Kunimatsu, Osamu Abe, and Shigeru Kiryu. Deep learning for staging liver fibrosis on CT: a pilot study. European Radiology, 28:4578–4585, 2018.
[68] Koichiro Yasaka, Hiroyuki Akai, Akira Kunimatsu, Osamu Abe, and Shigeru Kiryu. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acidenhanced hepatobiliary phase MR images. Radiology, 287:146–155, 2018.
[69] Yudan Huang, Ying Chen, Haochuan Zhu, Weifeng Li, Yun Ge, Xiaolin Huang, and Jian He. A liver fibrosis staging method using cross-contrast network. Expert Systems with Applications, 130:124–131, 2019.
[70] Stefanie J Hectors, Paul Kennedy, Kuang-Han Huang, Daniel Stocker, Guillermo Carbonell, Hayit Greenspan, Scott Friedman, and Bachir Taouli. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI. European Radiology, 31:3805–3814, 2021.
[71] Jeong Hyun Lee, Ijin Joo, Tae Wook Kang, Yong Han Paik, Dong Hyun Sinn, Sang Yun Ha, Kyunga Kim, Choonghwan Choi, Gunwoo Lee, Jonghyon Yi, et al. Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. European Radiology, 30:1264–1273, 2020.
[72] Yang Yu, Jiahao Wang, Chan Way Ng, Yukun Ma, Shupei Mo, Eliza Li Shan Fong, Jiangwa Xing, Ziwei Song, Yufei Xie, Ke Si, Aileen Wee, Roy E Welsch, Peter TC So, and Hanry Yu. Deep learning enables automated scoring of liver fibrosis stages. Scientific Reports, 8:1–10, 2018.
[73] Bryan C Fuchs, Huifang Wang, Yan Yang, Lan Wei, Miloslav Polasek, Daniel T Schühle, Gregory Y Lauwers, Ashfaq Parkar, Anthony J Sinskey, Kenneth K Tanabe, and Peter Caravan. Molecular MRI of collagen to diagnose and stage liver fibrosis. Journal of Hepatology, 59:992–998, 2013.
[74] Jing Lv, Yue Xu, Ling Xu, and Liming Nie. Quantitative functional evaluation of liver fibrosis in mice with dynamic contrast-enhanced photoacoustic imaging. Radiology, 300:89–97, 2021.
[75] Yehonatan Sela, Moti Freiman, Elia Dery, Yifat Edrei, Rifaat Safadi, Orit Pappo, Leo Joskowicz, and Rinat Abramovitch. fMRI-based hierarchical SVM model for the classification and grading of liver fibrosis. IEEE Transactions on Biomedical Engineering, 58:2574–2581, 2011.
[76] Ayesha Kousar, Shivam Damani, Priyanka Anvekar, Arush Rajotia, Keerthy Gopalakrishnan, Bhavana Baraskar, Vaishnavi K Modi, Keirthana Aedma, Joshika Agarwal, Hima Varsha Voruganti, et al. Deep learning based classiftcation of normal and hepatic fibrosis mouse model using digital pathology images. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 2308–2313. IEEE, 2022.
[77] Tim Ricken and Lena Lambers. On computational approaches of liver lobule function and perfusion simulation. GAMM-Mitteilungen, 42:e201900016, 2019.
[78] Xiao Fu, James P Sluka, Sherry G Clendenon, Kenneth W Dunn, Zemin Wang, James E Klaunig, and James A Glazier. Modeling of xenobiotic transport and metabolism in virtual hepatic lobule models. PLOS One, 13:e0198060, 2018.
[79] Charlotte Debbaut, Jan Vierendeels, Jennifer H Siggers, Rodolfo Repetto, Diethard Monbaliu, and Patrick Segers. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Computer Methods in Biomechanics and Biomedical Engineering, 17:1295–1310, 2014.
[80] Eduard Rohan, Vladimír Lukeš, and Alena Jonášová. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media. Journal of Mathematical Biology, 77:421–454, 2018.
[81] Anne M Jezequel, Raniero Mancini, ML Rinaldesi, Giampiero P Macarri, Cinzia Venturini, and Francesco Orlandi. A morphological study of the early stages of hepatic fibrosis induced by low doses of dimethylnitrosamine in the rat. Journal of Hepatology, 5:174–181, 1987.
[82] Tsutomu Fujii, Bryan C Fuchs, Suguru Yamada, Gregory Y Lauwers, Yakup Kulu, Jonathan M Goodwin, Michael Lanuti, and Kenneth K Tanabe. Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterology, 10:1–11, 2010.
[83] Yi Huang, W Bastiaan de Boer, Leon A Adams, Gerry MacQuillan, Enrico Rossi, Paul Rigby, Spiro C Raftopoulos, Max Bulsara, and Gary P Jeffrey. Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver International, 33:1249–1256, 2013.
[84] Yu-Ting Juan. Three-dimensional geometry reconstruction of mouse liver from MR images using k-means method with confusion component removing. Master’s thesis, National Central University, 2019.
[85] Rafael C Gonzalez and Richard E. Woods. Digital Image Processing. Pearson Education India, 2009.
[86] Roland Materne, Bernard E Van Beers, Anne M Smith, Isabelle Leconte, Jacques Jamart, Jean-Paul Dehoux, André Keyeux, and Yves Horsmans. Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clinical Science, 99:517–525, 2000.
[87] Choon Hua Thng, Tong San Koh, David J Collins, and Dow Mu Koh. Perfusion magnetic resonance imaging of the liver. World Journal of Gastroenterology, 16:1598, 2010.
[88] Arif Masud and Thomas JR Hughes. A stabilized mixed finite element method for darcy flow. Computer Methods in Applied Mechanics and Engineering, 191:4341– 4370, 2002.
[89] Leopoldo P Franca, Sérgio L Frey, and Thomas JR Hughes. Stabilized finite element methods: I. Application to the advective-diffusive model. Computer Methods in Applied Mechanics and Engineering, 95:253–276, 1992.
[90] Cheng-Hsuan Jain. Mathematical modeling and numerical simulation for application of DCE-MRI in early detection of chronic liver disease. Master’s thesis, National Central University, 2015.
[91] Richard K Sterling, Eduardo Lissen, Nathan Clumeck, Ricard Sola, Mendes Cassia Correa, Julio Montaner, Mark S. Sulkowski, Francesca J Torriani, Doug T Dieterich, David L Thomas, Diethelm Messinger, and Mark Nelson. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology, 43:1317–1325, 2006.
[92] AuroraLoaeza-delCastillo,FranciscoPaz-Pineda,EdgarOviedo-Cárdenas,Francisco Sánchez-Avila, and Florencia Vargas-Vorácková. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Annals of Hepatology, 7:350–357, 2008.
[93] Edoardo Giannini, Domenico Risso, Federica Botta, Bruno Chiarbonello, Alberto Fa- soli, Federica Malfatti, Paola Romagnoli, Emanuela Testa, Paola Ceppa, and Roberto Testa. Validity and clinical utility of the aspartate aminotransferase-alanine aminotransferase ratio in assessing disease severity and prognosis in patients with hepatitis C virus-related chronic liver disease. Archives of Internal Medicine, 163:218–224, 2003.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2024-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明