博碩士論文 110521063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.188.224.177
姓名 陳昱儒(Yu-Ju Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以砷化銦鎵/砷化銦鋁單光子雪崩二極體陣列提升光子數解析性能
(Enhanced Photon Number Resolving Detection using InGaAs/InAlAs Single-Photon Avalanche Diode Array)
相關論文
★ 以自差分模式操作砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析之研究★ 以正弦閘控操作的砷化銦鎵/砷化銦鋁單光子雪崩二極體實現光子數解析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 量子科技在近年來逐漸成為熱門話題,諸如擁有高度安全性的量子通訊和能夠快速解決複雜問題的量子計算更是受到高度關注。在這些領域中,擁有光子數解析(Photon number resolving, PNR)能力的光偵測器扮演著至關重要的角色,相較於單顆元件僅依靠自身能力所進行的光子數解析,陣列元件採用多個元件訊號並聯輸出的方式能夠具有更佳的光子數解析能力,以往的陣列元件常以矽為基底的光偵測器亦或是超導奈米材料所組成,本文則是選擇以III-V族材料所製成的單光子雪崩二極體(Single Photon Avalanche Diode, SPAD)元件來組成陣列,相對於其他光偵測器,III-V族材料製成的SPAD在操作上不需要像超導奈米材料一樣在極低溫下運作,而且由於三五族材料應用在不可見光的波段,也較SiPM不易受到可見光的干擾。此外,在光通訊領域中,也能夠作為接收光子的偵測器,適用於1550 nm波段的量子密鑰分發(quantum key distribution, QKD)上,並可應用在光纖通訊上。
本文使用實驗室自製的InGaAs/InAlAs SPAD元件進行量測,採用閘控模式操作,條件設定為104.731MHz的閘控頻率以及26.18275MHz的雷射頻率,脈衝寬度則為1.5ns,並搭配自差分電路以消除電容耦合訊號。在平均光子數設定為1顆的條件下分別針對單顆元件以及2x2陣列元件的光子數解析能力進行分析比較,單顆元件在46%的單光子偵測效率下解析出了5顆光子,而陣列元件則在14.8%的單光子偵測效率下實現了6顆光子的解析,此外,也比較了兩元件的光子數解析參數,在電壓峰值分離度、半高寬以及品質因數(FOM)上,陣列元件也都優於單顆元件,這說明了SPAD元件的陣列形式能提供更好的光子數解析能力。
摘要(英) Quantum technology has been gaining popularity in recent years, with a strong focus on areas such as quantum communication, known for its high security, and quantum computing, capable of solving complex problems rapidly. In these domains, photon number resolving (PNR) capabilities of photodetectors play a crucial role. Compared to single-element photodetectors that rely solely on their intrinsic capabilities for photon number resolution, array elements that use multiple component signals in parallel output can offer superior photon number resolving capabilities. Traditionally, array elements have been composed of silicon-based photodetectors or superconducting nano materials. However, this article opts for the use of III-V semiconductor materials to fabricate single photon avalanche diode (SPAD) elements for array construction. Relative to other photodetectors, III-V semiconductor-based SPADs do not require operation at extremely low temperatures like superconducting nano materials. Additionally, since III-V materials are used in the infrared spectrum, they are less susceptible to interference from visible light compared to Silicon Photomultipliers (SiPMs). Furthermore, in the field of optical communication, these SPADs can also serve as photon detectors, making them suitable for Quantum Key Distribution (QKD) in the 1550 nm wavelength range and applicable to optical fiber communication as well.
This paper presents measurements conducted using self-developed and self-fabricated InGaAs/InAlAs SPAD devices operated in gating mode. The experimental conditions were set with a gating frequency of 104.731 MHz and a laser frequency of 26.18275 MHz which has a pulse width of 1.5 ns. Additionally, self-differential circuits were employed to eliminate capacitive-coupled signals. Under the condition of an average photon number set to 1, the photon number resolving capabilities of both single-device and 2x2 array device were analyzed and compared. The single-device achieved the resolution of 5 photons at a single photon detection efficiency of 46%, whereas the array device achieved the resolution of 6 photons at a single photon detection efficiency of 14.8%. Furthermore, a comparison of the photon number resolving parameters between the two types of devices, including peak voltage separation, full-width at half-maximum, and figure of merit (FOM), demonstrated that the array device outperformed the single-device, which indicates that the array device provides superior photon number resolving capabilities over the single-device.
關鍵字(中) ★ 單光子雪崩二極體
★ 光子數解析
★ 陣列
關鍵字(英) ★ Single Photon Avalanche Diode
★ Photon Number Resolving
★ Array
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 vi
圖目錄 x
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-1-1 研究背景 1
1-1-2 研究動機與目的 1
1-2 光偵測器之演進 2
1-2-1 光電倍增管(Photomultiplier tube, PMT) 2
1-2-2 光電二極體(Photodiode) 3
1-2-3 雪崩光電二極體(Avalanche Photodiode, APD) 4
1-2-4 單光子雪崩二極體(Single-Photon Avalanche Diode, SPAD) 5
1-3 光偵測器之應用 6
1-3-1 光學雷達系統(LiDAR) 6
1-3-2 光子數解析(Photon Number Resolving, PNR) 7
1-3-3 量子密鑰分發(Quantum Key Distribution, QKD) 10
第二章 SPAD之元件介紹 13
2-1 單光子雪崩二極體(SPAD) 13
2-1-1 元件I-V特性 13
2-1-2 元件崩潰機制 14
2-1-3 元件結構簡述 15
2-2 元件操作電路 16
2-2-1 自由運作模式截止電路(Free running mode quenching circuit) 16
2-2-2 閘控模式截止電路(Gated mode quenching circuit) 18
2-2-3 自我截止電路(Self-quenching circuit) 20
2-2-4 自差分電路(Self-Differencing circuit) 20
2-3 單光子偵測器陣列 22
2-3-1 原理與應用 22
2-3-2 單光子偵測器陣列之文獻回顧 23
2-4 元件重要參數介紹 27
2-4-1 暗計數(Dark count) 27
2-4-2 單光子偵測效率(Single Photon Detection Efficiency, SPDE) 30
2-4-3 光子數解析參數定義 32
第三章 單光子雪崩二極體之設計與製程 34
3-1 單光子雪崩二極體之結構設計 34
3-1-1 磊晶設計以及電場模擬 34
3-2 光罩圖案之設計理念 42
3-2-1 陣列之光罩圖案設計 42
3-3 單光子雪崩二極體之製程步驟 44
3-3-1 晶圓切割及試片清洗 44
3-3-2 第一平台(First Mesa)製程 45
3-3-3 第二平台(Second Mesa)製程 47
3-3-4 硫化處理 48
3-3-5 金屬製程 49
3-3-6 鈍化層(Passivation)製作 53
3-3-7 鈍化層開洞(Via of passivation) 55
3-3-8 襯墊金屬層(Pad Metal)製程 56
3-3-9 抗反射層(Anti-reflective coating)製程 57
3-3-10 元件成品圖 59
第四章 量測架構 60
4-1 降溫系統 60
4-2 電路板準備 61
4-3 電壓電流量測架構 62
4-4 暗計數量測架構 63
4-5 光計數量測架構 64
4-6 光子數解析量測架構 68
第五章 量測結果與分析 72
5-1 常溫量測結果 74
5-2 變溫量測結果 75
5-2-1 變溫電壓電流特性量測 75
5-2-2 變溫暗計數量測 77
5-2-3 變溫單光子偵測效率量測 78
5-3 光子數解析 82
5-3-1 光子數解析量測 83
5-3-2 陣列元件與單顆元件之光子數解析能力比較與分析 93
5-3-3 不同平均光子數之陣列元件量測比較 96
第六章 結論與未來展望 109
參考文獻 110
附錄一 115
附錄二 117
附錄三 121
參考文獻 [1] Arrazola, J.M., Bergholm, V., Brádler, K. et al., “Quantum circuits with many photons on a programmable nanophotonic chip,” Nature 591, 3 March 2021, pp. 54–60

