博碩士論文 109326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.145.58.169
姓名 謝伯沂(Bo-yi Hsieh)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用電容去離子與薄膜電容去離子系統處理水中銨鹽之研究
(Removal of ammonium salts by capacitive deionization and membrane capacitive deionization)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-12-4以後開放)
摘要(中) 電容去離子(capacitive deionization, CDI)是一種環境友善且低能耗之新興水處理再生技術,而結合離子交換膜(ion exchange membrane, IEM)組成薄膜電容去離子(membrane capacitive deionization, MCDI)系統被認為能提升整體去除性能,極具發展潛力。實際氨氮廢水之組成成分複雜,有效處理以降低污染物濃度對於後續排放或再利用而言極為重要。本研究探討氨氮及廢水中常見四種陰離子(F⁻, Cl⁻, NO3⁻, SO42⁻)分別進行CDI和MCDI程序後的去除效果及其離子競爭吸附行為。使用單鹽溶液進行CDI 後發現四種銨溶液的去除能力優劣與陰離子的水合比有關;在MCDI中,四種銨溶液的去除能力獲得不同程度的提升,且其去除量大小與對應的陰離子價電荷數有關。使用四種銨鹽混合溶液進行的CDI與MCDI程序中也觀察到了相似的結果,此外無論是單鹽或混合溶液,在CDI充電過程中皆觀察到pH值持續上升,這與電極表面之法拉第反應和陰陽離子不對稱去除所導致的氫離子選擇性吸附的非法拉第過程有關;而MCDI充電過程中溶液的pH值變化較小,可能是薄膜能有效避免前述反應的發生。
摘要(英) Capacitive deionization (CDI) is an emerging water regeneration technology because it is environmental friendly and energy-efficient. Combining ion exchange membranes (IEMs), membrane capacitive deionization (MCDI) is believed to enhance overall removal performance and showed great development potential. An effective treatment to reduce pollutant concentrations is crucial for subsequent discharge or reuse. This study investigated the removal and ion competitive adsorption behavior of ammonia-nitrogen and four common anions (F⁻, Cl⁻, NO3⁻, SO42⁻) in CDI and MCDI.
In CDI, the removal ability of four ammonium solutions containing only a single salt was related to the hydration ratio of anions. In MCDI, the removal of the four ammonium solutions was improved to varying degrees. The removal efficiency was associated with the valence of anion. Similar results were observed using mixed solutions of the four ammonium salts in both processes.
The pH of both single salt and mixed solutions continuously increased during the CDI charging. This was attributed to the non-Faradaic process of selective hydrogen ion adsorption caused by the asymmetrical removal of anions and cations on the electrode surface and the Faradaic reaction. In contrast, the pH of the solution remained relatively stable during the MCDI charging, indicating the membrane effectively prevented the reactions as mentioned above.
關鍵字(中) ★ 電容去離子
★ 薄膜電容去離子
★ 氨氮去除
★ 離子競爭吸附
關鍵字(英) ★ capacitive deionization
★ membrane capacitive deionization
★ ammonia nitrogen removal
★ ion competitive adsorption
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
CONTENT vi
List of Figures ix
List of TABLES xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2 Literature Review 5
2.1 Capacitive deionization 5
2.1.1 Capacitor 6
2.1.2 Theory of electric double layer 8
2.1.3 Electric double layer overlap 10
2.1.4 Specific adsorption 12
2.1.5 Single-pass vs. Batch mode operation 12
2.1.6 Affecting factors in CDI 14
2.2 Membrane capacitive deionization (MCDI) 18
2.2.1 Co-ion effect 19
2.2.2 Constant-voltage adsorption (CVA) and reverse-voltage desorption (RVD) operation 20
2.3 Ammonia nitrogen in aqueous solution 22
2.3.1 Basic characteristics 22
2.3.2 The removal of ammonia nitrogen wastewater via CDI or MCDI 24
2.3.3 Common anion-contain in wastewater 27
Chapter 3 Materials and Methods 29
3.1 Preparation of activated carbon electrodes 29
3.1.1 Pretreatment of activated carbon 29
3.1.2 Preparation of electrodes 29
3.2 Characterization of AC electrodes 31
3.3 Membrane capacitive deionization of electrosorption 34
3.4 Analysis of sample 38
3.5 Data analysis 41
Chapter 4 Results and Discussions 43
4.1 Characterization of activated carbon electrodes 43
