博碩士論文 945202009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.223.210.20
姓名 陳怡萍(Yi-Ping Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 架構於小波關聯隱藏馬可夫樹模式的 紋理影像分割
(Texture Image Segmentation based onWavelet Contextual Hidden Markov Tree Models )
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們提出了關聯隱藏馬可夫樹模式 (contextual hidden
Markov tree model, CHMT) 和邊界精細化 (boundary refinement) 方法來
做紋理影像分割。關聯隱藏馬可夫樹模式是由建立在小波轉換架構下的
隱藏馬可夫樹模式 (hidden Markov tree model, HMT) 改良而來的。隱藏
馬可夫樹模式是用來捕捉小波係數之統計特性的一種樹狀結構機率模
式; 隱藏馬可夫樹可以完整的描述小波係數的繼承性 (persistence
property),但不太具有聚集性 (clustering property)。而關聯隱藏馬可夫樹
模式則使用擴增點 (extended nodes) 的觀念,來加強隱藏馬可夫樹模式的
聚集性。
在影像分割的應用上,因為邊界精細化方法加入影像像素的位置資
訊,區分為同質區域及邊界區域,因此,我們使用邊界精細化方法來加
強粗分割的正確性。首先,對於每一種紋理影像,利用關聯隱藏馬可夫
樹模式訓練一組代表此紋理影像的關係參數;接著利用這些參數算出不
同解析度區塊的最大相似度函數值做第一次分割;但分割結果,解析度
愈高的影像正確率愈低。接著依照影像的區域性融合不同解析度的分割
結果以得到更精確的分割結果。
摘要(英) A multiscale texture image segmentation approach based on the
contextual hidden Markov tree (CHMT) model and boundary refinement is
proposed. The hidden Markov tree models (HMT) is a statistical model of tree
structure for capturing properties of wavelet coefficients. The HMT model
describes persistence property of wavelet coefficients, but loses clustering
property. We have proposed the CHMT model which improved from the HMT
model by enhancing the clustering property.
The CHMT model reinforces clustering property by using extended
coefficients without changing the wavelet tree structure; thus the HMT
training scheme can be easily modified to estimate the parameters of the
CHMT model.
In this study, the CHMT model is applied for texture segmentation. For
each texture, we use the CHMT model to train a set of parameters and then
utilize these parameters compute likelihood functions for all mulitscale
squares of a test image. At last, we segment the test image with the principle
of maximum likelihood. Only based on the CHMT model, the segmentation
results are not good enough when the size of dyadic square is small; thus the
boundary refinement algorithm is adopted to fuse the multiscale square to get
better-quality segmented results. The segmented results based on the HMT
and CHMT models are compared to show the improvement of the CHMT
model over the HMT model; moreover, the boundary refinement algorithm is
also evaluated to show its ability.
