參考文獻 |
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite. Environmental Science & Technology, 53(7), 3568–3578.
Aleksandra Pienkowska, Martyna Glodowska, Muammar Mansor, Daniel Buchner, Daniel Straub, Sara Kleindienst, & Andreas Kappler. (2021). Environmental Science & Technology Letters, 8 (9), 832-837.
Anawar, H. M., Akai, J., & Sakugawa, H. (2004). Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 54(6), 753–762.
Arocho, A., Chen, B., Ladanyi, M., & Pan, Q. (2006). Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagnostic Molecular Pathology: The American Journal of Surgical Pathology, Part B, 15(1), 56–61.
Aromokeye, D. A., Kulkarni, A. C., Elvert, M., Wegener, G., Henkel, S., Coffinet, S., Eickhorst, T., Oni, O. E., Richter-Heitmann, T., Schnakenberg, A., Taubner, H., Wunder, L., Yin, X., Zhu, Q., Hinrichs, K.-U., Kasten, S., & Friedrich, M. W. (2019). Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments. Frontiers in Microbiology, 10, 3041.
Barker, J.F., & Fritz, P. (1981). The occurrence and origin of methane in some groundwater flow systems. Canadian Journal of Earth Science, 18, 1802–1816.
Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018). Distribution of Arsenic Resistance Genes in Prokaryotes. Frontiers in microbiology, 9, 2473.
Benner, R.. Biology of anaerobic microorganisms. (1989). Limnology and Oceanography, 34(3), 647-647.
Bhattacharya, P., Polya, D., & Jovanovic, D. (2017). Best Practice Guide on the Control of Arsenic in Drinking Water. IWA Publishing.
Bottjer, D. J. (2016). Paleoecology: Past, Present and Future. John Wiley & Sons.
Bryant, D. A., & Frigaard, N.-U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology, 14(11), 488–496.
Buschmann, J., Berg, M. (2009). Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Applied Geochemistry, 24 (7), 1278–1286.
Cai, C., Leu, A. O., Xie, G.-J., Guo, J., Feng, Y., Zhao, J.-X., Tyson, G. W., Yuan, Z., & Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 12(8), 1929–1939.
Campbell, K. M., Malasarn, D., Saltikov, C. W., Newman, D. K., & Hering, J. G. (2006). Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environmental Science & Technology, 40(19), 5950–5955.
Caraguel CGB., Stryhn H., Gagné N., Dohoo IR., & Hammell KL. (2011) Selection of a Cutoff Value for Real-Time Polymerase Chain Reaction Results to Fit a Diagnostic Purpose: Analytical and Epidemiologic Approaches. Journal of Veterinary Diagnostic Investigation, 23(1), 2-15.
Cassarini, C. (2019). Anaerobic Oxidation of Methane Coupled to the Reduction of Different Sulfur Compounds as Electron Acceptors in Bioreactors. CRC Press.
Cervantes, C., Ji, G., Ramirez, J., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15(4), 355–367.
Chapelle, F. H., Zelibor, J. L., Jay Grimes, D., & Knobel, L. L. (1987). Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resources Research, 23(8), 1625–1632.
Chiou, H. Y., Huang, W. I., Su, C. L., Chang, S. F., Hsu, Y. H., & Chen, C. J. (1997). Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke; Journal of Cerebral Circulation, 28(9), 1717–1723.
Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. In Chemical Reviews (Vol. 89, Issue 4, pp. 713–764). https://doi.org/10.1021/cr00094a002
D. van Halem1, S. A. Bakker, G. L. Amy, & J. C. van Dijk. (2009). Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drinking Water Engineering and Science, 2(1), 29–34.
Daniel J. Thompson. (1993). A chemical hypothesis for arsenic methylation in mammals. Chemico-Biological Interactions, 88(2), 89–114.
Das, S., Liu, C.-C., Jean, J.-S., & Liu, T. (2016). Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan. Microbial Ecology, 71(2), 365–374.
DeVore, C. L., Rodriguez-Freire, L., Mehdi-Ali, A., Ducheneaux, C., Artyushkova, K., Zhou, Z., Latta, D. E., Lueth, V. W., Gonzales, M., Lewis, J., & Cerrato, J. M. (2019). Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Science. Processes & Impacts, 21(3), 456–468.
Dinesh, Adhikari., Qian, Zhao., Kamol, Das., Jacqueline, Mejia., Rixiang Huang., Xilong, Wang., Simon R. Poulson., Yuanzhi, Tang., Eric E. Roden., & Yu, Yang. (2017). Dynamics of Ferrihydrite-bound Organic Carbon during Microbial Fe Reduction. Geochimica et Cosmochimica Acta, 212, 221-233.
