博碩士論文 109326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.117.192.109
姓名 柏貫中(Kuan Chung Pao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 蘭陽平原地下水水溶氣(甲烷)厭氧氧化作用對含水層砷釋出之影響
(Effect of in situ anaerobic methane oxidation on the mobilization of arsenic)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水是全世界重要的水資源,含高濃度砷的地下水對仰賴此水資源的民眾造成莫大的健康威脅,為全球公共衛生的重大議題。台灣蘭陽平原地下水具有高濃度的砷,20 % 的水井砷濃度超過 WHO 所訂定的地下水砷濃度建議值 10 ppb,當地居民也非常仰賴地下水資源,因此含砷地下水為居民的潛在健康危害。宜蘭縣冬山鄉武淵國小一帶居民有使用「水溶氣」的紀錄,該地水溶氣主要源自於古地層所蘊含之有機質因厭氧消化所產生的甲烷。國內學者過去在蘭陽平原所做的調查,雖然呈現出當地地下水的高砷濃度很有可能與水溶氣的存在有所關連,但卻仍無直接、實質的證據。有鑒於近年來鐵還原狀態下的厭氧甲烷氧化已引起注意,因此本研究在宜蘭縣武淵地區的水井採樣,除監測現地的生地化參數外,也將井壁的沉積物帶回實驗室進行甲烷添加的厭氧培養試驗,監測 Fe(II)、總砷、As(III)、甲烷濃度變化,並搭配相關的功能性基因的定性定量分析,以及菌種鑑定,以驗證蘭陽平原的水溶氣厭氧氧化作用是否確實為當地地下水高濃度砷的主要驅動力。調查的結果顯示當地地下水確實有砷污染的狀況,且以毒性較高的As(III) 為主要型態,並具有相當含量的 Fe(II),代表現地環境已為厭氧,除表明有高機率發生鐵還原作用外,也說明該環境適宜厭氧甲烷利用菌群的生存。而菌種鑑定的結果也的確呼應可進行厭氧氧化甲烷作用、並還原Fe(III) 的菌群確實存在。培養試驗的結果顯示非生物與生物性作用都可能共同成為當地砷釋出的驅動力,像是 HCO3- 與砷競爭鐵(氫)氧化物表面的吸附點位,使得砷釋放到地下水中,並且隨著培養實驗進行,實驗組(添加甲烷)與控制組(無額外添加甲烷)皆有鐵還原與砷釋出現象,表示甲烷與其他現地有機物皆能成為當地鐵還原菌的電子供給者以發生鐵還原作用並使砷釋出。然而,培養結果卻觀察到 As(III) 的生成並非微生物厭氧氧化甲烷造成的,推測主要為地下水中的 Fe(II) 將 As(V) 還原所致。本篇研究為第一個利用蘭陽平原地下水中的微生物進行培養實驗並證明生物性的鐵還原作用是造成當地砷釋出的主因,並且甲烷能以電子供給者的角色驅動砷釋出。
摘要(英) High arsenic (As) concentration in groundwater is a worldwide public health issue, and millions of peoples’ health are threatened. Groundwater in Lanyang plain of Taiwan is contaminated by high content of As. Residents rely heavily on groundwater, so As-containing groundwater poses potential health hazards to local people. In most case, the liberation of As from sediment are caused by microbial reductive dissolution of iron oxide hydroxide, and organic carbon would be used as electron donor. There is plenty of CH4 emerging from wells in Wuyuan township of Lanyang plain, so the hypothesis of this study is CH4 can serve as electron donor for anaerobic menthanotrophs and triggering As(V) or As(III) mobilizing. Biogeochemical parameters and microbial community of the wells in Wuyuan township were analyzed for gaining background data, and sediments in the wells were collected for the anaerobic CH4 adding incubations. The main findings are three. First, the competitive sorption of As and HCO3- to iron oxide hydroxide can trigger As released by abiotic reaction. Second, CH4 and non-CH4 in situ organic can carbon function as electron donor for iron-reducing bacteria and cause As liberate into groundwater by reductive dissolution of iron oxide hydroxide. Third, As(III) generating is most likely because of As(V) reducing by Fe(II) in abiotic reaction. This is the first study proving that the reason of As contamination in Lanyang plain is caused by biological iron reduction, and CH4 can be the role of electron donor.
