參考文獻 |
1. Laser systems Europe, High precision laser cutting of electrical steel. https://www.lasersystemseurope.com/press-releases/high-precision-laser-cutting-electrical-steel, accessed on 17 February, 2022.
2. Emura M, Landgraf FJG, Ross W, Barreta JR (2003) The influence of cutting technique on the magnetic properties of electrical steels. J Magn Magn, 254-255:358-360.
https://doi.org/10.1016/S0304-8853(02)00856-9
3. Pandey AK, Dubey AK (2013) Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet. J Mech Sci Technol, 27(7):2115–2124. https://doi.org/10.1007/s12206-013-0527-7
4. Tsai MJ, Li CH, Chen CC (2008) Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. J Mater Process Technol, 208:270-283. https://doi.org/10.1016/j.jmatprotec.2007.12.138
5. Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd: YAG laser. J Mater Process Technol, 168:438-447.
https://doi.org/10.1016/j.jmatprotec.2005.02.251
6. Nguyen DT, Ho JR, Tung PC, Lin CK (2021) An improved real-time temperature control for pulsed laser cutting of non-oriented electrical steel. Opt Laser Technol, 136:1-12. https://doi.org/10.3390/math9182261
7. Rohman MN, Ho JR, Tung PC, Lin CK (2022) Prediction and optimization of geometrical quality for pulsed laser cutting of non-oriented electrical steel sheet. Opt Laser Technol, 149:107847. https://doi.org/10.1016/j.optlastec.2022.107847.
8. Nguyen TH, Lin CK, Tung PC, Nguyen-Van C, Ho JR (2021) Artificial intelligence-based modeling and optimization of heat-affected zone and magnetic property in pulsed laser cutting of thin nonoriented silicon steel. Int J Adv Manuf Technol, 113:3225-3240. https://doi.org/10.1007/s00170-021-06847-4
9. Nguyen DT, Ho JR, Tung PC, Lin CK (2021) Prediction of kerf width in laser cutting of thin non-oriented electrical steel sheets using convolutional neural network. Mathematics, 9(18), 2261. https://doi.org/10.3390/math9182261
10. Masoudi S, Mirabdolahi M, Dayyani M, Jafarian F, Vafadar A, Dorali MR (2018) Development of an Intelligent Model to Optimize Heat-affected Zone, Kerf, and Roughness in 309 Stainless Steel Plasma Cutting by Using Experimental Results. Mater. Manuf. Process, 34(3), 345–356. https://doi.org/10.1080/10426914.2018.1532579
11. Fang N and Pai PS (2018) A new computational intelligence approach to predicting the machined surface roughness in metal machining. Int J of Mach Learn Comput, (8), 524-529.
12. Yongbin Y, Bagherzade SA, Azimy H, Akbari M, Karimipour A (2020) Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy. Infrared Phys Technol, 108, 1-8. https://doi.org/10.1016/j.infrared.2020.103364
13. Lin YC, Wu KD, Shih WC, Hsu PK, Hung JP (2020) Prediction of surface roughness based on cutting parameters and machining vibration in end milling using regression method and artificial neural network. App Sci, 10(11), 3941. https://doi.org/10.3390/app10113941
14. Wu TY, Lei KW (2019) Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. Int J Adv Manuf Technol, 102:305-314. https://doi.org/10.1007/s00170-018-3176-2
15. Upadhyay V, Jain PK, Mehta NK (2013) In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals. Measurement, 46:154-160. https://doi.org/10.1016/j.measurement.2012.06.002
16. Salgado DR, Alonso FJ, Cambero I, Marcelo A (2009) In-process surface roughness prediction system using cutting vibrations in turning. Int J Adv Manuf Technol, 43, 40–51. https://doi.org/10.1007/s00170-008-1698-8
17. Sahu NK, Andhare AB, Andhale S, Abraham RR (2018) Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration. IOP Conf. Ser.: Mater. Sci. Eng, 346.https://doi.org/10.1088/1757899X/346/1/012037.