4.1.1 Surface functional groups on AC/ACE 43
4.1.2 Electrochemical properties of ACE 45
4.2 The performance of ammonium removal by CDI and MCDI 48
4.2.1 The conductivity and concentration change in CDI 48
4.2.2 The conductivity and concentration change in MCDI 53
4.3 Comparison between CDI and MCDI 60
4.3.1 The comparison of the ammonium removal between CDI and MCDI 60
4.3.2 The comparison of the various anion removal between CDI and MCDI 64
4.3.3 Differences in enhanced removal ability of ammonium in MCDI 70
4.4 The removal of multi-ion synthetic solution 73
4.4.1 The removal of ammonium in multi-ion solution 73
4.4.2 The removal of various anions in multi-ion solution 75
4.4.3 The selectivity of various anions in multi-ion solution 82
4.5 The pH changes in CDI and MCDI 84
Chapter 5 Conclusion and Suggestion 94
5.1 Conclusion 94
5.2 Suggestion 96
Appendix 97
References 99
參考文獻 Addams, L., Boccaletti, G., Kerlin, M., and Stuchtey, M., "Charting our water future: economic frameworks to inform decision-making", McKinsey & Company, New York, (2009).
Alencherry, T., A.R, N., Ghosh, S., Daniel, J., and R, V., "Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization", Desalination, 415, 14-19(2017).
AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., and Hilal, N., "Application of capacitive deionization in water desalination: a review", Desalination, 342, 3-15(2014).
Aoki, K.J., and Chen, J., "Tips of Voltammetry", Voltammetry, (2018).
Bard, A.J., and Faulkner, L.R., "Electrochemical methods: fundamentals and applications", (2001).
Bian, Y., Chen, X., Lu, L., Liang, P., and Ren, Z.J., "Concurrent Nitrogen and Phosphorus Recovery Using Flow-Electrode Capacitive Deionization", ACS Sustainable Chemistry & Engineering, 7, 7844-7850(2019).
Chang, H.-Y., Chang, H.-C., and Lee, K.-Y., "Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application", Vacuum, 87, 164-168(2013).
Chaves Lins, L., Livi, S., Maréchal, M., Duchet-Rumeau, J., and Gérard, J.-F., "Structural dependence of cations and anions to building the polar phase of PVDF", European Polymer Journal, 107, 236-248(2018).
Chen, Z., Zhang, H., Wu, C., Wang, Y., and Li, W., "A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization", Desalination, 369, 46-50(2015).
Dehghan, K., Mirbagheri, S.A., and Alam, M., "A brief review on operation of flow-electrode capacitive deionization cells for water desalination", Desalination and Water Treatment, 223, 34-53(2021).
Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., and Orfao, J.J.M., "Modification of the surface chemistry of activated carbons", Carbon, 37, 1379-1389(1999).
Frackowiak, E., and Beguin, F., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950(2001).
Gao, F., Wang, L., Wang, J., Zhang, H., and Lin, S., "Nutrient recovery from treated wastewater by a hybrid electrochemical sequence integrating bipolar membrane electrodialysis and membrane capacitive deionization", Environmental Science: Water Research & Technology, 6, 383-391(2020).
Hackl, L., Tsai, S.-W., Kalyan, B., Hou, C.-H., and Gadgil, A., "Electrically regenerated ion-exchange technology: Leveraging faradaic reactions and assessing the effect of co-ion sorption", Journal of Colloid and Interface Science, 623, 985-991(2022).
Hassanvand, A., Chen, G.Q., Webley, P.A., and Kentish, S.E., "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Research, 131, 100-109(2018).
He, D., Wong, C.E., Tang, W., Kovalsky, P., and Waite, T.D., "Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization", Environmental Science & Technology Letters, 3, 222-226(2016).