關鍵字(中) ★ 砷
★ 地下水
★ 蘭陽平原
★ 水溶氣
★ 甲烷厭氧氧化
關鍵字(英) ★ arsenic
★ groundwater
★ Lanyang plain
★ methane
★ anaerobic oxidation of methane
論文目次 摘要 I
Abstract II
誌謝 III
第一章 前言 1
1.1 研究緣起與背景 1
1.1.1 砷對人體的健康危害、暴露途徑及台灣蘭陽平原地下水使用現況 1
1.1.2 砷在水環境中的型態 2
1.1.3 地下水砷污染機制 3
1.1.4 蘭陽平原地下水地化環境簡介與砷污染概況 4
1.1.5 甲烷循還與地下水砷污染之關聯 6
1.1.6 蘭陽平原地下水水溶氣(甲烷) 7
1.2 研究目的 9
第二章 研究方法 11
2.1 研究架構 11
2.2 採樣地點介紹 12
2.3 地下水地質化學參數分析 13
2.4 化學物種組成軟體模擬 19
2.5 水井生物膜採樣 20
2.6 反轉錄定量聚合酶連鎖反應(Reverse transcription-quantitative polymerase chain reaction, RT-qPCR) 21
2.7 次世代定序 25
2.8 培養實驗設計 25
2.9 現地有機物微生物利用實驗 30
第三章 結果與討論 31
3.1 地下水生地化參數分析結果 31
3.1.1 地下水地質化學參數分析結果 31
3.1.2 PHREEQC 模擬結果 36
3.1.3 地下水功能性基因分析 38
3.1.4 NGS 分析結果 40
3.2 培養實驗結果 46
3.2.1甲烷消耗率 46
3.2.2 總 Fe(II) 生成 49
3.2.3水溶液中 Fe(II) 生成 53
3.2.4 水溶液中總砷釋出 55
3.2.5 As(III) 釋出 59
3.2.6 DOC 消耗 62
3.2.7 RT-qPCR分析結果 64
3.2.8 現地有機物微生物利用實驗 86
3.3 環境意義 89
第四章 結論與建議 91
4.1 結論 91
4.2 建議 93
第五章 參考文獻 95
口試委員問題與回答 106
圖目錄
圖 1.1.1 蘭陽平原武淵岩芯影像(中央地質調查所) 9
圖 2.1.1 研究架構 11
圖 2.2.1 採樣水井分布 12
圖 2.2.2 採樣水井照片 (a) WR (b) WY 13
圖 2.3.1 陰離子交換樹脂分離砷物種示意圖 14
圖 2.3.2 甲烷採樣裝置 16
圖 2.5.1 水井沉積物採樣 (a)實際採樣照片 (b)羊毛絨收集沉積物 (c)厭氧缸 21
圖 2.7.1 NGS 流程示意圖 25
圖 2.8.1 自行製備之 ferrihydrite 外觀 27
圖 2.8.2 自行備製之 ferrihydrite X-射線繞射分析 27
圖 2.8.3 培養實驗架設示意圖 29
圖 3.1.1 二採樣點 NGS 分析稀釋曲線 41
圖 3.1.2 二採樣點 NGS 分析 Beta diversity 箱型圖 42
圖 3.1.3 二採樣點微生物(科)相對豐富度 44
圖 3.1.4 二採樣點微生物(屬)豐度聚類熱圖 45
圖 3.2.1 WR 採樣點培養實驗甲烷消耗率 47
圖 3.2.2 WY 採樣點培養實驗甲烷消耗率 48
圖 3.2.3 WR 採樣點培養實驗總 Fe(II) 生成 51
圖 3.2.4 WY 採樣點培養實驗總 Fe(II) 生成 52
圖 3.2.5 Magnetite 磁力吸引示意圖 52
圖 3.2.6 WR 採樣點培養實驗水溶液 Fe(II) 生成 54
圖 3.2.7 WY 採樣點培養實驗水溶液 Fe(II) 生成 55
圖 3.2.8 WR 採樣點培養實驗水溶液總砷釋出 57
圖 3.2.10 Goethite 與 lepidocrocite 生成圖 58
圖 3.2.11 WR 採樣點培養實驗水溶液 As(III) 釋出 (a)第14天 (b)第40天 (c)第90天 (d)第105天 61
