博碩士論文 110323087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.12.34.96
姓名 鄭旭佑(Hsu-Yu Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 自動化多邊形分解與結構化網格生成方法研究
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在射出成型產業中,產品研發與設計過程中需要進行品質控制與修正,除了經驗法則外,使用CAE(Computer aided engineering)軟體進行分析是一種常見的方法。模流分析(Mold flow analysis)軟體在此產業中不可或缺,模流分析是一種有限元素分析(Finite element method),因此在進行分析之前,需要將CAD(Computer aided design)模型進行網格化,以提供網格資料供軟體計算。非結構網格有許多種形式,其中,最常見的是邊界層網格(Boundary layer mesh)和四面體網格(Tetrahedron)。然而,這兩種網格排列不規則且網格數量較多,因此為了提高網格品質和準確度,使用結構化的六面體網格(Hexahedron)效果較佳。結構化網格通常需要對CAD模型進行切割後才能進行,由於CAD模型有進行切割,結構化網格具有規則排列和對稱的特性,且在相同網格尺寸下,結構化網格的體積較四面體網格大,可以大幅減少網格數量。故模流分析時,使用結構化網格可以提高精準度和效率。然而,由於需要進行切割,不同輪廓可能需要不同的切割方式。因此,本研究將CAD模型經過薄殼體積分解後,將其分解區塊結果之輪廓,開發分解演算法,由輪廓分解結果經過撒點等步驟後,建立此多邊形的點資料,最後實現多邊形輪廓的結構化網格。
摘要(英) In the injection molding industry, quality control and correction are required in the process of product development and design. In addition to rules of thumb, using Computer aided engineering software for analysis is a common method. Mold flow analysis software is indispensable in this industry. Mold flow analysis is a Finite element method, so before analysis, Computer aided design model needs to be gridded, to provide grid data for software calculation. There are many forms of unstructured grids, among which the most common are Boundary layer mesh and Tetrahedron mesh. However, the arrangement of these two grids is irregular and the number of grids is large, so in order to improve the quality and accuracy of the grid, it is better to use the structured Hexahedron grid. The structured grid usually needs to be cut after the CAD model is cut. Because the CAD model is cut, the structured grid has the characteristics of regular arrangement and symmetry, and under the same grid size, the volume of the structured grid is smaller than that of four sides. The volume mesh is large, which can greatly reduce the number of meshes. Therefore, in mold flow analysis, the use of structured grid can improve accuracy and efficiency. However, due to the cutting required, different profiles may require different cutting methods. Therefore, in this study, after the CAD model is decomposed by thin shell integration, the contour of the decomposed block result is taken, and the decomposition algorithm is developed. After the contour decomposition result is scattered through steps such as points, the point data of the polygon is established, and finally the polygon contour is realized. structured grid.
關鍵字(中) ★ 六面體網格
★ 四邊形網格
★ 自動化網格建構
★ 模流分析
★ 切割演算法
關鍵字(英) ★ Hexahedral mesh
★ Quadrilateral mesh
★ Automated mesh construction
★ Mold flow analysis
★ Cutting algorithm
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 薄殼體積分解文獻回顧 3
1.2.2 多邊形分解文獻回顧 3
1.2.3 網格建構與分析文獻回顧 4
1.3 研究目的 5
1.4 研究方法 6
1.5 論文架構 7
第二章 網格建構之前置資料及網格類型比較 9
2.1前言 9
2.2 B-rep資料結構介紹 9
2.3薄殼本體體積分解資料 12
2.4網格類型及品質比較 15
第三章 多邊形平面分解演算法 21
3.1前言 21
3.2多邊形分解演算法整體流程 21
3.3多邊形分解演算法說明 22
3.3.1 Type B之分解演算法 23
3.3.2 Type C之分解演算法 43
3.4邊配對 50
第四章 結構化表面網格之建立與結果品質分析 58
4.1前言 58
4.2單一四邊形建構結構化表面網格 58
4.2.1撒點 58
4.2.2計算內部點 59
4.2.3建構表面網格 59
4.3多邊形表面網格之建立與結果 59
4.4網格品質分析 68
第五章 結論與未來展望 87
5.1結論 87
5.2未來展望 88
參考文獻 89
參考文獻 [1] Moldex3D BLM, Available: https://www.moldex3d.com/products/software/ moldex3d/blm/ [Accessed 12 June 2023].