Dong, Jin Kim., Hun, Saeng Chung., & Kening Yu. (2002). Cobalt Powder from Co(OH)2 by Hydrogen Reduction. Materials Research Bulletin, 37 (2002), 2067–2075.
Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.-C., & Bonnefoy, V. (2008). Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environmental Microbiology, 10(1), 228–237.
Edwards, M., Patel, S., McNeill, L., Chen, H.-W., Frey, M., Eaton, A. D., Antweiler, R. C., & Taylor, H. E. (1998). Considerations in As analysis and speciation. In Journal - American Water Works Association (Vol. 90, Issue 3, pp. 103–113).
European Commission, Joint Research Centre, Robouch, P., Stroka, J., Haedrich, J. (2016). Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food, Publications Office.
Eusterhues, K., Neidhardt, J., Hädrich, A., Küsel, K., & Totsche, K. U. (2014). Biodegradation of ferrihydrite-associated organic matter. Biogeochemistry, 119, 45–50.
Encyclopedia of Soils in the Environment. (2005).
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., … Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., & Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12792–12796.
F. Peryea and R. Kammereck. (1997). Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, Soil Pollut, 93, 243–254.
Fahrbach, M., Kuever, J., Meinke, R., Kämpfer, P., & Hollender, J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium. International journal of systematic and evolutionary microbiology, 56(7), 1547–1552.
Faith, D. P., & Baker, A. M. (2007). Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evolutionary Bioinformatics Online, 2, 121–128.
Glodowska, M., Stopelli, E., Straub, D., Vu Thi, D., Trang, P. T. K., Viet, P. H., AdvectAs Team Members, Berg, M., Kappler, A., & Kleindienst, S. (2021). Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 407, 124398.
Grosskopf, R., Janssen, P. H., & Liesack, W. (1998). Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology, 64(3), 960–969.
Guo, H., Stüben, D., & Berner, Z. (2007). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53.
Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., & Saunders, J. R. (1996). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Applied and Environmental Microbiology, 62(2), 668–675.
Haroon M, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P. (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(5), 67–70.
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.
He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., & Gadd, G. M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. The Science of the Total Environment, 610-611, 759–768.
Holmes, A. J.; Costello, A.; Lidstrom, M. E.; Murrell, J. C., Evidence that participate methane
monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS microbiology letters 1995, 132, (3), 203-208.
Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.
James, T. Hollibaugh., Charles, Budinoff., Ryan A. Hollibaugh., Briana, Ransom., & Nasreen, Bano. (2006). Sulfide Oxidation Coupled to Arsenate Reduction by a Diverse Microbial Community in a Soda Lake. Applied and Environmental Microbiology, 72(3), 2043–2049.
Jang, C.S., Lin, K.H., Liu, C.W., & Lin, M.C. (2009). Risk based assessment of arsenic-affected aquacultural water in black-foot disease hyperendemic areas. Stochastic Environmental Research and Risk Assessment, 23, 603–612.
Jeffrey, Paulo H. Perez., Dominique J. Tobler., Andrew N. Thomas., Helen M. Freeman., Knud, Dideriksen., Jörg, Radnik., & Liane G. Benning. (2019). Adsorption and Reduction of Arsenate during the Fe2+-Induced Transformation of Ferrihydrite. ACS Earth and Space Chemistry, 3 (6), 884-894.
Jessen, S., Larsen, F., Postma, D., Viet, P. H., Ha, N. T., Nhan, P. Q., Nhan, D. D., Duc, M. T., Hue, N. T. M., Huy, T. D., Luu, T. T., Ha, D. H., & Jakobsen, R. (2008). Palaeo-hydrogeological control on groundwater As levels in Red River delta, Vietnam. In Applied Geochemistry (Vol. 23, Issue 11, pp. 3116–3126).
Jiang, Z., Li, P., Wang, Y., Liu, H., Wei, D., Yuan, C., & Wang, H. (2019). Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. In Scientific Reports (Vol. 9, Issue 1).
Juerg Zobrist, Philip R. Dowdle, James A. Davis, and Ronald S. Oremland. (2000). Mobilization of Arsenite by Dissimilatory Reduction of Adsorbed Arsenate. Environmental Science & Technology, 34 (22), 4747-4753.
Joye, S.B. (2012). A piece of the methane puzzle. Nature, 491, 538-539.
Jørgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10, 849.
Karagas, M. R., Gossai, A., Pierce, B., & Ahsan, H. (2015). Drinking Water Arsenic Contamination, Skin Lesions, and Malignancies: A Systematic Review of the Global Evidence. Current Environmental Health Reports, 2(1), 52–68.