圖 3.2.12 WY 採樣點培養實驗水溶液 As(III) 釋出 (a)第14天 (b)第40天 (c)第90天 (d)第105天 62
圖 3.2.13 培養實驗 lactate control DOC 消耗趨勢 (a)WR 採樣點 (b)WY 採樣點 63
圖 3.2.14 WR 採樣點 mcrA 基因培養實驗第 80 天相對定量結果 70
圖 3.2.15 WY 採樣點 mcrA 基因培養實驗第 80 天相對定量結果 70
圖 3.2.16 WR 採樣點 pmoA 基因培養實驗第 80 天相對定量結果 71
圖 3.2.17 WY 採樣點 pmoA 基因培養實驗第 80 天相對定量結果 71
圖 3.2.18 WR 採樣點 arrA 基因培養實驗第 80 天相對定量結果 72
圖 3.2.19 WY 採樣點 arrA 基因培養實驗第 80 天相對定量結果 72
圖 3.2.20 WR 採樣點 mcrA 基因培養實驗第 120 天相對定量結果 73
圖 3.2.21 WY 採樣點 mcrA 基因培養實驗第 120 天相對定量結果 73
圖 3.2.22 WR 採樣點 pmoA 基因培養實驗第 120 天相對定量結果 74
圖 3.2.23 WY 採樣點 pmoA 基因培養實驗第 120 天相對定量結果 74
圖 3.2.24 WR 採樣點 arrA 基因培養實驗第 120 天相對定量結果 75
圖 3.2.25 WY 採樣點 arrA 基因培養實驗第 120 天相對定量結果 75
圖 3.2.26 WR 採樣點 with CH4 培養實驗照片 76
圖 3.2.27 WY 採樣點 with CH4 培養實驗照片 77
圖 3.2.28 WR 採樣點 no CH4 培養實驗照片 78
圖 3.2.29 WY 採樣點 no CH4 培養實驗照片 79
圖 3.2.30 WR 採樣點 BES control 培養實驗照片 80
圖 3.2.31 WY 採樣點 BES control 培養實驗照片 81
圖 3.2.32 WR 採樣點 NaN3 control 培養實驗照片 82
圖 3.2.33 WY 採樣點 NaN3 control 培養實驗照片 83
圖 3.2.34 WR 採樣點 lactate control 培養實驗照片 84
圖 3.2.35 WY 採樣點 lactate control 培養實驗照片 85
圖 3.2.36 現地有機物微生物利用實驗(with biofilm) (a)WR 採樣點 (b)WY 採樣點 87
圖 3.2.37 現地有機物微生物利用實驗(no biofilm) (a)WR 採樣點 (b)WY 採樣點 88

表目錄
表2.3.1 (離子)檢量線、LOD 與 LOQ 19
表2.3.2 (元素、DOC、甲烷)檢量線、LOD 與 LOQ 18
表2.7.1 RT-qPCR primer sets 24
表 2.8.1 培養實驗添加物質 28
表 3.1.1 地下水地質化學參數分析 35
表 3.1.2 地下水金屬、類金屬與原素濃度分析 35
表 3.1.3 WR 採樣點 PHREEQC 沉積物組成模擬 37
表 3.1.4 WY 採樣點 PHREEQC 沉積物組成模擬 38
表 3.1.5 地下水化學物種濃度分布 38
表 3.1.6 地下水功能性基因環境背景 Ct 值 39
表 3.1.7 定序資料處理分析 40
表 3.2.1 WR 採樣點培養實驗第 80 天功能性基因 Ct 值 66
表 3.2.2 WY 採樣點培養實驗第 80 天功能性基因 Ct 值 67
表 3.2.3 WR 採樣點培養實驗第 120 天功能性基因 Ct 值 68
表 3.2.4 WY 採樣點培養實驗第 120 天功能性基因 Ct 值 69

參考文獻 Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite. Environmental Science & Technology, 53(7), 3568–3578.
