博碩士論文 110323123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.188.108.54
姓名 葉秀詮(YE,XIU-QUAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 圓柱型蝸桿之旋風銑削刀具設計及切削模擬
(Design Whirling Tool and Cutting Simulation for Cylindrical Worm Using a Whirling process)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文依照ZA型、ZN型、ZI型、ZK型、ZC型蝸桿之切削方式,基於齒輪原理和微分幾何理論,分別推導出五型蝸桿之齒面數學模式,透過蝸桿之齒面數學模式,配合旋風銑削刀具之切削機構關係與嚙合方程式,建立出五型旋風銑削刀具之齒面數學模式。透過所建立出之旋風銑削刀具輪廓進行刀具曲線之擬合,最後經由切削機構關係與嚙合方程式建立出五型蝸桿之齒形輪廓。

為了進行旋風銑削切削模擬,首先由Solidworks建立旋風銑削之機台模型,將其匯入VERICUT軟體進行各軸相對運動關係之設置,接著將所設計之旋風銑削刀具設置於刀具環治具內,使用控制器840 D驅動所規劃之NC程式進行加工模擬。最後可獲得旋風銑削之五型蝸桿三維模型,再將此五型蝸桿與理論型蝸桿,透過軸向截面齒形比對,
驗證流程與推導之正確性。
摘要(英) This paper, based on the cutting methods of the ZA, ZN, ZI, ZK, and ZC types of worm gears, derives mathematical models for the tooth profiles of these five types of worm gears using the principles of gears and differential geometry theory. Through these mathematical models for the worm gear tooth profiles, and in conjunction with the cutting mechanism relationships and meshing equations of whirling milling tools, mathematical models for the tooth profiles of the five types of whirling milling tools are established. The tool profiles are fitted using the established whirling milling tool mathematical models, and finally, mathematical models for the tooth profiles of the five types of worm gears are developed through the cutting mechanism relationships and meshing equations.

To conduct the whirling milling cutting simulation, a machine model for whirling milling is initially created using Solidworks. This machine model is then imported into VERICUT software for configuring the relative motion relationships between various axes. Subsequently, the designed whirling milling tool is placed within a tool ring fixture. The NC program, as per the actual machining paths, is executed by Controller 840 D for the simulation. Ultimately, this process results in obtaining three-dimensional models of the five types of cyclone-milled worm gears. These models are then used for axial cross-sectional tooth profile comparisons between the five types and theoretical worm gears, verifying the accuracy of the procedures and derivations.
關鍵字(中) ★ 旋風銑削
★ 圓柱型蝸桿
★ 切削模擬
關鍵字(英) ★ Whirling Milling
★ Cylindrical Worm
★ VERICUT
★ Cutting Simulation
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號對照表 X
第1章 緒論 1
1.1 前言 1
1.2文獻回顧 2
1.2.1 蝸桿介紹 2
1.2.2 VERICUT應用 4
1.2.3 旋風銑削應用 5
1.3 研究動機與目的 8
1.4 論文架構 9
第2章 蝸桿齒面數學模式 10
2.1 前言 10
2.2 ZA型蝸桿 10
2.2.1 ZA型蝸桿刀具之數學模式 10
2.2.2 ZA型蝸桿之齒面數學模式 11
2.3 ZN型蝸桿 13
2.3.1 ZN型蝸桿刀具之數學模式 13
2.3.2 ZN型蝸桿之齒面數學模式 15
2.4 ZI型蝸桿 17
2.4.1 ZI型蝸桿之齒面數學模式 17
2.5 ZK型蝸桿 22
2.5.1 ZK型蝸桿刀具之數學模式 22
2.5.2 ZK型蝸桿之齒面數學模式 25
2.6 ZC型蝸桿 28
2.6.1 ZC型蝸桿刀具之數學模式 28
2.6.2 ZC型蝸桿之齒面數學模式 31
2.7 五型蝸桿齒形數值範例 33
第3章 旋風銑削刀具數學模式 37
3.1 前言 37
3.2 ZA型旋風銑削刀具數學模式 37
3.2.1 ZN型旋風銑削刀具數學模式 40
3.2.2 ZI型旋風銑削刀具數學模式 42
3.2.3 ZK型旋風銑削刀具數學模式 44
3.2.4 ZC型旋風銑削刀具數學模式 46
3.3 B-spline 曲線方程式 49
3.4 旋風銑削蝸桿數學模式 51
3.5 五型旋風銑削刀具齒型數值範例 53
第4章 切削模擬 55
4.1 前言 55
4.2 旋風銑削刀具前刀面設計 55
4.3 VERICUT加工模擬 57
4.4 模擬結果 61
第5章 結論與未來工作 63
5.1 結論 63
5.2 未來工作 64
參考文獻 65
參考文獻 [1] Main Drive, “Whirling Milling is a Milling Operation where the Work Piece is Machined by a Cutting Tool which Surrounds and Rotates around the Work Piece,” Main Drive, [Online]. Available: https://www.manufacturingguide.com/en/ordlista/whirl-milling. [ Accessed October 24, 2023].