Hou, C.H., Liang, C., Yiacoumi, S., Dai, S., and Tsouris, C., "Electrosorption capacitance of nanostructured carbon-based materials", Journal of Colloid and Interface Science, 302, 54-61(2006).
Hou, C.H., Liu, N.L., and Hsi, H.C., "Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes", Chemosphere, 141, 71-79(2015).
Huang, W.E.I., Zhang, Y., Bao, S., and Song, S., "Desalination by Capacitive Deionization with Carbon-Based Materials as Electrode: A Review", Surface Review and Letters, 20, (2013).
Kim, D.I., Dorji, P., Gwak, G., Phuntsho, S., Hong, S., and Shon, H., "Effect of Brine Water on Discharge of Cations in Membrane Capacitive Deionization and Its Implications on Nitrogen Recovery from Wastewater", ACS Sustainable Chemistry & Engineering, 7, 11474-11484(2019a).
Kim, D.I., Dorji, P., Gwak, G., Phuntsho, S., Hong, S., and Shon, H., "Reuse of municipal wastewater via membrane capacitive deionization using ion-selective polymer-coated carbon electrodes in pilot-scale", Chemical Engineering Journal, 372, 241-250(2019b).
Kim, T., Gorski, C.A., and Logan, B.E., "Ammonium removal from domestic wastewater using selective battery electrodes", Environmental Science & Technology Letters, 5, 578-583(2018).
Kitazumi, Y., Shirai, O., Yamamoto, M., and Kano, K., "Numerical simulation of the diffuse double layer around microporous electrodes based on the Poisson–Boltzmann equation", Electrochimica Acta, 112, 171-175(2013).
Lee, E., "Chapter 1 - Electrophoresis of a Single Rigid Particle", Interface Science and Technology, 26, 3-45(2019).
Lee, J.-H., Bae, W.-S., and Choi, J.-H., "Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159-163(2010).
Li, G., Cao, Y., Zhang, Z., and Hao, L., "Removal of ammonia nitrogen from water by mesoporous carbon electrode–based membrane capacitance deionization", Environmental Science and Pollution Research, 28, 7945-7954(2021).
Li, H., and Zou, L., "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination", Desalination, 275, 62-66(2011).
Li, H., Zou, L., Pan, L., and Sun, Z., "Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization", Separation and Purification Technology, 75, 8-14(2010).
Li, Y., Jiang, Y., Wang, T.-J., Zhang, C., and Wang, H., "Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode", Separation and Purification Technology, 172, 415-421(2017).
Li, Y., Zhang, C., Jiang, Y., Wang, T.-J., and Wang, H., "Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization", Desalination, 399, 171-177(2016).
Lin, C., Ritter, J.A., and Popov, B.N., "Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels", Journal of The Electrochemical Society, 146, 3639-3643(1999).
Liu, M., He, M., Han, J., Sun, Y., Jiang, H., Li, Z., Li, Y., and Zhang, H., "Recent Advances in Capacitive Deionization: Research Progress and Application Prospects", Sustainability, 14, (2022).
Liu, N.-L., Chen, L.-I., Tsai, S.-W., and Hou, C.-H., "Enhanced desalination of electrospun activated carbon fibers with controlled pore structures in the electrosorption process", Environmental Science: Water Research & Technology, 6, 312-320(2019).
Liu, Y.-H., Hsi, H.-C., Li, K.-C., and Hou, C.-H., "Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization", ACS Sustainable Chemistry & Engineering, 4, 4762-4770(2016).
McNair, R., Szekely, G., and Dryfe, R.A., "Ion-exchange materials for membrane capacitive deionization", ACS ES&T Water, 1, 217-239(2020).
Mombeshora, E.T., Simoyi, R., Nyamori, V.O., and Ndungu, P.G., "Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells", South African Journal of Chemistry, 68, (2015).
Mossad, M., and Zou, L., "Evaluation of the salt removal efficiency of capacitive deionization: Kinetics, isotherms and thermodynamics", Chemical Engineering Journal, 223, 704-713(2013).
Oren, Y., "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)", Desalination, 228, 10-29(2008).
Ota, K., Amano, Y., Aikawa, M., and Machida, M., "Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions", Applied Surface Science, 276, 838-842(2013).