Aleksandra Pienkowska, Martyna Glodowska, Muammar Mansor, Daniel Buchner, Daniel Straub, Sara Kleindienst, & Andreas Kappler. (2021). Environmental Science & Technology Letters, 8 (9), 832-837.
Anawar, H. M., Akai, J., & Sakugawa, H. (2004). Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 54(6), 753–762.
Arocho, A., Chen, B., Ladanyi, M., & Pan, Q. (2006). Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagnostic Molecular Pathology: The American Journal of Surgical Pathology, Part B, 15(1), 56–61.
Aromokeye, D. A., Kulkarni, A. C., Elvert, M., Wegener, G., Henkel, S., Coffinet, S., Eickhorst, T., Oni, O. E., Richter-Heitmann, T., Schnakenberg, A., Taubner, H., Wunder, L., Yin, X., Zhu, Q., Hinrichs, K.-U., Kasten, S., & Friedrich, M. W. (2019). Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments. Frontiers in Microbiology, 10, 3041.
Barker, J.F., & Fritz, P. (1981). The occurrence and origin of methane in some groundwater flow systems. Canadian Journal of Earth Science, 18, 1802–1816.
Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., Rensing, C., & Cervantes, C. (2018). Distribution of Arsenic Resistance Genes in Prokaryotes. Frontiers in microbiology, 9, 2473.
Benner, R.. Biology of anaerobic microorganisms. (1989). Limnology and Oceanography, 34(3), 647-647.
Bhattacharya, P., Polya, D., & Jovanovic, D. (2017). Best Practice Guide on the Control of Arsenic in Drinking Water. IWA Publishing.
Bottjer, D. J. (2016). Paleoecology: Past, Present and Future. John Wiley & Sons.
Bryant, D. A., & Frigaard, N.-U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology, 14(11), 488–496.
Buschmann, J., Berg, M. (2009). Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Applied Geochemistry, 24 (7), 1278–1286.
Cai, C., Leu, A. O., Xie, G.-J., Guo, J., Feng, Y., Zhao, J.-X., Tyson, G. W., Yuan, Z., & Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME Journal, 12(8), 1929–1939.
Campbell, K. M., Malasarn, D., Saltikov, C. W., Newman, D. K., & Hering, J. G. (2006). Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environmental Science & Technology, 40(19), 5950–5955.
Caraguel CGB., Stryhn H., Gagné N., Dohoo IR., & Hammell KL. (2011) Selection of a Cutoff Value for Real-Time Polymerase Chain Reaction Results to Fit a Diagnostic Purpose: Analytical and Epidemiologic Approaches. Journal of Veterinary Diagnostic Investigation, 23(1), 2-15.
Cassarini, C. (2019). Anaerobic Oxidation of Methane Coupled to the Reduction of Different Sulfur Compounds as Electron Acceptors in Bioreactors. CRC Press.
Cervantes, C., Ji, G., Ramirez, J., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15(4), 355–367.
Chapelle, F. H., Zelibor, J. L., Jay Grimes, D., & Knobel, L. L. (1987). Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resources Research, 23(8), 1625–1632.
Chiou, H. Y., Huang, W. I., Su, C. L., Chang, S. F., Hsu, Y. H., & Chen, C. J. (1997). Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke; Journal of Cerebral Circulation, 28(9), 1717–1723.
Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. In Chemical Reviews (Vol. 89, Issue 4, pp. 713–764). https://doi.org/10.1021/cr00094a002
D. van Halem1, S. A. Bakker, G. L. Amy, & J. C. van Dijk. (2009). Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drinking Water Engineering and Science, 2(1), 29–34.
Daniel J. Thompson. (1993). A chemical hypothesis for arsenic methylation in mammals. Chemico-Biological Interactions, 88(2), 89–114.
Das, S., Liu, C.-C., Jean, J.-S., & Liu, T. (2016). Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan. Microbial Ecology, 71(2), 365–374.
DeVore, C. L., Rodriguez-Freire, L., Mehdi-Ali, A., Ducheneaux, C., Artyushkova, K., Zhou, Z., Latta, D. E., Lueth, V. W., Gonzales, M., Lewis, J., & Cerrato, J. M. (2019). Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Science. Processes & Impacts, 21(3), 456–468.
