博碩士論文 110326002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.223.119.17
姓名 陳宥丞(You-Cheng Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 不同肥料引入的抗生素抗性基因 在實際農業土壤中的宿命
(Fate of antibiotic resistance genes introduced from different fertilizers in practical agricultural soil)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我國政府近年來積極推動透過厭氧消化程序,將畜牧場所產生之禽畜糞尿製成沼液沼渣後,當作肥分施加至農地,藉此達到土壤改質及增加作物產量等廢棄物資源化後的成效。由於現今畜牧場養殖方式多已改成集約飼養,業者為了促進禽畜快速生長,會將抗生素添加在飼料中等方式引入到禽畜體內,導致使用禽畜糞所成之新型態肥料在製程中若處理不當,容易增加抗生素耐/抗藥性(AR),並因此造就抗生素抗性菌和抗生素抗性基因(ARGs)容易藉由「施肥」此途徑進入周遭環境,間接促使現地土壤AR風險的提高。有鑒於現階段探討「國內沼液沼渣回歸現地土壤所產生環境中AR的增長與變化」相關文獻仍然不多,本論文藉由農地現場土壤的採樣與檢測,調查不同肥料所引入或誘發之ARGs,在現地土壤隨作物生長的豐度變化,除深入了解實際農地土壤在施用沼液沼渣、雞糞堆肥、化學肥料及芝麻粕粉等肥分後的AR發展外,也基於實驗室過去土壤縮模試驗所得之結果,測試施肥後的農地場址最終所累積的ARG含量,依序會是沼液沼渣>雞糞堆肥>化學肥料~芝麻粕粉此假說。
本研究所採集土壤分別包括施用沼液沼渣、化學肥料與芝麻粕粉的水稻田,以及施用雞糞堆肥的菜田,並根據過去實驗室針對沼液沼渣的檢測結果,挑選4類ARGs中豐度較大的tetM, tetO, su1l, blaTEM, ermB等ARG,以及特定的MGE (intI1)作為目標基因進行分析與比較。調查結果顯示,肥料的施用會造成現地土壤ARG豐度上升,且沼液沼渣土壤的目標ARG相對豐度確實顯著高於化學肥料土壤(p < .05),而雞糞堆肥土壤僅有少數ARGs會低於化學肥料土壤。研究同時分析環境因子與ARGs之間的關聯,並將數據利用兩種不同衰減模型予以擬合,使現地土壤之ARG衰減速率程度得以量化。結果顯示,相對於其他參數,pH與總氮為更能影響ARG豐度之環境因子;而在衰減情況方面,沼液沼渣的澆灌雖會造成土壤ARGs的顯著上升,但其削減速率與其他肥料的土壤相比,並無統計上的差異。本研究所觀察到「整個採樣期間施用沼液沼渣的土壤ARGs豐度始終高於其他肥料」的結果,說明沼液沼渣此類新型肥料的使用,對於促成現地環境AR增長的風險值得關注。但為確保此現象並非僅限於本研究的短期調查,尚需未來持續追蹤,才可進一步的證實沼液沼渣對於促進一般環境以及公眾衛生的AR增長與累積的實質風險。
摘要(英) In recent years, the government of our country has been actively promoting the utilization of anaerobic digestion processes to convert livestock and poultry waste into biogas slurry and residue, which is subsequently used as a nutrient-rich fertilizer for agricultural land. This approach aims to improve soil quality and increase crop yields through the recycling of organic waste resources. However, with the shift towards intensive livestock farming practices, antibiotics are often administered to animals to promote rapid growth, potentially leading to the emergence of antibiotic resistance in the resulting animal waste. Poor management of these new-generation fertilizers, if derived from antibiotic-exposed livestock, can contribute to increased levels of antibiotic resistance (AR), allowing antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) to enter the environment via the "fertilization" pathway, indirectly elevating the risk of AR in local soils. Despite the importance of understanding the impact of returning biogas slurry and residue to local soils on AR, there is currently limited research on this topic. This study addresses this gap by conducting soil sampling and testing in agricultural fields where different fertilizers, including biogas slurry and residue, chicken manure compost, chemical fertilizers, and sesame meal powder, were applied. Furthermore, based on laboratory results from previous soil microcosm experiments, the study investigates the long-term accumulation of ARGs in soil following fertilizer application, hypothesizing that the order of ARG accumulation will be biogas slurry and residue > chicken manure compost > chemical fertilizers ~ sesame meal powder.