Oyarzun, D.I., Hemmatifar, A., Palko, J.W., Stadermann, M., and Santiago, J.G., "Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes", Separation and Purification Technology, 194, 410-415(2018).
Pan, J., Zheng, Y., Ding, J., Gao, C., Van der Bruggen, B., and Shen, J., "Fluoride removal from water by membrane capacitive deionization with a monovalent anion selective membrane", Industrial & Engineering Chemistry Research, 57, 7048-7053(2018).
Pastushok, O., Zhao, F., Ramasamy, D.L., and Sillanpää, M., "Nitrate removal and recovery by capacitive deionization (CDI)", Chemical Engineering Journal, 375, (2019).
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., and Biesheuvel, P., "Review on the science and technology of water desalination by capacitive deionization", Progress in Materials Science, 58, 1388-1442(2013).
Rasines, G., Lavela, P., Macías, C., Haro, M., Ania, C.O., and Tirado, J.L., "Electrochemical response of carbon aerogel electrodes in saline water", Journal of Electroanalytical Chemistry, 671, 92-98(2012).
Sakar, H., Celik, I., Balcik-Canbolat, C., Keskinler, B., and Karagunduz, A., "Ammonium removal and recovery from real digestate wastewater by a modified operational method of membrane capacitive deionization unit", Journal of Cleaner Production, 215, 1415-1423(2019).
Sakar, H., Celik, I., Balcik Canbolat, C., Keskinler, B., and Karagunduz, A., "Electro-sorption of ammonium by a modified membrane capacitive deionization unit", Separation Science and Technology, 52, 2591-2599(2017).
Seo, S.J., Jeon, H., Lee, J.K., Kim, G.Y., Park, D., Nojima, H., Lee, J., and Moon, S.H., "Investigation on the removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water Research, 44, 2267-2275(2010).
Shao, Q., Tang, J., Lin, Y., Li, J., Qin, F., Yuan, J., and Qin, L.-C., "Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes", Journal of Power Sources, 278, 751-759(2015).
Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoon, J., and Presser, V., "Water desalination via capacitive deionization: what is it and what can we expect from it?", Energy & Environmental Science, 8, 2296-2319(2015).
Tang, W., He, D., Zhang, C., Kovalsky, P., and Waite, T.D., "Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes", Water Research, 120, 229-237(2017).
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., and Zeng, G., "Various cell architectures of capacitive deionization: Recent advances and future trends", Water Research, 150, 225-251(2019).
Tansel, B., "Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects", Separation and Purification Technology, 86, 119-126(2012).
Tsai, S.-W., Hackl, L., Kumar, A., and Hou, C.-H., "Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)", Desalination, 497, 114764(2021).
UNESCO."The United Nations World Water Development Report 2021: Valuing Water", (2021).
Uzun, H.I., and Debik, E., "Economical approach to nitrate removal via membrane capacitive deionization", Separation and Purification Technology, 209, 776-781(2019).
Wang, C., Song, H., Zhang, Q., Wang, B., and Li, A., "Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407-415(2015).
Wang, G., Pan, C., Wang, L., Dong, Q., Yu, C., Zhao, Z., and Qiu, J., "Activated carbon nanofiber webs made by electrospinning for capacitive deionization", Electrochimica Acta, 69, 65-70(2012).
Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., and Qiu, J., "Highly mesoporous activated carbon electrode for capacitive deionization", Separation and Purification Technology, 103, 216-221(2013a).
Wang, H., Zhang, D., Yan, T., Wen, X., Zhang, J., Shi, L., and Zhong, Q., "Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization", Journal of Materials Chemistry A, 1, (2013b).
Wang, L., and Lin, S., "Membrane Capacitive Deionization with Constant Current vs Constant Voltage Charging: Which Is Better?", Environmental Science & Technology, 52, 4051-4060(2018).
Wang, Q., Fang, K., He, C., and Wang, K., "Ammonia removal from municipal wastewater via membrane capacitive deionization (MCDI) in pilot-scale", Separation and Purification Technology, 286, (2022).
Wang, Z., Gong, H., Zhang, Y., Liang, P., and Wang, K., "Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process", Chemical Engineering Journal, 316, 1-6(2017).