Dinesh, Adhikari., Qian, Zhao., Kamol, Das., Jacqueline, Mejia., Rixiang Huang., Xilong, Wang., Simon R. Poulson., Yuanzhi, Tang., Eric E. Roden., & Yu, Yang. (2017). Dynamics of Ferrihydrite-bound Organic Carbon during Microbial Fe Reduction. Geochimica et Cosmochimica Acta, 212, 221-233.
Dong, Jin Kim., Hun, Saeng Chung., & Kening Yu. (2002). Cobalt Powder from Co(OH)2 by Hydrogen Reduction. Materials Research Bulletin, 37 (2002), 2067–2075.
Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.-C., & Bonnefoy, V. (2008). Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environmental Microbiology, 10(1), 228–237.
Edwards, M., Patel, S., McNeill, L., Chen, H.-W., Frey, M., Eaton, A. D., Antweiler, R. C., & Taylor, H. E. (1998). Considerations in As analysis and speciation. In Journal - American Water Works Association (Vol. 90, Issue 3, pp. 103–113).
European Commission, Joint Research Centre, Robouch, P., Stroka, J., Haedrich, J. (2016). Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food, Publications Office.
Eusterhues, K., Neidhardt, J., Hädrich, A., Küsel, K., & Totsche, K. U. (2014). Biodegradation of ferrihydrite-associated organic matter. Biogeochemistry, 119, 45–50.
Encyclopedia of Soils in the Environment. (2005).
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M., Janssen-Megens, E. M., Francoijs, K.-J., … Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288), 543–548.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., & Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 113(45), 12792–12796.
F. Peryea and R. Kammereck. (1997). Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, Soil Pollut, 93, 243–254.
Fahrbach, M., Kuever, J., Meinke, R., Kämpfer, P., & Hollender, J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium. International journal of systematic and evolutionary microbiology, 56(7), 1547–1552.
Faith, D. P., & Baker, A. M. (2007). Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evolutionary Bioinformatics Online, 2, 121–128.
Glodowska, M., Stopelli, E., Straub, D., Vu Thi, D., Trang, P. T. K., Viet, P. H., AdvectAs Team Members, Berg, M., Kappler, A., & Kleindienst, S. (2021). Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 407, 124398.
Grosskopf, R., Janssen, P. H., & Liesack, W. (1998). Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology, 64(3), 960–969.
Guo, H., Stüben, D., & Berner, Z. (2007). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53.
Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W., & Saunders, J. R. (1996). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Applied and Environmental Microbiology, 62(2), 668–675.
Haroon M, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P. (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(5), 67–70.
Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.
He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., & Gadd, G. M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. The Science of the Total Environment, 610-611, 759–768.
Holmes, A. J.; Costello, A.; Lidstrom, M. E.; Murrell, J. C., Evidence that participate methane
monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS microbiology letters 1995, 132, (3), 203-208.
Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.
James, T. Hollibaugh., Charles, Budinoff., Ryan A. Hollibaugh., Briana, Ransom., & Nasreen, Bano. (2006). Sulfide Oxidation Coupled to Arsenate Reduction by a Diverse Microbial Community in a Soda Lake. Applied and Environmental Microbiology, 72(3), 2043–2049.
Jang, C.S., Lin, K.H., Liu, C.W., & Lin, M.C. (2009). Risk based assessment of arsenic-affected aquacultural water in black-foot disease hyperendemic areas. Stochastic Environmental Research and Risk Assessment, 23, 603–612.
Jeffrey, Paulo H. Perez., Dominique J. Tobler., Andrew N. Thomas., Helen M. Freeman., Knud, Dideriksen., Jörg, Radnik., & Liane G. Benning. (2019). Adsorption and Reduction of Arsenate during the Fe2+-Induced Transformation of Ferrihydrite. ACS Earth and Space Chemistry, 3 (6), 884-894.
