博碩士論文 110353018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.118.152.191
姓名 莊雅潔(Ya-Chieh Chuang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 利用薄滴塗聚合物改善奈米顆粒堆疊觸媒層以提升高溫質子交換膜燃料電池之性能
(Performance Enhancement of HT-PEMFC by Using Drop-Casted Polymer to Improve Nanoparticle-stack Catalyst Layer)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-30以後開放)
摘要(中) 為了降低高溫質子交換膜燃料電池(high temperature proton exchange membrane fuel cells, HT-PEMFC)中的觸媒擔載量及提高電流密度,本研究使用脈衝雷射沉積法(pulsed laser deposition, PLD)在氣體擴散層的微孔層表面沉積奈米顆粒堆疊觸媒層,並以滴塗(drop-casting)高分子填充劑修飾觸媒層,提升質子傳輸與氣體傳輸的能力,以降低電荷轉移阻抗。
本研究先針對觸媒層填充物種類進行研究,接著再針對聚苯並咪唑膜磷酸的流失進行探討,避免過高的磷酸摻雜導致溢出磷酸造成的酸淹,以及利用無裂紋碳紙限制磷酸滲出之特性,減少磷酸自質子交換膜中流失至MEA外。經優化後,滴塗50 nm摻雜磷酸之自含微孔高分子(PA:PIM-1)觸媒層填充物與未進行觸媒修飾之燃料電池相比,在140 oC、0.6 V的測試條件下,燃料電池電流密度可提高81%。
摘要(英) To reduce the catalyst loading and increase the current density of high-temperature proton exchange membrane fuel cell (HT-PEMFC), this study employs pulsed laser deposition (PLD) to deposit nanoparticle-stacked catalyst layers on the surface of the microporous layer. The catalyst layer is further modified with a polymer filler through drop-casting to decrease charge transfer resistance vis improved proton and gas transport capabilities.
The research begins by studying the types of fillers for the catalyst layer. Subsequently, a detailed examination is conducted on the loss of phosphoric acid from the polybenzimidazole membrane to avoid acid flooding caused by excessive phosphoric acid ,and use crack-free carbon paper to restrict phosphoric acid leakage from the proton exchange membrane to exterior of MEA. Following optimization, the drop-casted 50 nm PA:PIM-1 as catalyst layer filler, compared to the unmodified catalyst layer, demonstrates a 81% increase in current density at 0.6 V and 140 °C.
關鍵字(中) ★ 高溫型質子交換膜燃料電池
★ 脈衝雷射沉積
★ 觸媒減量
★ 交聯
★ 自含微孔高分子
關鍵字(英) ★ High Temperature Proton Exchange Membrane Fuel Cell
★ Pulsed Laser Deposition
★ Catalyst Reduction
★ Crosslinking
★ Polymers of Intrinsic Microporosity
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1 前言 1
1-2  質子交換膜燃料電池 3
1-2-1 燃料電池種類 3
1-2-2 質子交換膜燃料電池工作原理 5
1-2-3 質子交換膜燃料電池組成結構 8
1-3  觸媒層製備與發展 12
1-3-1 製備觸媒層之方式 12
1-3-2 以不同製程製備燃料電池觸媒層之性能比較 21
1-4  研究動機與目的 23
第二章 文獻回顧 24
2-1  高溫型質子交換膜燃料電池 24
2-2  高溫型質子交換膜之研究 27
2-3  低觸媒載量與觸媒層介面改善高溫型質子交換膜燃料電池 30
2-4  奈米顆粒堆疊超薄觸媒層 33
2-5  觸媒層表面的酸淹 36
2-6  添加交聯劑增加磷酸滯留能力 38
2-7  裂紋影響高溫質子交換膜燃料電池的磷酸流失 39
第三章 實驗方法與設備 41
3-1  實驗架構流程 41
3-1-1 實驗所需之材料 42
3-2  表面微結構分析 43
3-2-1 場發射掃描式電子顯微鏡 43
3-3  磷酸摻雜高溫型質子交換膜 44
3-3-1 商用PBI膜浸泡磷酸製備PA-PBI膜方法與流程 44
3-4  脈衝雷射沉積系統 46
3-4-1 脈衝雷射系統架設 46
3-4-2 奈米觸媒樣品製備參數 48
3-5  滴塗觸媒層填充物製備 49
3-5-1  觸媒層填充物滴塗製程 49
3-5-2 滴塗溶液製備 50
3-6  膜電極組製備 51
3-7  單電池組裝過程 51
3-8  高溫型燃料電池測試平台系統 51
3-8-1 燃料電池極化現象 54
3-8-2 燃料電池電化學交流阻抗頻譜分析 57
第四章 結果與討論 61
4-1  不同BADGE:PBI厚度的電池性能 61
4-1-1 不同BADGE:PBI厚度之表面形貌 61
4-1-2 不同BADGE:PBI厚度之燃料電池性能比較 62
4-2  使用多孔高分子作為觸媒填充劑 66
4-2-1 不同觸媒層填充物之燃料電池性能比較 66
4-3  優化PIM-1中磷酸摻雜量改善電池性能 69
4-3-1 PIM-1中磷不同酸摻雜量之燃料電池性能比較 69
4-4  優化PA:PIM滴塗厚度的電池性能 72
4-4-1 不同PA:PIM滴塗厚度之燃料電池性能比較 72
4-5  使用不同碳紙進行電池性能之優化 75
4-5-1 不同碳紙之表面形貌 75
4-5-2 不同碳紙之燃料電池性能比較 76
4-6  優化聚苯並咪唑膜中之磷酸摻雜量 79
第五章 結論與未來規劃 84
5-1  結論 84
5-2  未來展望 86
第六章 參考文獻 87