Katz, J. E., Zhang, X., Attenkofer, K., Chapman, K. W., Frandsen, C., Zarzycki, P., Rosso, K. M., Falcone, R. W., Waychunas, G. A., & Gilbert, B. (2012). Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. Science, 337(6099), 1200–1203.
Kirk, M. F., Holm, T. R., Park, J., Jin, Q., Sanford, R. A., Fouke, B. W., & Bethke, C. M. (2004). Bacterial sulfate reduction limits natural arsenic contamination in groundwater. In Geology (Vol. 32, Issue 11, p. 953).
Knief, C. (2015). Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Frontiers in Microbiology, 6, 1346.
Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.
Kordas K, Lonnerdal B, Stoltzfuss RJ. (2007). Interactions between nutrition and environmental exposures: Effects on health outcomes in women and children. Journal of Renal Nutrition, 137:2794–2797.
Kukkadapu, R. K., J. M. Zachara., J. K. Fredrickson., & D. W. Kennedy. (2004). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III) reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochemical et Cosmochimica Acta, 68, 2784-2799.
Kulkarni, H. V., Mladenov, N., McKnight, D. M., Zheng, Y., Kirk, M. F., & Nemergut, D. R. (2018). Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. The Science of the Total Environment, 615, 1390–1395.
Kuloyo, O., Ruff, S.E., Cahill, A., Connors, L., Zorz, J.K., de Angelis, I.H., Nightingale, M.,
Mayer, B., Strous, M., 2020. Methane oxidation and methylotroph population
dynamics in groundwater mesocosms. Environ. Microbiol. 22, 1222–1237.
Lanyang museum’S 47th newsletter. (2008). Retrieved August 24, 2021, from http://enews.lym.gov.tw/content.asp?pid=42&k=193
Lapworth, D. J., Gooddy, D. C., Butcher, A. S. & Morris, B. L. (2008). Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). Applied Geochemistry, 23, 3384–3390.
Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. & Bollinger, J.-C. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 255, 52–58 (2002).
Li, B., Zhang, X., Guo, F., Wu, W., & Zhang, T. (2013). Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 47(13), 4207–4216.
Li, X., & Krumholz, L. R. (2007). Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. Journal of bacteriology, 189(10), 3705–3711.
Li, Y., Alaimo, C. P., Kim, M., Kado, N. Y., Peppers, J., Xue, J., Wan, C., Green, P. G., Zhang, R., Jenkins, B. M., Vogel, C. F. A., Wuertz, S., Young, T. M., & Kleeman, M. J. (2019). Composition and Toxicity of Biogas Produced from Different Feedstocks in California. Environmental Science & Technology, 53(19), 11569–11579.
Liao, V. H.-C., Chu, Y.-J., Su, Y.-C., Lin, P.-C., Hwang, Y.-H., Liu, C.-W., Liao, C.-M., Chang, F.-J., & Yu, C.-W. (2011). Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. Journal of Hazardous Materials, 197, 397–403.
Lin, Z., & Puls, R. W. (2003). Potential indicators for the assessment of arsenic natural attenuation in the subsurface. In Advances in Environmental Research (Vol. 7, Issue 4, pp. 825–834).
Liu, C.-H., Chuang, Y.-H., Chen, T.-Y., Tian, Y., Li, H., Wang, M.-K., & Zhang, W. (2015). Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science & Technology, 49(13), 7726–7734.
Liu, T.-K., Chen, K.-Y., Yang, T. F., Chen, Y.-G., Chen, W.-F., Kang, S.-C., & Lee, C.-P. (2009). Origin of methane in high-arsenic groundwater of Taiwan – Evidence from stable isotope analyses and radiocarbon dating. In Journal of Asian Earth Sciences (Vol. 36, Issues 4-5, pp. 364–370).
Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: the microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1–100.
Lu FJ. (1990) Blackfoot disease: arsenic or humic acid? Lancet, 336(8707), 115–116.
Luidold, S., Antrekowitsch, H. Hydrogen as a reducing agent: State-of-the-art science and technology. (2007). Journal of The Minerals, Metals & Materials Society, 59, 20–26.
Luton, P. E., Wayne, J. M., Sharp, R. J., & Riley, P. W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148(Pt 11), 3521–3530.
Mabuchi, K., Lilienfeld, A.M., & Snell, L.M. (1979). Lung cancer among pesticide workers
exposed to inorganic arsenicals. Archives of Environmental & Occupational Health, 34, 312–319.