[2] Photomultiplier Tubes Basic and Applications. 4th edition Hamamatsu: Hamamatsu Photonics, 2017.

[3] Wavelength Electronics Photodiode Basics, January 2020.
https://www.teamwavelength.com/photodiode-basics/

[4] Wikipedia, Time of flight.
https://en.wikipedia.org/wiki/Time_of_flight

[5] Kardynał B, Yuan Z and Shields A, “An avalanche‐photodiode-based photon-number-resolving detector,” Nature Photon 2, pp. 425–428, 2008.

[6] Chen, Xiuliang et al., “Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode,” Scientific Reports, 44600, 2017.

[7] Yokota, H. Fukasawa, A. Hirano, M. Ide, “T. Low-Light Photodetectors for Fluorescence Microscopy,” Applied Sciences, 2021.

[8] 量子加密技術極簡介 (QKD-Quantum Key Distribution).
https://kelispinor.medium.com/%E9%87%8F%E5%AD%90%E5%8A%A0%E5%AF%86%E6%8A%80%E8%A1%93%E6%A5%B5%E7%B0%A1%E4%BB%8B-qkd-quantum-key-distribution-a795a470ff83

[9] Charles H.Bennett, GillesBrassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, Vol. 560, Part 1, 4 December 2014, pp. 7-11.

[10] Sheng-Di Lin et al., “Single-Photon Avalanche Didoe and its Application on Light Detection and Ranging,” 科儀新知212期106年9月

[11] Basics of Impact-Ionization
https://www.iue.tuwien.ac.at/phd/triebl/node20.html

[12] Yan Liang et al., “A review on III–V compound semiconductor short wave infrared avalanche photodiodes,” IOP Science, 2022.