Soil samples were collected from rice fields where biogas slurry and residue, chemical fertilizers, and sesame meal powder were applied, as well as from vegetable fields treated with chicken manure compost. Four predominant ARGs (tetM, tetO, sul1, blaTEM, ermB) and a specific mobile genetic element (intI1) were selected for analysis and comparison. The research findings indicate that fertilizer application increases the abundance of ARGs in local soils, with biogas slurry and residue soil showing significantly higher relative ARG abundance compared to chemical fertilizer soil (p < 0.05). In contrast, only a few ARGs in chicken manure compost-treated soil were lower than in chemical fertilizer soil. The study also explores the relationship between environmental factors and ARGs and quantifies the decay rates of ARGs in local soils using two different decay models. Results indicate that, among the parameters studied, pH and total nitrogen are the most influential environmental factors affecting ARG abundance. However, the decay rates of ARGs in soil amended with biogas slurry and residue are not statistically different from those in soil amended with other fertilizers. The study observed that "the abundance of ARGs in soil amended with biogas slurry and residue remained consistently higher than in soils treated with other fertilizers throughout the sampling period." This highlights the potential risk associated with the use of anaerobic digestate-derived fertilizers in promoting environmental AR. To ensure that this phenomenon is not limited to the scope of this short-term investigation, continuous monitoring and further research are essential to substantiate the substantial risks associated with the promotion of AR in the general environment and public health through the application of anaerobic digestate.
關鍵字(中) ★ 沼液沼渣
★ 不同肥料
★ 抗生素抗藥性
★ 農地土壤
關鍵字(英) ★ biogas slurry and residue
★ different fertilizers
★ antibiotic resistant
★ agricultural fields
論文目次 摘要i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 研究緣起與目的 1
1.1研究緣起 1
1.1.1 抗生素緣起與抗生素抗藥性議題 1
1.1.2 各國政府應對抗生素抗藥性問題之策略 2
1.1.3 抗生素抗藥性與畜牧業之連結 3
1.1.4 禽畜糞尿再製成沼液沼渣之優勢 4
1.1.5 我國臺中地區之當地沼液沼渣政策 4
1.1.6 沼液沼渣製作與現地環境之隱藏風險 5
1.1.7 目前對於土壤抗生素抗藥性調查結果 5
1.2 研究目的 7
第二章 研究方法 8
2.1 研究流程與架構 8
2.2 樣品採集與保存 11
2.2.1 各組土壤樣品的採集 11
2.3 施用沼液沼渣/化學肥料/雞糞堆肥/芝麻粕粉土壤基本特性分析 14
2.3.1 pH (NIEA S410.62C) 14
2.3.2 土壤含水量(water content) (AFS2901-1) 14
2.3.3 土壤有機質含量 14
2.3.4 土壤粒徑分析 14
2.3.5 土壤總氮分析─燃燒法 16
2.3.6 土壤總鉀分析 17
2.3.7 土壤重金屬分析─微波輔助王水消化法 17
2.4 分子生物檢測 18
2.4.1 DNA萃取 18
2.4.2 目標基因之標準品製備 18
2.4.3 選定之目標基因real-time PCR分析 22
2.5 第三代長讀長定序菌種分析 26
2.6 數據統計分析 27
2.6.1 各組別與時間差異比較 27
2.6.2 熱點分析(heatmap) 27
2.6.3 Spearman相關係數統計分析 27
2.6.4 冗餘分析(redundancy analysis, RDA) 27
2.6.5 目標基因相對豐度削減率與衰減係數計算 28
第三章 結果與討論 30
3.1 現地土壤各時間樣貌 30
3.1.1 各組現地土壤質地、pH、OM 32
3.2 現地土壤基因調查結果 40
3.2.1 各組別目標ARGs/MGE之絕對豐度 40
3.2.2 各組別目標ARGs/MGE之相對豐度 45
3.3各組目標ARGs/MGE之間關聯性 50
3.3.1 沼液沼渣組(B) ARGs/MGE豐度Spearman分析 50
3.3.2 化學肥料組(C) ARGs/MGE豐度Spearman分析 50
3.3.3 雞糞堆肥組(M) ARGs/MGE豐度Spearman分析 51
3.4 現地土壤ARGs/MGE豐度和環境因子間潛在關聯 55
3.4.1 各組目標ARGs/MGE豐度與環境因子之冗餘分析 55
3.4.2 現地土壤目標ARGs/MGE豐度與環境因子(含重金屬)Spearman分析 60
3.4.3 沼液沼渣組(B)目標ARGs/MGE豐度與環境因子Spearman分析 60