Malasarn, D., Saltikov, C. W., Campbell, K. M., Santini, J. M., Hering, J. G., & Newman, D. K. (2004). arrA is a reliable marker for As(V) respiration. Science, 306(5695), 455.
McDonald, I. R., & Murrell, J. C. (1997). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Applied and Environmental Microbiology, 63(8), 3218–3224.
McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., & Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11(1), 1279.
McMahon, P. B., & Chapelle, F. H. (1991). Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. In Nature (Vol. 349, Issue 6306, pp. 233–235).
Meliker, J. R., Franzblau, A., Slotnick, M. J., & Nriagu, J. O. (2006). Major contributors to inorganic arsenic intake in southeastern Michigan. International Journal of Hygiene and Environmental Health, 209(5), 399–411.
Michael, F, Hughes. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology letters, 133(1), 1–16.
Morse, J. W. (1988). Stumm, W. [ed.]. 1987. Aquatic surface chemistry: Chemical processes at the particle-water interface. John Wiley & Sons, Inc., Somerset, New Jersey. 520 p. $69.95. In Limnology and Oceanography (Vol. 33, Issue 2, pp. 311–311).
Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.
Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., & Liu, C.-C. (2008). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4), 85–96.
Neumann, R. B., Pracht, L. E., Polizzotto, M. L., Badruzzaman, A. B. M., & Ashraf Ali, M. (2014). Biodegradable Organic Carbon in Sediments of an Arsenic-Contaminated Aquifer in Bangladesh. In Environmental Science & Technology Letters (Vol. 1, Issue 4, pp. 221–225).
Neumann, R., Ashfaque, K., Badruzzaman, A. M., Ashraf Ali., Julie K. Shoemaker and Charles F. Harvey. (2010). Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3, 46–52.
Nordstrom, D. K. (2002). Public health. Worldwide occurrences of arsenic in ground water. Science, 296(5576), 2143–2145.
O’Day, P. A. (2005). Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation. Amer Chemical Society.
Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939–944.
Parkhurst, D.L. (1995). User′s guide to PHREEQC, a computer model for speciation, reaction-path, advective-transport and inverse geochemical calculations. United States Geological Survey, Water Resources Investigation Report, 4195–4227.
Park, S.-G., Rhee, C., Shin, S. G., Shin, J., Mohamed, H. O., Choi, Y.-J., & Chae, K.-J. (2019). Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Environment International, 131, 105006.
Polcyn, W., & Luciński, R. (2003). Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiology Letters, 226(2), 331–337.
Postma, D., Larsen, F., Hue, N. T. M., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. In Geochimica et Cosmochimica Acta (Vol. 71, Issue 21, pp. 5054–5071).
R. Jenkins, 1988. X-ray Fluorescence Spectrometry, John Wiley & Sons.
Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., & Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921.
Rathi, B., Neidhardt, H., Berg, M., Siade, A., & Prommer, H. (2017). Processes governing arsenic retardation on Pleistocene sediments: Adsorption experiments and model-based analysis. In Water Resources Research (Vol. 53, Issue 5, pp. 4344–4360).
Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; John Wiley & Sons, 2009; Vol. 28.
Rosen, P. (1971). Theoretical significance of arsenic as a carcinogen. Journal of Theoretical Biology, 32(2), 425–426.
Samantha M, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013; 500:567–70.
Sano, Y., Hao, Y., & Kuwahara, F. (2018). Development of an electrolysis based system to continuously recover magnesium from seawater. Heliyon, 4(11), e00923.
Sinotech Engineering Consultants, inc. (2009, July). 地面地下水聯合運用-以蘭陽地區為例 Retrieved August 24, 2021, from https://www.sinotech.org.tw/journal/pdfview.aspx?n=104&s=51
Schoell, M. (1980). The hydrogen and carbon isotopic composition of methane from natural gases of various origins. In Geochimica et Cosmochimica Acta (Vol. 44, Issue 5, pp. 649–661).
Schwertmann, U., & Cornell, R. M. (2008). Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons.
Shen, L.-D., Ouyang, L., Zhu, Y., & Trimmer, M. (2019). Active pathways of anaerobic methane oxidation across contrasting riverbeds. The ISME Journal, 13(3), 752–766.
Shengwen Shen., Xing Fang Li., William R. Cullen., Michael Weinfeld., & X. Chris Le. (2013). Arsenic Binding to Proteins. Chemical reviews, 113(10), 7769–7792.
Shi, L.-D., Guo, T., Lv, P.-L., Niu, Z.-F., Zhou, Y.-J., Tang, X.-J., Zheng, P., Zhu, L.-Z., Zhu, Y.-G., Kappler, A., & Zhao, H.-P. (2020). Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. In Nature Geoscience (Vol. 13, Issue 12, pp. 799–805).