Wei, K., Zhang, Y., Han, W., Li, J., Sun, X., Shen, J., and Wang, L., "A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study", Desalination, 420, 70-78(2017).
Wu, P., Xia, L., Dai, M., Lin, L., and Song, S., "Electrosorption of fluoride on TiO2-loaded activated carbon in water", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 502, 66-73(2016).
Xiang, S., Liu, Y., Zhang, G., Ruan, R., Wang, Y., Wu, X., Zheng, H., Zhang, Q., and Cao, L., "New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters", World Journal of Microbiol Biotechnol, 36, 144(2020).
Xu, B., Xu, X., Gao, H., He, F., Zhu, Y., Qian, L., Han, W., Zhang, Y., and Wei, W., "Electro-enhanced adsorption of ammonium ions by an effective graphene-based electrode in capacitive deionization", Separation and Purification Technology, 250, 117243(2020).
Xu, P., Drewes, J.E., Heil, D., and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water Research, 42, 2605-2617(2008).
Yan, T., Xu, B., Zhang, J., Shi, L., and Zhang, D., "Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization", RSC Advances, 8, 2490-2497(2018).
Yang, J., Zou, L., and Choudhury, N.R., "Ion-selective carbon nanotube electrodes in capacitive deionization", Electrochimica Acta, 91, 11-19(2013).
Yang, K.-L., Ying, T.-Y., Yiacoumi, S., Tsouris, C., and Vittoratos, E.S., "Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model", Langmuir, 17, 1961-1969(2001).
Ying, T.Y., Yang, K.L., Yiacoumi, S., and Tsouris, C., "Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel", Journal of Colloid Interface Science, 250, 18-27(2002).
Yuan, C., Gao, B., Su, L., and Zhang, X., "Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors", Journal of Colloid Interface Science, 322, 545-550(2008).
Zhang, L.L., and Zhao, X.S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531(2009).
Zhang, R., Gu, X., Liu, Y., Hua, D., Shao, M., Gu, Z., Wu, J., Zheng, B., Zhang, W., and Li, S., "Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization", Applied Surface Science, 512, 145740(2020a).
Zhang, X., Zuo, K., Zhang, X., Zhang, C., and Liang, P., "Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review", Environmental Science: Water Research & Technology, 6, 243-257(2020b).
Zhao, Y., Hu, X.-m., Jiang, B.-h., and Li, L., "Optimization of the operational parameters for desalination with response surface methodology during a capacitive deionization process", Desalination, 336, 64-71(2014).
Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., and Wang, J., "Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes", Desalination, 324, 127-133(2013).
王凱平."奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究", 碩士論文, 國立成功大學化學工程學系, 台南, 105(2005).
王新閎."利用電容去離子系統處理氟系廢水之研究", 碩士論文, 國立中央大學環境工程研究所, 桃園, 110(2020).
行政院環保署."108年放流水標準 (全條文)", (2019).
許琇茹."利用碳氣凝膠紙電容吸附處理水中銨離子之研究", 碩士論文, 國立中央大學環境工程研究所, 桃園, 104(2016).
陳琪婷."以二氧化錳催化降解水中氨氮之研究", 碩士論文, 國立中山大學海洋環境及工程學系研究所, 高雄, 112(2003).
黃忠良."基本電化學", 復漢出版社 (2001).
廖仲洲."利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討", 碩士論文, 國立中央大學環境工程研究所, 桃園, 132(2006).
熊楚強."電化學", 新文京開發出版股份有限公司, (2004).
劉乃綾."奈米孔洞碳材的電容特性與電吸附行為之比較分析", 碩士論文, 東海大學環境科學與工程學系, 台中, 107(2014).
劉曉萍."利用簡易合成方法所得氮氧化鈦的濾膜做為超級電容器的應用上", 碩士論文, 國立清華大學材料科學工程學系, 新竹, 92(2012).
鄭為元."無機鹽類在碳氣凝膠電容去離子系統中之競爭吸附", 碩士論文, 國立中央大學環境工程研究所, 桃園, 81(2016).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2023-12-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明