18. Lin WJ, Lo SH, Young HT, Hung, CL (2019). Evaluation of deep learning neural networks for surface roughness prediction using vibration signal analysis. Applied Sciences, 9(7), 1462. https://doi.org/10.3390/app9071462
19. Jurkovic Z, Cukor G, Brezocnik M, Brajkovic T (2016) A comparison of machine learning methods for cutting parameters prediction in high speed turning process, J Intell Manuf, 29: 1683–1693. https://doi.org/10.1007/s10845-016-1206-1
20. Cho S, Binsaeid S, Asfour S (2010) Design of multisensor fusion-based tool condition monitoring system in end milling. Int J Adv Manuf Technol, 46, 681–694. https://doi.org/10.1007/s00170-009-2110-z.
21. Binsaeid S, Asfour S, Cho S, Onar A (2009) Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. J. Mater Process Technol, 209(10), 4728–4738.
https://doi.org/10.1016/j.jmatprotec.2008.11.038
22. Pimenov DY, Bustillo A, Mikolajczyk T (2018) Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth, J Intell Manuf, 29, 1045–1061. https://doi.org/10.1007/s10845-017-1381-8
23. Bustillo A, Díez-Pastor JF, Quintana G. et al. (2011) Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations. Int J Adv Manuf Technol, 57, 521-532. https://doi.org/10.1007/s00170-011-3300-z
24. Patra K, Pal SK, Bhattacharyya K (2007) Application of wavelet packet analysis in drill wear monitoring. Mach. Sci. Technol, 11(3), 413-432.
25. Liu S, Hu Y, Li C, Lu H et al. (2017) Machinery condition based on wavelet and support vector machine. J Intell Manuf, 28, 1045-1055.https://doi.org/10.1007/s10845-015-1045-5
26. Xu S, Wang Y, Zhao J, Le G (2008) A study of fault monitoring in CNC machining of free-form surfaces based on NN-wavelet analysis-technical communication. Mach. Sci. Technol, 12(3), 405-416. https://doi.org/10.1080/10910340802306892
27. Goyal D, Choudhary A, Pabla BS, Dhami SS (2020) Support vector machines based non-contact fault diagnosis system for bearings. J Intell Manuf, 31, 1275-1289. https://doi.org/10.1007/s10845-019-01511-x
28. Kulkarni PG, Sahasrabudhe AD (2017) Investigations on mother wavelet selection for health assessment of lathe bearings. Int J Adv Manuf Technol, 90, 3317-3331. https://doi.org/10.1007/s00170-016-9664-3
29. Li DZ, Zheng X, Xie QW, Jin QB (2018) A sequential feature extraction method based on discrete wavelet transform, phase space reconstruction, and singular value decomposition and an improved extreme learning machine for rolling bearing fault diagnosis. Proc. Inst. Mech. Eng. E: J. Process Mech. Eng, 232(6), 635–649.
https://doi.org/10.1177/0954408917733130
30. Rodrigues AP, D’Mello G, Pai PS (2016) Selection of mother wavelet for wavelet analysis of vibration signals in machining. J Mech Eng Autom, 6(5A):81-85.
31. Ruqiang Y, Robert XG (2009) Base wavelet selection for bearing vibration signal analysis. Int J of Wavelets Multiresolution Inf Process, 7(4):411-426.
https://doi.org/10.1142/S0219691309002994
32. Rai H, Tiwari MZ, Ivanov D, Dolgui A (2021) Machine learning in manufacturing and industry 4.0 applications, Int J Prod Res, 59(16):4773-4778.
https://doi.org/10.1080/00207543.2021.1956675
33. Choudhary AK, Harding JA, Tiwari MK (2009) Data mining in manufacturing: a review based on the kind of knowledge, J Intell Manuf, 20, 501–521.
https://doi.org/10.1007/s10845-008-0145-x
34. Khan P, et al (2021) Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances, IEEE Access, 9:37622-37655. https://doi.org/10.1109/ACCESS.2021.3062484
35. Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning for smart manufacturing: Methods and applications, J. Manuf. Syst, 48 Part C:144-156.