Song, B., Chyun, E., Jaffé, P. R., & Ward, B. B. (2009). Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 68(1), 108–117.
Sracek, O., Berg, M., & Müller, B. (2018). Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research International, 25(16), 15954–15961.
Stumm, W., & Morgan, J. J. (1995). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons.
Sun, J., Prommer, H., Siade, A. J., Chillrud, S. N., Mailloux, B. J., & Bostick, B. C. (2018). Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16), 9243–9253.
Tamaki, S., & Frankenberger, W. T., Jr (1992). Environmental biochemistry of arsenic. Reviews of environmental contamination and toxicology, 124, 79–110.
Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology, 144 (Pt 9), 2377–2406.
Thiel, V., Hamilton, T. L., Tomsho, L. P., Burhans, R., Gay, S. E., Schuster, S. C., Ward, D. M., & Bryant, D. A. (2014). Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi). Genome Announcements, 2(5).
Todd P. Luxton, Matthew J. Eick, Donald J. Rimstidt. (2008). The role of silicate in the adsorption/desorption of arsenite on goethite. Chemical Geology, 252, 125-135.
Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Advances in Applied Microbiology, 63, 183–229.
Tsananguray Tongesay & Ronald Smart. (2007). Abiotic reduction mechanism of As(V) by fulvic acid in the absence of light and the effect of Fe(III). African Journals Online, 33(5).
Tseng, W.P., 1977. Effects and dose–response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109–119.
United States. Environmental Protection Agency. (2005). Toxicity and Exposure Assessment for Children’s Health: TEACH.
USEPA. (n.d.). 2007 U.S. EPA Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. Retrieved August 25, 2021, from
https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils
Wallis, I., Prommer, H., Berg, M., Siade, A. J., Sun, J., & Kipfer, R. (2020). The river–groundwater interface as a hotspot for arsenic release. In Nature Geoscience (Vol. 13, Issue 4, pp. 288–295).
Watanabe, T., & Hirano, S. (2013). Metabolism of arsenic and its toxicological relevance. Archives of toxicology, 87(6), 969–979.
Wilson, N. (2020). Soil Water and Ground Water Sampling. https://doi.org/10.1201/9781003075585
Williamson, W. M., Close, M. E., Leonard, M. M., Webber, J. B., & Lin, S. (2012). Groundwater biofilm dynamics grown in situ along a nutrient gradient. Ground Water, 50(5), 690–703.
Xu, J., Wu, J., & He, Y. (2013). Functions of Natural Organic Matter in Changing Environment. Springer Science & Business Media.
Yong, R. N., & Mulligan, C. N. (2003). Natural Attenuation of Contaminants in Soils. CRC Press.
Yuwen Chen., Junyi Zou., Hui Sun., Jihong Qin & Jiyuan Yang. (2021). Metals in Traditional Chinese medicinal materials (TCMM): A systematic review. Ecotoxicology and Environmental Safety, 207.
Zacarías-Estrada, O. L., Ballinas-Casarrubias, L., Montero-Cabrera, M. E., Loredo-Portales, R., Orrantia-Borunda, E., & Luna-Velasco, A. (2020). Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor. Journal of Hazardous Materials, 384, 121392.
Zaldívar, R. (1974). Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitrage Zur Pathologie, 151(4), 384–400.
Zhang, J., Zhou, W., Liu, B., He, J., Shen, Q., & Zhao, F.-J. (2015). Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environmental Science & Technology, 49(10), 5956–5964.
Zhu, W., Young, L. Y., Yee, N., Serfes, M., Danielle Rhine, E., & Reinfelder, J. R. (2008). Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. In Geochimica et Cosmochimica Acta (Vol. 72, Issue 21, pp. 5243–5250).
Zhu, Y., Guo, H., Bhattacharya, P., Ahmad, A., Bundschuh, J., & Naidu, R. (2019). Environmental Arsenic in a Changing World: Proceedings of the 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018), July 1-6, 2018, Beijing, P.R. China. CRC Press.
水文地質資料庫整合查詢平台。台灣: 中央地質調查所
全國環境水質監測資訊網-水質監測歷史數據下載【資料檔】。台灣: 環境保護署。
行政院環境保護署地下水砷濃度潛勢範圍查詢平台。台灣: 環境保護署
陳文福,呂學諭,劉聰桂 (2010)。台灣地下水之氧化還原狀態與砷濃度。農業工程學報。
陳文山,宋時驊,吳樂群,徐澔德,楊小青 (2005)。末次冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊。62,40-55。
|