3.4.4 化學肥料組(C)目標ARGs/MGE豐度與環境因子Spearman分析 61
3.4.5 雞糞堆肥組(M)目標ARGs/MGE豐度與環境因子Spearman分析 61
3.5 各組目標ARGs/MGE相對豐度衰減情況 67
3.6 現地土壤菌種分析結果 72
3.6.1 Alpha Diversity分析 72
3.6.2 菌種豐富度差異分析 73
3.6.3 Beta Diversity 76
3.7 環境意義 78
第四章 結論與建議 81
4.1結論 81
4.2建議 82
參考文獻 84
附錄 94
附錄一 Real-time PCR 檢量線 94
附錄二 解離曲線(Melting curve) 96
附錄三 各組別基本特性數據 97
附錄四 各廠區時間ARGs/MGE以對數迴歸模型評估現地豐度衰退情形之詳細數據 98
附錄五 各廠區時間ARGs/MGE以擬一階反應動力模型評估現地豐度衰退情形詳細數據 100
附錄六 學位考試委員意見回覆表 102
參考文獻 1. Uddin, T. M.; Chakraborty, A. J.; Khusro, A.; Zidan, B. M. R. M.; Mitra, S.; Emran, T. B.; Dhama, K.; Ripon, M. K. H.; Gajdács, M.; Sahibzada, M. U. K.; Hossain, M. J.; Koirala, N., Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health 2021, 14 (12), 1750-1766.
2. I.K, K.; Kochhar, N.; Ghosh, A.; Shrivastava, S.; Singh Rawat, V.; Mondal Ghorai, S.; Kaur Sodhi, K.; James, A.; Kumar, M., Perspectives on systematic generation of antibiotic resistance with special emphasis on modern antibiotics. Total Environment Research Themes 2023, 8, 100068.
3. Ayoub Moubareck, C., Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. Membranes (Basel) 2020, 10 (8).
4. Hutchings, M. I.; Truman, A. W.; Wilkinson, B., Antibiotics: past, present and future. Current Opinion in Microbiology 2019, 51, 72-80.
5. Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017, 33 (3), 300-305.
6. Schillaci, D.; Spanò, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.; Cascioferro, S., Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017, 60 (20), 8268-8297.
7. Peterson, E.; Kaur, P., Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol 2018, 9, 2928.
8. Martínez, J. L., Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321 (5887), 365-7.
9. Davies, J., Inactivation of antibiotics and the dissemination of resistance genes. Science 1994, 264 (5157), 375-82.
10. Canteón, R., Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clinical Microbiology and Infection 2009, 15, 20-25.
11. Zahedi, S.; Gros, M.; Petrović, M.; Balcazar, J. L.; Pijuan, M., Anaerobic treatment of swine manure under mesophilic and thermophilic temperatures: Fate of veterinary drugs and resistance genes. Science of The Total Environment 2022, 818, 151697.
12. Li, L.-G.; Zhang, T., Plasmid-mediated antibiotic resistance gene transfer under environmental stresses: Insights from laboratory-based studies. Science of The Total Environment 2023, 887, 163870.
13. Liu, S. S.; Qu, H. M.; Yang, D.; Hu, H.; Liu, W. L.; Qiu, Z. G.; Hou, A. M.; Guo, J.; Li, J. W.; Shen, Z. Q.; Jin, M., Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res 2018, 136, 131-136.
14. Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M., Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med 2022, 99, 7-12.
15. Lanckohr, C.; Bracht, H., [Antibiotic stewardship : Measures for optimizing prescription of anti-infective agents]. Anaesthesist 2018, 67 (1), 3-8.
16. Wendt, S.; Ranft, D.; de With, K.; Kern, W. V.; Salzberger, B.; Lübbert, C., [Antibiotic stewardship (ABS). Part 1: Basics]. Internist (Berl) 2020, 61 (4), 375-387.
17. Khan, S. N.; Khan, A. U., Breaking the Spell: Combating Multidrug Resistant ′Superbugs′. Front Microbiol 2016, 7, 174.