[2] Main Drive, “Whirling Machine Series – Part Three the Evolution of Whirling,” Main Drive, [Online]. Available: https://leistritzcorp.com/whirling-machine-series-part-three-the-evolution-of-whirling/. [ Accessed November 3, 2020].
[3] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, 2nd Edition,” Cambridge University Press, New York, 2004.
[4] ANSI/AGMA 6022-C93, “Design Manual for Cylindrical Wormgearing,” American Gear Manufacturers Association, 2014.
[5] S. Jianping and T. Zhaoping, “The Parameterization Design and Motion Analysis for Multi-Start ZA Worm Gearing based on Virtual Processing,” Proceeding 2009 IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design: E-Business, Creative Design, Manufacturing - CAID and CD′2009, pp. 1110-1113, 2009.
[6] T. Matsuda and S. Motohiro, “Optimum Tooth-Surface Modifiacation for Axis-Displanced Worm-Gear Drive with Cylindrical ZA Worm,” Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, 2007.
[7] K. Y. Chen and C. B. Tsay, “Mathematical Model and Worm Wheel Tooth Working Surfaces of the ZN-Type Hourglass Worm Gear Set,” Mechanism and Machine Theory, vol. 44, pp. 1701–1712, 2009.
[8] L. Shu, H. Cao, X. Li, C. Zhang and Y. Li, “Mathematical Model and Geometrical Model of Double Pitch ZN-Type Worm Gear Set based on Generation Mechanism,” Chinese Journal of Mechanical Engineering, vol. 28, no. 3, 2015.
[9] L. Dong, P. Liu, W. Wei, X. Dong and H. Li, “Study on ZI Worm and Helical Gear Drive with Large Transmission Ratio,” Mechanism and Machine Theory, vol. 74, pp. 299–309, 2014.
[10] C. C. Liu, J. H. Chen, C. B. Tsay and Y. Ariga, “Meshing Simulations of the Worm Gear Cut by a Straight-Edged Flyblade and the ZK-Type Worm with a Non-90° Crossing Angle,” Mechanism and Machine Theory, vol. 41, pp. 987–1002, 2006.
[11] H. S. Fang and C. B. Tsay, “Mathematical Model and Bearing Contacts of the ZK-Type Worm Gear Set Cut by Oversize Hob Cutters,” Mechanism and Machine Theory, vol. 31, no. 3, pp. 271-282, 1996.
[12] Q. Meng, Y. Zhao, J. Cui and Z. Yang, “Meshing Theory of Mismatched ZC1 Worm Drive,” Mechanism and Machine Theory, vol. 150, pp. 103869, 2020.
[13] W. G. Du, Y. Y. Guo and C. Zhao, “Research on Five-axis CNC Machining Simulation and Experiment of Integrated Impeller based on VERICUT,” Advanced Materials Research, vol. 670, pp. 119–122, 2013.