https://doi.org/10.1016/j.jmsy.2018.01.003
36. Janiesch C, Zschech P, Heinrich K (2021) Machine learning and deep learning, Electron. Markets, 31:685–695. https://doi.org/10.1007/s12525-021-00475-2
37. Savita KS, Ayesha S (2019) Deep Learning Algorithms and Applications in Computer Vision, Int. J. Comput. Sci, 7(7):195-201. https://doi.org/10.26438/ijcse/v7i7.195201
38. Zhang WJ, Yang G, Lin Y, Ji C, Gupta, MM (2018) On definition of deep learning. 2018 World Automation Congress (WAC), 1-5. https://doi.org/10.23919/WAC.2018.8430387
39. Baek J, Choi Y (2019) Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Applied Sciences, 9(19), 4180. https://doi.org/10.3390/app9194180
40. Zhang R, Peng Z, Wu L, Yao B, Guan, Y (2017) Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence. Sensors, 17(3), 549.
https://doi.org/10.3390/s17030549
41. Moolayil J (2019) Learn keras for deep neural networks: a fast-track approach to modern deep learning with python (pp.35-38) (1st ed.). Apress. https://doi.org/10.1007/978-1-4842-4240-7
42. Kingma DP, Ba J (2015). Adam: a method for stochastic optimization. CoRR, abs/1412.6980.
43. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958. https://jmlr.org/papers/v15/srivastava14a.html
44. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines, Adv Neural Inf Process Syst, 9:155-161.
45. Zhi-qiang J, Hang-guang F, Ling-jun L (2005) Support vector machine for mechanical faults classification. J Zhejiang Univ.-Sci. A, 6:433–439.
https://doi.org/10.1631/jzus.2005.A0433
46. Sun J, Rahman M, Wong YS, Hong GS (2004) Multiclassification of tool wear with support vector machine by manufacturing loss consideration. Int J Mach Tools Manuf, 44:1179–1187. https://doi.org/10.1016/j.ijmachtools.2004.04.003
47. Çaydaş U, Ekici, S (2012) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel, J Intell Manuf, 23:639–650. https://doi.org/10.1007/s10845-010-0415-2
48. Seyedzadeh S, Rahimian FP, Glesk I, Roper M (2018) Machine learning for estimation of building energy consumption and performance: a review, Vis in Eng, 6(5):1-20. https://doi.org/10.1186/s40327-018-0064-7
49. Cao LJ, Tay FEH (2003), Support vector machine with adaptive parameters in financial time series forecasting, IEEE Trans Neural Netw, 14(6): 1506-1518.
https://doi.org/10.1109/TNN.2003.820556
50. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing, 70(1-3):489-501.
https://doi.org/10.1016/j.neucom.2005.12.126
51. Li DZ, Zheng X, Xie QW, Jin QB. (2018) A sequential feature extraction method based on discrete wavelet transform, phase space reconstruction, and singular value decomposition and an improved extreme learning machine for rolling bearing fault diagnosis. Proc. Inst. Mech. Eng. E: J. Process Mech. Eng, 232(6), 635–649.
https://doi.org/10.1177/0954408917733130
52. Laddada S, Si-Chaib MO, Benkedjouh T, Drai R. (2020) Tool wear condition monitoring based on wavelet transform and improved extreme learning machine. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci, 234(5), 1057-1068. https://doi.org/10.1177/0954406219888544
53. Friedman, JH. Greedy function approximation: a gradient boosting machine, Ann Stat, 2001, 29, 189-232. https://doi.org/10.1214/aos/1013203451
54. Breiman, L. Bagging predictors, Mach Learn, 1996, 24, 123-140.
https://doi.org/10.1007/BF00058655.
55. Swetha, A. et al. Ensemble methods on weak classifiers for improved driver distraction detection, in N. Nain et al. (Eds), Computer Vision and Image Processing (CVIP 2019), Communications in Computer and Information Science (CCIS 1148), Springer, Singapore, 2020, 233-242. https://doi.org/0.1007/978-981-15-4018-9_22.