18. Elbe, S.; Roemer-Mahler, A.; Long, C., Medical countermeasures for national security: A new government role in the pharmaceuticalization of society. Social Science & Medicine 2015, 131, 263-271.
19. Jim, O. N., Tackling drug-resistant infections globally: final report and recommendations. 2016.
20. Albano, G. D.; Midiri, M.; Zerbo, S.; Matteini, E.; Passavanti, G.; Curcio, R.; Curreri, L.; Albano, S.; Argo, A.; Cadelo, M., Implementation of A Year-Long Antimicrobial Stewardship Program in A 227-Bed Community Hospital in Southern Italy. Int J Environ Res Public Health 2023, 20 (2).
21. Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z., The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicology and Environmental Safety 2023, 254, 114734.
22. Bobate, S.; Mahalle, S.; Dafale, N. A.; Bajaj, A., Emergence of environmental antibiotic resistance: Mechanism, monitoring and management. Environmental Advances 2023, 13, 100409.
23. Aarestrup, F. M.; Jensen, V. F.; Emborg, H. D.; Jacobsen, E.; Wegener, H. C., Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res 2010, 71 (7), 726-33.
24. Price, D., Impact of antibiotic restrictions: the physician′s perspective. Clinical Microbiology and Infection 2006, 12, 3-9.
25. Allerberger, F.; Frank, A.; Gareis, R., Antibiotic stewardship through the EU project "ABS International". Wien Klin Wochenschr 2008, 120 (9-10), 256-63.
26. Schmerold, I.; van Geijlswijk, I.; Gehring, R., European regulations on the use of antibiotics in veterinary medicine. European Journal of Pharmaceutical Sciences 2023, 189, 106473.
27. Marano, R. B. M.; Gupta, C. L.; Cozer, T.; Jurkevitch, E.; Cytryn, E., Hidden Resistome: Enrichment Reveals the Presence of Clinically Relevant Antibiotic Resistance Determinants in Treated Wastewater-Irrigated Soils. Environmental Science & Technology 2021, 55 (10), 6814-6827.
28. Chen, T.; Zhang, S.; Zhu, R.; Zhao, M.; Zhang, Y.; Wang, Y.; Liao, X.; Wu, Y.; Mi, J., Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Science of The Total Environment 2022, 849, 157837.
29. Ghimpețeanu, O. M.; Pogurschi, E. N.; Popa, D. C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O. D.; Petcu, C. D., Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 2022, 11 (10).
30. Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R., Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365 (6459).
31. Krishnasamy, V.; Otte, J.; Silbergeld, E., Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob Resist Infect Control 2015, 4, 17.
32. Gilchrist, M. J.; Greko, C.; Wallinga, D. B.; Beran, G. W.; Riley, D. G.; Thorne, P. S., The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Perspect 2007, 115 (2), 313-6.
33. Mann, A.; Nehra, K.; Rana, J. S.; Dahiya, T., Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences 2021, 2, 100030.
34. Sarmah, A. K.; Meyer, M. T.; Boxall, A. B., A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65 (5), 725-59.
35. Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I., Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 2009, 38 (3), 1086-108.
36. Tang, T.; Chen, Y.; Du, Y.; Yao, B.; Liu, M., Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. Journal of Hazardous Materials 2023, 441, 129870.
37. He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P., Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 2020, 3.
38. Dungan, R. S.; McKinney, C. W.; Leytem, A. B., Tracking antibiotic resistance genes in soil irrigated with dairy wastewater. Sci Total Environ 2018, 635, 1477-1483.
39. Zhou, L.; Li, S.; Li, F., Damage and elimination of soil and water antibiotic and heavy metal pollution caused by livestock husbandry. Environmental Research 2022, 215, 114188.
40. Tao, C.; Wei, X.; Zhang, B.; Zhao, M.; Wang, S.; Sun, Z.; Qi, D.; Sun, L.; Rajput, S. A.; Zhang, N., Heavy Metal Content in Feedstuffs and Feeds in Hubei Province, China. Journal of Food Protection 2020, 83 (5), 762-766.
41. Li, N.; Chen, J.; Liu, C.; Yang, J.; Zhu, C.; Li, H., Cu and Zn exert a greater influence on antibiotic resistance and its transfer than doxycycline in agricultural soils. Journal of Hazardous Materials 2022, 423, 127042.