論文目次 摘 要 .................................................... II
誌 謝 ....................................................III
目 錄 ................................................... IV
第一章 緒論................................................一
第二章 相關研究............................................二
第三章 小波域的機率模式....................................三
第四章 粗分割後的融合方法.................................. 四
第五章 多重解析度影像分割..................................五
第六章 實驗與討論..........................................六
第七章 結論................................................七
英文版論文..................................................八
Abstract ............................................................................................................ ii
Contents ........................................................................................................... iii
List of Figures ................................................................................................... v
List of Tables .................................................................................................... ix
Chapter 1 Introduction ...................................................................................... 1
1.1 Motivation ........................................................................................ 1
1.2 System overview .............................................................................. 2
1.3 Thesis organization .......................................................................... 3
Chapter 2 Related Works ................................................................................... 5
2.1 Model-based image segmentation .................................................... 5
2.2 HMM-based image segmentation .................................................... 6
2.3 HMT-based image segmentation ...................................................... 7
Chapter 3 Statistical Image Models ................................................................ 10
3.1 Gaussian Mixture Models .............................................................. 10
3.2 The wavelet transform ................................................................... 11
3.3 Probabilistic model for a single wavelet coefficient ...................... 14
3.4 Probabilistic models based on wavelet transforms ........................ 16
3.4.1 Hidden Markov tree models ............................................... 19
3.4.2 Contextual hidden Markov tree model ............................... 20
3.5 Wavelet domain CHMT model training ......................................... 23
Chapter 4 Fusion of the Raw Segmented Results ........................................... 31
4.1 Context-based interscale fusion ..................................................... 32
4.1.1 Interscale fusion concepts ................................................... 32
4.1.2 Interscale fusion algorithm ............................................... 335
4.2 Boundary refinement ...................................................................... 37
Chapter 5 Multiscale Segmentation Using Contextual Hidden Markov Tree
Models ............................................................................................ 39
5.1 Multiscale image segmentation framework ................................... 39
5.2 Multiscale segmentation ................................................................ 40
5.3 Pixel-level segmentation ................................................................ 42
5.3.1 Spatial-domain pixel miture Gaussian model training ....... 42
5.3.2 Pixel segmentation .............................................................. 43
5.4 Boundary refinement ...................................................................... 43
Chapter 6 Experiment and Discussions .......................................................... 47
6.1 Experimental results ....................................................................... 47
6.2 Discussions ..................................................................................... 58
Chapter 7 Conclusions and Future Works ....................................................... 60
References ....................................................................................................... 61
參考文獻 [1] Bouman, C. and M. Shapiro, “A multiscale random field model for
Bayesian image segmentation,” IEEE Trans. Image Processing, vol.38,
no.2, pp.162-177, 1994.
[2] Charles, F. V. L, Introduction to Scientific Computing: A Matrix Vector
Approach Using MATLAB, Prentice Hall, New York, 1996.
[3] Chen, J.-L. and A. Kundu, “Automatic unsupervised texture
segmentation using hidden Markov model,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, Minneapolis, Minnesota, Apr.
27-30, 1993, pp.21-24.
[4] Choi, H. and R. G. Baraniuk, “Multiscale texture segmentation using
wavelet-domain hidden Markov models,” in Proc. 32th Asilomar Conf.
Signals, System and Computers, Pacific Grove, CA, Nov.1-4, 1998,
pp.1692-1697.
[5] Choi, H. and R. G. Baraniuk, “Image segmentation using wavelet-domain
classification,” in Proc. SPIE Conf. Mathematical Modeling, Bayesian
Estimation, and Inverse Problems, Denver, Colorado, July 21-23, 1999,
pp.306-320.
[6] Choi, H. and R. G. Baraniuk, “Multiscale image segmentation using
wavelet-domain hidden Markov models,” IEEE Trans. Image Processing,
vol.10, no.9, pp.1039-1321, 2001.
[7] Crouse, M. S., R. D. Nowak, and R. G. Baraniuk, “Wavelet-based
statistical signal processing using hidden Markov models,” IEEE Trans.
Signal Processing, vol.46, no.4, pp.886-902, 1998.
[8] Etai, M. and M. Aladjem, “Boundary refinements for wavelet-domain
multiscale texture segmentation,” Image and Vision Computing, vol.23,no.13, pp.1150-1158, 2005.
[9] Fan, G. and X. G. Xia, “Wavelet-based statistical image processing using
hidden Markov tree model,” in Proc. 34th Annual Conf. Information
Sciences and Systems. Princeton, New Jersey, Mar.15-17, 2000.
[10] Fan, G. and X. G. Xia, “Maximum likelihood texture analysis and
classification using wavelet-domain hidden Markov model,” in Proc.
34th Asilomar Conf. Signals, System and Computers, Pacific Grove, CA,
Oct.29-Nov.1, 2000, pp.921-925.