[2] 方聲翔,「自動化分解薄殼CAD模型殼本體之增強演算法發展」,國立中央大學碩士論文,2022.
[3] M. B. Stephenson and T. D. Blacker, "Using conjoint meshing primitives to generate quadrilateral and hexahedral elements in irregular regions," Technology report, Sandia National Laboratories, 1989.
[4] J. E. Bishopa and N. Sukumarb, "Polyhedral finite elements for nonlinear solid mechanics using tetrahedral subdivisions and dual-cell aggregation," Engineering Sciences Center, Vol. 13, pp. 4-7, 2020.
[5] K. Karciauskas and J. Peters, "Refinable smooth surfaces for locally quad-dominant meshes with T-gons," Computer and Graphics, Vol. 82, pp. 193-202, 2019.
[6] M. S. Joun and M. C. Lee, "Quadrilateral finite-element generation and mesh quality control for metal forming simulation," International Journal for Numerical Methods in Engineering, Vol. 40, No. 21, pp. 4059-4075, 1997.
[7] J. Marcon, D. A. Kopriva, S. J. Sherwin and J. Peiro, "Naturally curved quadrilateral mesh generation using an adaptive spectral element solver," Proceedings of the 28th International Meshing Roundtable, Vol. 2, pp. 258-262, 2019.
[8] J. Pana , J. Huangb , G. Chengc and Y. Zenga, "Reinforcement learning for automatic quadrilateral mesh generation: a soft actor-critic approach, "Neural Networks, Vol. 2, pp. 7-10, 2022.
[9] Y. Zhou, X. Cai, Q. Zhao, Z. Xiao and G.Xu, "Quadrilateral mesh generation method based on convolutional neural network," MDPI, Vol. 14, No. 5, pp. 3-9, 2023.
[10] J. Marcon, D. A. Kopriva, S. J. Sherwin and J. Peiro, "A high resolution PDE approach to quadrilateral mesh generation," Journal of Computational Physics, Vol. 2, pp. 2-19, 2019.
[11] G. Yu, B. Yu, S. Sun and W. Tao, "Comparative study on triangular and quadrilateral meshes by a finite-volume method with a central difference scheme," Numerical Heat Transfer, Part B:Fundamentals, Vol. 62, No. 4, pp. 243-263, 2012.
[12] J. F. Thompson, B. K. Soni and N. P. Weatherill(1999), Handbook of Grid Generation, London, New York, Washington: CRC Press.
[13] R. Aggarwal, B. P. Lamichhane, M. H. Meylan and C. M. Wensrich, "A comparison of triangular and quadrilateral finite element meshes for bragg edge neutron transmission strain tomography," The ANZIAM Journal, Vol. 61, pp. 242-254, 2019.
[14] Rhinoceros. Available: https://www.rhino3d.com. [Accessed 12 June 2023].
[15] OpenNURBS. Available: https://www.rhino3d.com/tw/features/developer/ opennurbs. [Accessed 12 June 2023].
[16] B-rep structure. Available: https://developer.rhino3d.com/guides/cpp/brep-data-structure. [Accessed 12 June 2023].
[17] Moldex3D. Available: https://www.moldex3d.com. [Accessed 12 June 2023].
[18] 陳定輝,「應用於非結構化四邊形網格建構之輪廓撒點與網格品質改善技術發展」,國立中央大學碩士論文,2023.
[19] CUBIT. Available: https://coreform.com/products/coreform-cubit. [Accessed 12 June 2023].
[20] 余晉歡,「CAD模型體積分解技術之優化及改進」,國立中央大學碩士論文,2023.
[21] 戴宇辰,「混合結構化與非結構化四邊形網格之自動化區域劃分發展」,國立中央大學碩士論文,2023.
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明