[14] Z. Hong, Z. Yanh, B. Wang and X. Zhang, “Simulation Analysis of Spiral Bevel Gear Tooth Surface Generation based on VERICUT,” Applied Mechanics and Materials, vol. 273, pp. 175-179, 2013.
[15] X. H. Niu, Z. T. Zhang, X. Meng, Z. Yang and Y. Liu, “based on VERICUT Software Simulation of Multi-Axis Processing Cylindrical Cam Rwswarch,” Applied Mechanics and Materials, vol. 391, pp. 105-108, 2013.
[16] Y. Wang, T. Wang, F. Lin, Z. Lu and D. Wang, “The Research of the Epicycloids Bevel Gear Cutting based on the Common Six-Axis Machine,” Advanced Materials Research, vol. 819, pp. 110-114, 2013.
[17] Y. Wang, J. Dong, T. Wang and L. Zhao, “NC Machining Simulation of Spiral Bevel Gear based on VERICUT,” Applied Mechanics and Materials, vol. 141, pp. 376-380, 2012.
[18] L.V. Mohan, M. S. Shunmugam, “Simulation of Whirling Process and Tool Profiling,” Journal of Materials Processing Technology, vol. 185, pp. 191–197, 2007.
[19] L. Wang, Y. He, Y. Wang, Y. Li, C. Liu, Wang. S and Wang. Y, “Analytical Modeling of Material Removal Mechanism in Dry Whirling Milling Process Considering Geometry, Kinematics and Mechanics,” International Journal of Mechanical Sciences, vol. 172, pp. 105419, 2020.
[20] Q. Han and R. Liu, “Theoretical Modeling and Error Analysis for CNC Whirling of the Helical Surfaces of Custom Screws Using Common Inserts,” Mechanical Engineering Science, vol. 228(11), pp. 1948–1957, 2014.
[21] S. Song and D. Zuo, “Modelling and Simulation of Whirling Process based on Equivalent Cutting Volume,” Simulation Modelling Practice and Theory, vol. 42, pp. 98–106, 2014.
[22] J. H. Son and Y. M. Lee, “Thermal Analysis of Whirling Unit Attached to Thread Whirling Machine,” Materials Science Forum, vol. 575-578, pp. 93-97, 2008.
[23] Y. Wang, L. Li, C. Zhou, Q. Guo, C. Zhang and H. Feng, “The Dynamic Modeling and Vibration Analysis of the Large-Scale Thread Whirling System Under High-Speed Hard Cutting,” Machining Science and Technology, vol. 18, pp. 522–546, 2014.
[24] Q. Guo, L. Ye, Y. Wang, H. Feng, and Y. Li, “Comparative Assessment of Surface Roughness and Microstructure Produced in Whirlwind Milling of Bearing Steel,” Machining Science and Technology, vol. 18, pp. 251–276, 2014.
[25] L. Wang, Y. He, Y. Li, Y. Wang, C. Liu, X. Liu, and Y. Wang, “Modeling and Analysis of Specific Cutting Energy of Whirling Milling Process based on Cutting Parameters,” Procedia CIRP, vol. 80, pp. 56–61, 2019.
[26] Y. M. Lee, W. S. Choi, J. H. Son, K. J. Oh, S. I. Kim, G. W. Park, and H. C. Jung, “Analysis of Worm Cutting Characteristics in Whirling Process,” Materials Science Forum, vol. 575-578, pp. 1402-1406, 2008.
[27] J. H. Son, C. W. Han, S. I. Kim, H. C. Jung, and Y. M. Lee, “Cutting Forces Analysis in Whirling Process,” International Journal of Modern Physics B, vol. 24, no. 15 & 16, pp. 2786–2791, 2010.
[28] Y. He, Y. Wang, Y. Li, S. Wang, Y. Wang, C. Liu, and C. Hao, “An Analytical Model for Predicting Specific Cutting Energy in Whirling Milling Process,” Journal of Cleaner Production, vol. 240, pp.118-181, 2019.
指導教授 陳怡呈(Chen, Yi-Cheng) 審核日期 2023-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明