[11] Fan, G. and X. G. Xia, “On context-based bayesian image segmentation:
joint multi-context and multiscale approach and wavelet-domain hidden
Markov models,” in proc. 35th Asilomar Conf. Signals, System and
Computers, Pacific Grove, CA, Nov.4-7, 2001, pp.1146-1150.
[12] Fan, G. and X. G. Xia, “Wavelet-based texture analysis and synthesis
using hidden Markov models,” IEEE Trans. Fundamental Theory and
Applications, vol.50, no.1, pp.106-120, 2003.
[13] Fan, Y., T. Jiang, and D. J. Evans, “Volumetric segmentation of brain
images using parallel genetic algorithm,” IEEE Trans. Medical Imaging,
vol.21, no.8, pp.904-909, 2002.
[14] Ginneken, B., A. F. Frangi, J. J. Staal, B. M. Romeny, and M. A.
Viergever, “Active shape model segmentation with optimal features,”
IEEE Trans. Medical Imaging, vol.21, no.8, pp.924-933, 2002.
[15] Kaplan, L. M., “Extended fractal analysis for texture classification and
segmentation,” IEEE Trans. Image Processing, vol.8, no.11, pp.
1572-1585, 1999.
[16] Krishnamachari, S. and R. Chellappa, “Multiresolution Gauss-Markov
random field models for texture segmentation,” IEEE Trans. ImageProcessing, vol.6, no.2, pp.251-267, 1997.
[17] Lerman, J., S. Kulkarni, and J. Koplowitz, “Multiresolution chain coding
of contours,” in Proc. IEEE Int. Conf. Image Processing, Princeton, New
Jersey, Nov.13-16, 1994, pp.615-619.
[18] Li, J., A. Najmi, and R. M. Gray, “Image classification by a
two-dimensional hidden Markov model,” IEEE Trans. Acoustics, Speech
and Signal Processing, vol.48, no.2, pp.517-533, 2000.
[19] Ling, P., Z. M. Zhong, and J. L. Ma, “Texture image segmentation based
on wavelet-domain hidden Markov models,” in Proc. IEEE Int. Conf.
Geoscience and Remote Sensing Symposium, Anchorage, Alaska,
Sep.20-24, 2004, pp.3829-3832.
[20] Marroquin, J. L., B. C. Vemuri, S. Botello, F. Calderon, and A.
Fernandez-Bouzas, “An accurate and efficient Bayesian method for
automatic segmentation of brain MRI,” IEEE Trans. Medical imaging,
vol.21, no.8, pp.934-945, 2002.
[21] Pesquet, J. C., H. Krim, and E. Hamman, “Bayesian approach to best
basis selection,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. ICASSP, Atlanta, GA, 1996, pp.2634-2637.
[22] Pitiot, A., A. W. Toga, and P. M. Thompson, “Adaptive elastic
segmentation of brain MRI via shape-model-guided evolutionary
programming,” IEEE Trans. Medical Imaging, vol.21, no.8, pp.910-923,
2002.
[23] Rabiner, L. R., “A tutorial on hidden Markov models and selected
applications in speech recognition,” IEEE Trans. Digital Object
Identifier, vol.77, no.2, pp.257-285, Feb. 1989.
[24] Ramesh, N., J. Romberg, H. Choi, R. Riedi and R. Baraniuk,“Multiscale image segmentation using joint texture and shape analysis,”
in Proc. SPIE Conf. Wavelet Applications in Signal and Image
Processing, San Diego, CA, July 30-Aug.4, 2000, pp.215-218.
[25] Shapiro, J. M., “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol.41, no.12,
pp.3445-3462, 1993.
[26] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, Wavelets for Computer
Graphic, Morgan Kaufmann, San Francisco, 1996.
[27] Tseng, D.-C. and M. Shih, “Wavelet-based image denoising using
contextual hidden Markov tree model,” Joural of Electronic Imaging,
vol.14, no.3, pp.1-12, July 2005.
指導教授 曾定章(Din-chang Tseng) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明