參考文獻 [1] “Record wind and solar - but also record coal and emissions,” https://ember-climate.org/insights/research/global-electricity-review-2022/
[2] 〈COP26系列十三:高碳排產業如何衝刺淨零?綠色氫能將是重要解方〉,取自https://www.delta-foundation.org.tw/blogdetail/3213.
[3] 〈以氫燃料電池實現能源循環,促進我國淨零排放願景實現〉,取自https://trh.gase.most.ntnu.edu.tw/tw/article/content/263.
[4] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[5] Y. F. Zhai, H. M. Zhang, Y. Zhang, and D. M. Xing, “A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells,” Journal of Power Sources, Vol 169, pp. 259-264, 2007.
[6] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, Vol 226, pp. 169-184, 2003.
[7] L. A. Zook, and J. Leddy, “Density and solubility of nafion: Recast, annealed, and commercial films,” Analytical Chemistry, Vol 68, pp. 3793-3796, 1996.
[8] H. Y. Jung, and J. W. Kim, “Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC),” International Journal of Hydrogen Energy, Vol 37, pp. 12580-12585, 2012.
[9] R. B. Sandor, “PBI (Polybenzimidazole): Synthesis, Properties and Applications,” High Performance Polymers, Vol 2, pp. 25-37, 1990.
[10] P. Staiti, M. Minutoli, and S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, Vol 90, pp. 231-235, 2000.
[11] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, Journal of Power Sources, Vol 195, pp. 756-761, 2010.
[12] “Toray Engineering Co., Ltd.,” http://www.toray eng.com/lcd/coater/lineup/esc.html
[13] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, Journal of The Electrochemical Society, Vol 151, pp. 1733-1737, 2004.
[14] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, Journal of Physics D: Applied Physics, Vol 47, pp. 272001, 2014.
[15] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim Acta, Vol 146, pp. 171-177, 2014.
[16] M. S. Saha, A. F. Gull´, R. J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim Acta, Vol 51, pp. 4680-4692, 2006.
[17] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim Acta, Vol 177, pp. 168-173, 2015.
[18] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol 6, pp. 180, 2016.
[19] 陳晧軒:〈以滴塗製程控制Nafion自組織成膜並提升質子傳導與燃料電池功率密度〉,碩士論文,國立中央大學,中華民國一百一十年六月。
[20] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, Vol 273, pp. 885-893, 2015.
[21] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, Journal of Power Sources, Vol 271, pp. 401-405, 2014.
[22] R. Haider, Y. C. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. X. Yuan, S. Q. Song, and J. J. Zhang, “High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies,” Chemical Society Reviews, Vol 50, 2021, pp. 1138-1187.
[23] L. C. Xia, M. Ni, Y. W. Dai, K. Q. Zheng, and M. X. Li, “Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell,” International Journal of Energy Research, Vol 46, pp.1998-2010, 2022.
[24] T. Myles, L. Bonville, and R. Maric, “Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells,” Catalysts, Vol 7, pp. 16, 2017.
[25] Z. Zhou, O. Zholobko, X. F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, Vol 14, pp. 135, 2021.
[26] M. G. Waller, et al., “Performance of high temperature PEM fuel cell materials. Part 1: effects of temperature, pressure and anode dilution,” International Journal of Hydrogen Energy, Vol 41, pp. 2944-2954, 2016.