42. Mazhar, S. H.; Li, X.; Rashid, A.; Su, J.; Xu, J.; Brejnrod, A. D.; Su, J.-Q.; Wu, Y.; Zhu, Y.-G.; Zhou, S. G.; Feng, R.; Rensing, C., Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of The Total Environment 2021, 755, 142702.
43. Zhang, N.; Juneau, P.; Huang, R.; He, Z.; Sun, B.; Zhou, J.; Liang, Y., Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma 2021, 382, 114760.
44. Zhang, Y.; Cheng, D.; Xie, J.; Zhang, Y.; Wan, Y.; Zhang, Y.; Shi, X., Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. Chemosphere 2022, 300, 134529.
45. Engin, A. B.; Engin, E. D.; Engin, A., Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. Environmental Toxicology and Pharmacology 2023, 98, 104081.
46. Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D. J.; Larsson, D. G. J.; Hobman, J. L., Metal Resistance and Its Association With Antibiotic Resistance. Adv Microb Physiol 2017, 70, 261-313.
47. 行政院環境保護署水質保護網 (2023,8 月 16 日)。畜牧糞尿資源化。資料
引自 https://water.epa.gov.tw/Public/CHT/Issue/hus_resources.aspx.
48. Gou, M.; Hu, H. W.; Zhang, Y. J.; Wang, J. T.; Hayden, H.; Tang, Y. Q.; He, J. Z., Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Sci Total Environ 2018, 612, 1300-1310.
49. Ahmed, I.; Zhang, Y.; Sun, P.; Zhang, B., Co-occurrence pattern of ARGs and N-functional genes in the aerobic composting system with initial elevated temperature. Journal of Environmental Management 2023, 343, 118073.
50. Tang, Q.; Sui, Q.; Wei, Y.; Shen, P.; Zhang, J., Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. Journal of Environmental Management 2023, 345, 118707.
51. Zhang, K.; Wang, T.; Chen, J.; Guo, J.; Luo, H.; Chen, W.; Mo, Y.; Wei, Z.; Huang, X., The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. Journal of Contaminant Hydrology 2022, 247, 103981.
52. Gao, W.; Zhi, S.; Chang, C.-C.; Zou, S.; Zhang, K., Different rapid startups for high-solid anaerobic digestion treating pig manure: Metagenomic insights into antibiotic resistance genes fate and microbial metabolic pathway. Environmental Research 2023, 231, 116038.
53. 陳世宗, 畜牧廢水變黃金 台中輔導8畜牧業「沼液沼渣」水稻施肥。工商時報。取自:https://ctee.com.tw/livenews/ch/chinatimes/20180501002096-260405. 2018.
54. 全國畜牧糞尿資源化網站 (2023,8月 16 日)。畜牧資源化推動成果。資料
引自 https://epafarm.epa.gov.tw.
55. Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W., Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci Total Environ 2020, 718, 137414.
56. Liu, C.; Chen, Y.; Li, X.; Zhang, Y.; Ye, J.; Huang, H.; Zhu, C., Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Environmental Pollution 2020, 258, 113652.
57. Xiao, R.; Huang, D.; Du, L.; Song, B.; Yin, L.; Chen, Y.; Gao, L.; Li, R.; Huang, H.; Zeng, G., Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. Science of The Total Environment 2023, 869, 161855.
58. Sun, Y.; Snow, D.; Walia, H.; Li, X., Transmission Routes of the Microbiome and Resistome from Manure to Soil and Lettuce. Environmental Science & Technology 2021, 55 (16), 11102-11112.
59. Zou, Y.; Zhang, Y.; Zhou, J.; Bao, C.; Chen, M.; He, W.; Shi, X., Effects of composting pig manure at different mature stages on ARGs in different types of soil-vegetable systems. Journal of Environmental Management 2022, 321, 116042.
60. Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U., Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 2003, 43 (3), 325-35.
61. Sanz, C.; Casado, M.; Navarro-Martin, L.; Tadić, Đ.; Parera, J.; Tugues, J.; Bayona, J. M.; Piña, B., Antibiotic and antibiotic-resistant gene loads in swine slurries and their digestates: Implications for their use as fertilizers in agriculture. Environmental Research 2021, 194, 110513.