[13] Sara Pellegrini et al., “Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector,” IEEE Journal of Quantum Electronics, Vol. 42, NO. 4, April 2006.

[14] Alberto Tosi et al., “InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail,” IEEE Journal of Quantum Electronics, Vol. 48, NO. 9, September 2012.

[15] Jun Zhang et al., “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light: Science & Applications, 2015.

[16] Bin Li et al., “A Low Dark Current Mesa-Type InGaAs/InAlA Avalanche Photodiode,” IEEE Photonics Technology Letters, Vol. 27, NO. 1, 1 January 2015.

[17] Jishen Zhang et al., “High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection,” Optics Letters, Vol. 46, No. 11, 1 June 2021.

[18] Hui Wang et al., “Low dark current and high gain-bandwidth product of avalanche photodiodes: optimization and realization,” Optics Express, Vol. 28, No. 11, 25 May 2020.

[19] S. Cova et al., “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, Vol. 35, No.12, 20 April 1996, pp. 1956-1976.

[20] Fabio Acerbi, Alberto Tosi, Franco Zappa, “Dark Count Rate Dependence on Bias Voltage During Gate-OFF in InGaAs/InP Single-Photon Avalanche Diodes,” IEEE Photonics Technology Letters, VOL. 25, NO. 18, 15 September 2013.

[21] Xudong Jiang et al. “InGaAs/InP single photon avalanche diodes with negative feedback,” IEEE Photonics Conference, 2012, pp. 92-93.

[22] Yi Jian et al., “Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector,” Applied Optics, Vol. 50, No. 1, OSA, 1 January 2011, pp. 61-65.

[23] N. Namekata, S. Sasamori, and S. Inoue, “800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Optics Express, Vol. 14, No. 21, OSA, 16 October 2006, pp. 10043-10049.

[24] Alessandro Restelli, Joshua C. Bienfang, Alan L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett., 10 April 2013.

[25] Xiuliang Chen et al., “Photon-number-resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118, 2009.

[26] Takashi Baba et al., “Development of an InGaAs SPAD 2D array for flash LIDAR,” Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400L, 26 January 2018.

[27] Salvatore Gnecchi, Carl Jackson, “A 1 × 16 SiPM Array for Automotive 3D Imaging LiDAR Systems,” SensL Technologies, 2017, pp. 133-136.

[28] P. Lecoq, S. Gundacker, “SiPM applications in positron emission tomography: toward ultimate PET time-of-flight resolution,” Eur. Phys. J. Plus, 5 March 2021.

[29] S. Jahanmirinejad et al., “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 14 August 2012.

[30] Jinhou Lin et al., “High-speed photon-number-resolving detection via a GHz-gated SiPM,” Opt. Express 30, 2022, pp. 7501-7510.

[31] Xudong Jiang et al., “Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes,” IEEE Journal of Quantum Electronics, Vol. 44, No. 1, January 2008.

[32] Chen Wang et al., “Afterpulsing effects in SPAD-based photon-counting communication system,” Optics Communications, Vol. 443, 15 July 2019, pp. 202-210.

[33] Fabio Acerbi et al., “Design Criteria for InGaAs/InP Single-Photon Avalanche Diode,” IEEE Photonics Journal, Vol. 5, No. 2, April 2013.

[34] P. Kleinow et al., “Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes,” Infrared Physics & Technology, 2015, pp. 298-302.

[35] J S Harris et al., “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 2011.

[36] Yuan Yuan et al., “Triple-mesa avalanche photodiodes with very low surface dark current,” Opt. Express, Vol. 27, No. 16, 5 August 2019.

[37] Peter Vines et al., “High performance planar germanium-on-silicon single-photon avalanche diode detectors,” Nature Communications, 2019.

[38] D Sheela, Nandita DasGupta, “Optimization of surface passivation for InGaAs/InP pin photodetectors using ammonium sulfide,” Semicond. Sci. Technol. 23, 7 February 2008.

[39] H.S. Kim et al., “Dark current reduction in APD with BCB passivation,” Electronics Letters 29th, Vol. 37, No. 7, March 2001.

[40] 金進興:〈單軸延伸聚亞醯胺薄膜光學異向性之研究〉,博士論文,國立交通大學,民國96年7月。

[41] Dengkuan Liu et al., “Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system,” J. Opt. Soc. Am. B, Vol. 31, No. 4, April 2014.

[42] D. Achilles, C. Silberhorn, “Photon number resolving detection using time-multiplexing,” Journal of Modern Optics, 51, 2004, pp. 1499-1515.

[43] https://en.wikipedia.org/wiki/Poisson_distribution

[44] Schmidt, M., et al. “Photon-number-resolving transition-edge sensors for the metrology of quantum light sources.” Journal of Low Temperature Physics 193 (2018), pp.1243-1250.

[45] Mattias Jönsson and Gunnar Björk, “Evaluating the performance of photon-number-resolving detectors,” Physical review A 99, 043822, 2019.
指導教授 許晉瑋 李依珊 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明