[27] C. Zhang, et al., “Investigation of water transport and its effect on performance of high temperature PEM fuel cells,” Electrochimica Acta, Vol 149, pp. 271-277, 2014.
[28] S. Galbiati, et al., “Experimental study of water transport in a polybenzimidazole based high temperature PEMFC,” International Journal of Hydrogen Energy, Vol 37, pp. 2462-2469, 2012.
[29] Z. Qi, S. Buelte, “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells,” Journal of Power Sources, Vol 161, pp. 1126-1132, 2006.
[30] Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, "High Temperature Polymer Electrolyte Membrane Fuel Cells : Approaches, Status, and Perspectives," Springer International Publishing, Springer, 2016.
[31] Z. Zhou, O. Zholobko, X.-F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, Vol 14, pp. 135, 2021.
[32] R. Zeis, “Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells,” Beilstein Journal of Nanotechnology, Vol 6, pp. 68-83, 2015.
[33] J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles - a new polymer electrolyte,” Journal of the Electrochemical Society, Vol 142, pp. L121-L123, 1995.
[34] Hydrogen and Fuel Cell Technology Office, “DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components,” https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.
[35] S. Martin, J. O. Jensen, Q. Li, P. L. Garcia-Ybarra, and J. L. Castillo, “Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane,” International Journal of Hydrogen Energy, Vol 44, pp. 28273-28282, 2019.
[36] S. Martin, Q. Li, and J. O. Jensen, “Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes,” Journal of Power Sources, Vol 293, pp. 51-56, 2015.
[37] H. Y. Du, C. H. Wang, C. S. Yang, H. C. Hsu, S. T. Chang, H. C. Huang, S. W. Lai, J. C. Chen, T. L. Yu, L. C. Chen, and K. H. Chen, “A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells,” Journal of Materials Chemistry A, Vol 2, pp. 7015-7019, 2014.
[38] J. J. Zhang, H. J. Bai, W. R. Yan, J. Zhang, H. N. Wang, Y. Xiang, and S. F. Lu, “Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers,” Journal of the Electrochemical Society, Vol 167, pp. 114501, 2020.
[39] L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, “High-temperature polybenzimidazole fuel cell membranes via a sol-gel process,” Chemistry of Materials, Vol 17, pp. 5328-5333, 2005.
[40] X. Deng, C. Huang, X. Pei, B. Hu, and W. Zhou, “Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review,” International Journal of Hydrogen Energy, Vol 47, pp. 1529-1542, 2021.
[41] J. Huang, Z. Li, and J. B. Zhang, “Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer,” Frontiers in Energy, Vol 11, pp. 334-364, 2017.
[42] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, and C. J. Tseng, “Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel cells with pulsed laser deposition,” Journal of Physics D-Applied Physics, Vol 49, pp. 7, 2016.
[43] C. C. Lang, C. H. Lin, H. H. Chen, C. J. Tseng, and S. Y. Chen, “Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing,” International Journal of Hydrogen Energy, Vol 46, pp. 33948-33956, 2021.
[44] J. Iglesia, C.-C. Lang, Y.-M. Chen, S.-y. Chen, and C.-J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer,” Journal of Power Sources, Vol 436, pp. 226886, 2019.
[45] Fang Luo, Shuyuan Pan, Zehui Yang, “Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells,” Acta Phys. -Chim. Sin, Vol 37, 9, pp. 2009087, 2021.
[46] H.Y. Tang, K. Geng, D. Aili, Q. Jin, J. Pan, G. Chao, X. Yin, X. Guo, Q.F. Li, N. Li, “Low Pt loading for high-performance fuel cell electrodes enabled by hydrogen-bonding microporous polymer binders,” nature communications, Vol 13, 7577, 2022.
[47] Yagmur Özdemir, Necati Özkan,Yılser Devrim, “Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells,” Electrochimica Acta, Vol 245, pp. 1-13, 2017.
[48] N. Bevilacqua, M.G. George, S. Galbiati, A. Bazylak, R. Zeis, “Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers,” Electrochimica Acta, Vol 257, pp. 89-98, 2017.
[49] F. Arslan, T. Böhm, J. Kerres, S. Thiele, “Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid, ” Journal of Membrane Science, Vol 625, pp. 119145, 2021.
[50] H. Becker, L. N. Cleemann, D. Aili, J. O. Jensen, Q. Li, “Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes,” Electrochemistry communications, Vol 82, pp. 21-24, 2017.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2024-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明