62. 林子晞(2022)。沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討。國立中央大學環工所碩士論文,桃園縣。
63. 鄭念媛(2021)。不同料源製成之市售堆肥其抗生素抗性基因含量調查。國立中央大學環工所碩士論文,桃園縣。
64. 李杰穎(2022)。季節效應對沼液沼渣中抗生素抗性基因豐度之影響。國立中央大學環工所碩士論文,桃園縣。
65. 台灣肥料股份有限公司官網 (2023,8 月 16 日)。產品資訊。資料
引自 https://www.taifer.com.tw/ProductListC003210.aspx?appname=ProductListC003210.
66. 群耕農業生技有限公司 (2023,8 月 16 日)。產品資訊。資料
引自 https://agritechtaiwan.com/zh-tw/index.php?route=merchandise/merchandise&merchandise_id=1256.
67. 鄧教毅(2018)。重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響。國立中央大學環工所碩士論文,桃園縣。
68. 張智聖(2018)。抗生素抗性菌與抗性基因在污水處理程序中的動態變化國立中央大學環工所碩士論文,桃園縣。
69. Wang, M.; Sun, Y.; Liu, P.; Sun, J.; Zhou, Q.; Xiong, W.; Zeng, Z., Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms. Environ Sci Pollut Res Int 2017, 24 (26), 20949-20958.
70. Fahrenfeld, N.; Knowlton, K.; Krometis, L. A.; Hession, W. C.; Xia, K.; Lipscomb, E.; Libuit, K.; Green, B. L.; Pruden, A., Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environ Sci Technol 2014, 48 (5), 2643-50.
71. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environ Sci Technol 2014, 48 (10), 5620-7.
72. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil. Environ Sci Technol 2017, 51 (24), 14225-14232.
73. Huygens, J.; Rasschaert, G.; Heyndrickx, M.; Dewulf, J.; Van Coillie, E.; Quataert, P.; Daeseleire, E.; Becue, I., Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Science of The Total Environment 2022, 822, 153518.
74. Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B., Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil 2003, 248 (1/2), 43-59.
75. Malone, Z.; Berhe, A. A.; Ryals, R., Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis. Journal of Cleaner Production 2023, 419, 138148.
76. Yang, J.; Wang, J.; Liao, X.; Tao, H.; Li, Y., Chain modeling for the biogeochemical nexus of cadmium in soil–rice–human health system. Environment International 2022, 167, 107424.
77. 農業知識入口網 (2009,12 月 25 日)。高汙染風險農地,源頭把關水稻鎘含量。資料
引自https://kmweb.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri_life&id=55253.
78. Jin, X.; Zhang, J.; Wang, X.; Zhang, X.; Guo, T.; Shi, C.; Su, T.; Kong, J.; Bai, Y., A deep network prediction model for heavy metal cadmium in the rice supply chain. Journal of Future Foods 2021, 1 (2), 196-202.
79. Liao, J.; Chen, Y., Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Reviews in Environmental Science and Bio/Technology 2018, 17.
80. Wu, J.; Guo, S.; Li, K.; Li, Z.; Xu, P.; Jones, D. L.; Wang, J.; Zou, J., Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. Chemosphere 2023, 336, 139272.
81. Xie, W.-Y.; Yuan, S.-T.; Xu, M.-G.; Yang, X.-P.; Shen, Q.-R.; Zhang, W.-W.; Su, J.-Q.; Zhao, F.-J., Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology and Biochemistry 2018, 122, 111-119.
82. Lu, Y.; Li, J.; Meng, J.; Zhang, J.; Zhuang, H.; Zheng, G.; Xie, W.; Ping, L.; Shan, S., Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Science of The Total Environment 2021, 759, 143473.
83. Wu, L.; Xiao, X.; Chen, F.; Zhang, H.; Huang, L.; Rong, L.; Zou, X., New parameters for the quantitative assessment of the proliferation of antibiotic resistance genes dynamic in the environment and its application: A case of sulfonamides and sulfonamide resistance genes. Science of The Total Environment 2020, 726, 138516.
84. Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M. Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; Fan, F.; Xu, J.; Brookes, P. C., Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology and Biochemistry 2015, 90, 179-187.
85. Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F. O.; Ling, W., Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 2020, 255, 127006.
86. Li, T.; Li, R.; Cao, Y.; Tao, C.; Deng, X.; Ou, Y.; Liu, H.; Shen, Z.; Li, R.; Shen, Q., Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application. Journal of Hazardous Materials 2022, 439, 129704.