Jessen, S., Larsen, F., Postma, D., Viet, P. H., Ha, N. T., Nhan, P. Q., Nhan, D. D., Duc, M. T., Hue, N. T. M., Huy, T. D., Luu, T. T., Ha, D. H., & Jakobsen, R. (2008). Palaeo-hydrogeological control on groundwater As levels in Red River delta, Vietnam. In Applied Geochemistry (Vol. 23, Issue 11, pp. 3116–3126).
Jiang, Z., Li, P., Wang, Y., Liu, H., Wei, D., Yuan, C., & Wang, H. (2019). Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. In Scientific Reports (Vol. 9, Issue 1).
Juerg Zobrist, Philip R. Dowdle, James A. Davis, and Ronald S. Oremland. (2000). Mobilization of Arsenite by Dissimilatory Reduction of Adsorbed Arsenate. Environmental Science & Technology, 34 (22), 4747-4753.
Joye, S.B. (2012). A piece of the methane puzzle. Nature, 491, 538-539.
Jørgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10, 849.
Karagas, M. R., Gossai, A., Pierce, B., & Ahsan, H. (2015). Drinking Water Arsenic Contamination, Skin Lesions, and Malignancies: A Systematic Review of the Global Evidence. Current Environmental Health Reports, 2(1), 52–68.
Katz, J. E., Zhang, X., Attenkofer, K., Chapman, K. W., Frandsen, C., Zarzycki, P., Rosso, K. M., Falcone, R. W., Waychunas, G. A., & Gilbert, B. (2012). Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. Science, 337(6099), 1200–1203.
Kirk, M. F., Holm, T. R., Park, J., Jin, Q., Sanford, R. A., Fouke, B. W., & Bethke, C. M. (2004). Bacterial sulfate reduction limits natural arsenic contamination in groundwater. In Geology (Vol. 32, Issue 11, p. 953).
Knief, C. (2015). Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Frontiers in Microbiology, 6, 1346.
Knittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311–334.
Kordas K, Lonnerdal B, Stoltzfuss RJ. (2007). Interactions between nutrition and environmental exposures: Effects on health outcomes in women and children. Journal of Renal Nutrition, 137:2794–2797.
Kukkadapu, R. K., J. M. Zachara., J. K. Fredrickson., & D. W. Kennedy. (2004). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III) reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochemical et Cosmochimica Acta, 68, 2784-2799.
Kulkarni, H. V., Mladenov, N., McKnight, D. M., Zheng, Y., Kirk, M. F., & Nemergut, D. R. (2018). Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. The Science of the Total Environment, 615, 1390–1395.
Kuloyo, O., Ruff, S.E., Cahill, A., Connors, L., Zorz, J.K., de Angelis, I.H., Nightingale, M.,
Mayer, B., Strous, M., 2020. Methane oxidation and methylotroph population
dynamics in groundwater mesocosms. Environ. Microbiol. 22, 1222–1237.
Lanyang museum’S 47th newsletter. (2008). Retrieved August 24, 2021, from http://enews.lym.gov.tw/content.asp?pid=42&k=193
Lapworth, D. J., Gooddy, D. C., Butcher, A. S. & Morris, B. L. (2008). Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). Applied Geochemistry, 23, 3384–3390.
Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. & Bollinger, J.-C. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 255, 52–58 (2002).
Li, B., Zhang, X., Guo, F., Wu, W., & Zhang, T. (2013). Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 47(13), 4207–4216.
Li, X., & Krumholz, L. R. (2007). Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. Journal of bacteriology, 189(10), 3705–3711.
Li, Y., Alaimo, C. P., Kim, M., Kado, N. Y., Peppers, J., Xue, J., Wan, C., Green, P. G., Zhang, R., Jenkins, B. M., Vogel, C. F. A., Wuertz, S., Young, T. M., & Kleeman, M. J. (2019). Composition and Toxicity of Biogas Produced from Different Feedstocks in California. Environmental Science & Technology, 53(19), 11569–11579.
Liao, V. H.-C., Chu, Y.-J., Su, Y.-C., Lin, P.-C., Hwang, Y.-H., Liu, C.-W., Liao, C.-M., Chang, F.-J., & Yu, C.-W. (2011). Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. Journal of Hazardous Materials, 197, 397–403.