56. Breiman L (2001) Random forests. Mach Learn, 45:5–32.
https://doi.org/10.1023/A:1010933404324
57. Yang BS, Di X, Han T. (2008) Random forests classifier for machine fault diagnosis. J Mech Sci Technol, 22:1716–1725. https://doi.org/10.1007/s12206-008-0603-6
58. GeeksforGeeks, Gradient boosting in ML. https://www.geeksforgeeks.org/ml-gradient-boosting/, accessed on 17 February, 2022.
59. Tercan H, Meisen T (2022) Machine learning and deep learning based predictive quality in manufacturing: a systematic review. J Intell Manuf 33, 1879–1905.
https://doi.org/10.1007/s10845-022-01963-8
60. Mao W, He J, Tang J, Li Y (2018) Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Adv. Mech. Eng, 10(12):1-18. https://doi.org/10.1177/1687814018817184
61. Ruqiang Y, Robert XG (2009) Base wavelet selection for bearing vibration signal analysis. Int. J. Wavelets Multiresolution Inf. Process, 7(4):411-426.
https://doi.org/10.1142/S0219691309002994
62. Plaza EG, Nunez Lopez PJ (2018) Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech Syst Signal Process, 98:902-919. https://doi.org/10.1016/j.ymssp.2017.05.028
63. Kwak JS (2006) Application of wavelet transform technique to detect tool failure in turning operations. Int J Adv Manuf Technol, 28:1078-1083.
https://doi.org/10.1007/s00170-004-2476-x
64. Bailly A, et al., (2022) Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput. Methods Programs Biomed, 213, Art. no. 106504. https://doi.org/10.1016/j.cmpb.2021.106504
65. Liu B, Wei Y, Zhang Y, Yang Q (2017) Deep neural networks for high dimension, low sample size data. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI′17), AAAI Press, 2287–2293, 2017.
https://doi.org/10.24963/ijcai.2017/318
66. Lee SH, Kim KY, Shin Y (2020) Effective feature selection method for deep learning-based automatic modulation classification scheme using higher-order statistics. Applied Sciences, 10(2), 588. https://doi.org/10.3390/app10020588
67. Liu H (2011) Feature selection. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning (pp.402-406). Springer. https://doi.org/10.1007/978-0-387-30164-8_306
68. Ostertagová E, Ostertag O (2013) Methodology and application of oneway ANOVA. Am. J. Mech. Eng., 1(7):256-261.
69. Elgeldawi E, Sayed A, Galal AR, Zaki AM (2021) Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis, Informatics, 8:79.
https://doi.org/10.3390/informatics8040079
70. Bergstra J, Bengio Y (2012) Random Search for Hyper-Parameter Optimization. J Mach Learn Res, 13(10), 281-305.
71. Zhao Y, Sun J, Gupta MM, Moody W, Laverty WH, Zhang W (2017) Developing a mapping from affective words to design parameters for affective design of apparel products. Text. Res. J., 87(18):2224-2232. https://doi.org/10.1177/0040517516669072
72. Feng CXJ, Yu ZGS, Emanuel JT, Li PG., et al. (2008) Threefold versus fivefold cross-validation and individual versus average data in predictive regression modelling of machining experimental data. Int J Comput Integr Manuf., 21(6):702-714.
https://doi.org/10.1080/09511920701530943
73. Pedregosa F et al. (2011), Scikit-learn: Machine Learning in Python, J Mach Learn Res, 12(85): 2825-2830.
74. Birecikli B, Karaman ÖA, Çelebi SB, Turgut A (2020) Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks, J. Mech. Sci. Technol, 34:4631–4640. https://doi.org/10.1007/s12206-020-1021-7.
75. Raschka S (2018) MLxtend: Providing machine learning and data science utilities and extensions to Python′s scientific computing stack, J. Open Source Softw, 3(24), 638. https://doi.org/10.21105/joss.00638
76. Wu D, Jennings C, Terpenny J, Gao RX, Kumara S (2017) A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forest. ASME J Manuf Sci Eng, 139(7), 071018. https://doi.org/10.1115/1.4036350. |