87. Liu, W.; Cheng, Y.; Guo, J.; Duan, Y.; Wang, S.; Xu, Q.; Liu, M.; Xue, C.; Guo, S.; Shen, Q.; Ling, N., Long-term manure inputs induce a deep selection on agroecosystem soil antibiotic resistome. Journal of Hazardous Materials 2022, 436, 129163.
88. Che, Y.; Xia, Y.; Liu, L.; Li, A.-D.; Yang, Y.; Zhang, T., Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 2019, 7 (1), 44.
89. Liu, Y.; Xu, Z.; Wu, X.; Gui, W.; Zhu, G., Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils. Journal of Hazardous Materials 2010, 178 (1), 462-468.
90. Mu, M.; Yang, F.; Han, B.; Tian, X.; Zhang, K., Manure application: A trigger for vertical accumulation of antibiotic resistance genes in cropland soils. Ecotoxicology and Environmental Safety 2022, 237, 113555.
91. Nesme, J.; Simonet, P., The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology 2015, 17 (4), 913-930.
92. Pu, C.; Liu, H.; Ding, G.; Sun, Y.; Yu, X.; Chen, J.; Ren, J.; Gong, X., Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Journal of Hazardous Materials 2018, 344, 441-449.
93. Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M.; Sellappa, K.; Lee, Y. B., Contamination of long-term manure-fertilized Indian paddy soils with veterinary antibiotics: Impact on bacterial communities and antibiotics resistance genes. Applied Soil Ecology 2023, 192, 105106.
94. Wang, X.; Zhang, L.; Gu, J.; Feng, Y.; He, K.; Jiang, H., Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. Environmental Pollution 2023, 333, 121950.
95. Zhang, Y.; Hao, X.; Thomas, B. W.; McAllister, T. A.; Workentine, M.; Jin, L.; Shi, X.; Alexander, T. W., Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. Journal of Hazardous Materials 2023, 443, 130136.
96. Yang, F.; Shen, S.; Gao, W.; Ma, Y.; Han, B.; Ding, Y.; Wang, X.; Zhang, K., Deciphering discriminative antibiotic resistance genes and pathogens in agricultural soil following chemical and organic fertilizer. Journal of Environmental Management 2022, 322, 116110.
97. Leffler, D. A.; Lamont, J. T., Clostridium difficile infection. N Engl J Med 2015, 372 (16), 1539-48.
98. Chen, H.; Yuan, J.; Xu, Q.; Yang, E.; Yang, T.; Shi, L.; Liu, Z.; Yu, H.; Cao, J.; Zhou, Q.; Chen, J., Swine wastewater treatment using combined up-flow anaerobic sludge blanket and anaerobic membrane bioreactor: Performance and microbial community diversity. Bioresource Technology 2023, 373, 128606.
99. Islam, T.; Hernández, M.; Gessesse, A.; Murrell, J. C.; Øvreås, L., A Novel Moderately Thermophilic Facultative Methylotroph within the Class Alphaproteobacteria. Microorganisms 2021, 9 (3).
100. Oshiki, M.; Toyama, Y.; Suenaga, T.; Terada, A.; Kasahara, Y.; Yamaguchi, T.; Araki, N., N(2)O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N(2)O Reduction in Agricultural Soils. Microbes Environ 2022, 37 (2).
101. Avrahami, S.; Bohannan, B. J., Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 2007, 73 (4), 1166-73.
102. Wang, L.; Wang, T.; Xing, Z.; Zhang, Q.; Niu, X.; Yu, Y.; Teng, Z.; Chen, J., Enhanced lignocellulose degradation and composts fertility of cattle manure and wheat straw composting by Bacillus inoculation. Journal of Environmental Chemical Engineering 2023, 11 (3), 109940.
103. Li, S.; Ondon, B. S.; Ho, S.-H.; Li, F., Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Environmental Research 2023, 219, 115132.
104. Guo, Y.; Qiu, T.; Gao, M.; Ru, S.; Gao, H.; Wang, X., Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? Environmental Pollution 2023, 322, 121251.
105. 陳柏廷(2022)。施用農廢所製生物炭對於澆灌沼液沼渣農地所含抗生素抗性基因豐度之影響。國立中央大學環工所碩士論文,桃園縣。
106. 劉丞軒(2022)。探討生物炭改質對於降低澆灌沼液沼渣土壤所含抗生素抗性基因豐度之效應。國立中央大學環工所碩士論文,桃園縣。
指導教授 林居慶(Chu-Ching Lin) 審核日期 2023-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明