Lin, Z., & Puls, R. W. (2003). Potential indicators for the assessment of arsenic natural attenuation in the subsurface. In Advances in Environmental Research (Vol. 7, Issue 4, pp. 825–834).
Liu, C.-H., Chuang, Y.-H., Chen, T.-Y., Tian, Y., Li, H., Wang, M.-K., & Zhang, W. (2015). Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science & Technology, 49(13), 7726–7734.
Liu, T.-K., Chen, K.-Y., Yang, T. F., Chen, Y.-G., Chen, W.-F., Kang, S.-C., & Lee, C.-P. (2009). Origin of methane in high-arsenic groundwater of Taiwan – Evidence from stable isotope analyses and radiocarbon dating. In Journal of Asian Earth Sciences (Vol. 36, Issues 4-5, pp. 364–370).
Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A.-E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: the microbe electric’s physiology, ecology, and practical applications. Advances in Microbial Physiology, 59, 1–100.
Lu FJ. (1990) Blackfoot disease: arsenic or humic acid? Lancet, 336(8707), 115–116.
Luidold, S., Antrekowitsch, H. Hydrogen as a reducing agent: State-of-the-art science and technology. (2007). Journal of The Minerals, Metals & Materials Society, 59, 20–26.
Luton, P. E., Wayne, J. M., Sharp, R. J., & Riley, P. W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148(Pt 11), 3521–3530.
Mabuchi, K., Lilienfeld, A.M., & Snell, L.M. (1979). Lung cancer among pesticide workers
exposed to inorganic arsenicals. Archives of Environmental & Occupational Health, 34, 312–319.
Malasarn, D., Saltikov, C. W., Campbell, K. M., Santini, J. M., Hering, J. G., & Newman, D. K. (2004). arrA is a reliable marker for As(V) respiration. Science, 306(5695), 455.
McDonald, I. R., & Murrell, J. C. (1997). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Applied and Environmental Microbiology, 63(8), 3218–3224.
McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., & Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11(1), 1279.
McMahon, P. B., & Chapelle, F. H. (1991). Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. In Nature (Vol. 349, Issue 6306, pp. 233–235).
Meliker, J. R., Franzblau, A., Slotnick, M. J., & Nriagu, J. O. (2006). Major contributors to inorganic arsenic intake in southeastern Michigan. International Journal of Hygiene and Environmental Health, 209(5), 399–411.
Michael, F, Hughes. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology letters, 133(1), 1–16.
Morse, J. W. (1988). Stumm, W. [ed.]. 1987. Aquatic surface chemistry: Chemical processes at the particle-water interface. John Wiley & Sons, Inc., Somerset, New Jersey. 520 p. $69.95. In Limnology and Oceanography (Vol. 33, Issue 2, pp. 311–311).
Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.
Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., & Liu, C.-C. (2008). Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4), 85–96.
Neumann, R. B., Pracht, L. E., Polizzotto, M. L., Badruzzaman, A. B. M., & Ashraf Ali, M. (2014). Biodegradable Organic Carbon in Sediments of an Arsenic-Contaminated Aquifer in Bangladesh. In Environmental Science & Technology Letters (Vol. 1, Issue 4, pp. 221–225).
Neumann, R., Ashfaque, K., Badruzzaman, A. M., Ashraf Ali., Julie K. Shoemaker and Charles F. Harvey. (2010). Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3, 46–52.
Nordstrom, D. K. (2002). Public health. Worldwide occurrences of arsenic in ground water. Science, 296(5576), 2143–2145.
O’Day, P. A. (2005). Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation. Amer Chemical Society.
Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939–944.
Parkhurst, D.L. (1995). User′s guide to PHREEQC, a computer model for speciation, reaction-path, advective-transport and inverse geochemical calculations. United States Geological Survey, Water Resources Investigation Report, 4195–4227.
Park, S.-G., Rhee, C., Shin, S. G., Shin, J., Mohamed, H. O., Choi, Y.-J., & Chae, K.-J. (2019). Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. Environment International, 131, 105006.
Polcyn, W., & Luciński, R. (2003). Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiology Letters, 226(2), 331–337.
Postma, D., Larsen, F., Hue, N. T. M., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. In Geochimica et Cosmochimica Acta (Vol. 71, Issue 21, pp. 5054–5071).
R. Jenkins, 1988. X-ray Fluorescence Spectrometry, John Wiley & Sons.
Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., & Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918–921.
Rathi, B., Neidhardt, H., Berg, M., Siade, A., & Prommer, H. (2017). Processes governing arsenic retardation on Pleistocene sediments: Adsorption experiments and model-based analysis. In Water Resources Research (Vol. 53, Issue 5, pp. 4344–4360).
Ravenscroft, P.; Brammer, H.; Richards, K. Arsenic Pollution: A Global Synthesis; John Wiley & Sons, 2009; Vol. 28.
Rosen, P. (1971). Theoretical significance of arsenic as a carcinogen. Journal of Theoretical Biology, 32(2), 425–426.
Samantha M, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013; 500:567–70.
Sano, Y., Hao, Y., & Kuwahara, F. (2018). Development of an electrolysis based system to continuously recover magnesium from seawater. Heliyon, 4(11), e00923.
Sinotech Engineering Consultants, inc. (2009, July). 地面地下水聯合運用-以蘭陽地區為例 Retrieved August 24, 2021, from https://www.sinotech.org.tw/journal/pdfview.aspx?n=104&s=51
Schoell, M. (1980). The hydrogen and carbon isotopic composition of methane from natural gases of various origins. In Geochimica et Cosmochimica Acta (Vol. 44, Issue 5, pp. 649–661).
Schwertmann, U., & Cornell, R. M. (2008). Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons.
Shen, L.-D., Ouyang, L., Zhu, Y., & Trimmer, M. (2019). Active pathways of anaerobic methane oxidation across contrasting riverbeds. The ISME Journal, 13(3), 752–766.
Shengwen Shen., Xing Fang Li., William R. Cullen., Michael Weinfeld., & X. Chris Le. (2013). Arsenic Binding to Proteins. Chemical reviews, 113(10), 7769–7792.
Shi, L.-D., Guo, T., Lv, P.-L., Niu, Z.-F., Zhou, Y.-J., Tang, X.-J., Zheng, P., Zhu, L.-Z., Zhu, Y.-G., Kappler, A., & Zhao, H.-P. (2020). Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. In Nature Geoscience (Vol. 13, Issue 12, pp. 799–805).
Song, B., Chyun, E., Jaffé, P. R., & Ward, B. B. (2009). Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiology Ecology, 68(1), 108–117.
Sracek, O., Berg, M., & Müller, B. (2018). Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research International, 25(16), 15954–15961.
Stumm, W., & Morgan, J. J. (1995). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. John Wiley & Sons.
Sun, J., Prommer, H., Siade, A. J., Chillrud, S. N., Mailloux, B. J., & Bostick, B. C. (2018). Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. Environmental Science & Technology, 52(16), 9243–9253.
Tamaki, S., & Frankenberger, W. T., Jr (1992). Environmental biochemistry of arsenic. Reviews of environmental contamination and toxicology, 124, 79–110.
Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology, 144 (Pt 9), 2377–2406.
Thiel, V., Hamilton, T. L., Tomsho, L. P., Burhans, R., Gay, S. E., Schuster, S. C., Ward, D. M., & Bryant, D. A. (2014). Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi). Genome Announcements, 2(5).
Todd P. Luxton, Matthew J. Eick, Donald J. Rimstidt. (2008). The role of silicate in the adsorption/desorption of arsenite on goethite. Chemical Geology, 252, 125-135.
Trotsenko, Y. A., & Murrell, J. C. (2008). Metabolic aspects of aerobic obligate methanotrophy. Advances in Applied Microbiology, 63, 183–229.
Tsananguray Tongesay & Ronald Smart. (2007). Abiotic reduction mechanism of As(V) by fulvic acid in the absence of light and the effect of Fe(III). African Journals Online, 33(5).
Tseng, W.P., 1977. Effects and dose–response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109–119.
United States. Environmental Protection Agency. (2005). Toxicity and Exposure Assessment for Children’s Health: TEACH.
USEPA. (n.d.). 2007 U.S. EPA Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. Retrieved August 25, 2021, from
https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils
Wallis, I., Prommer, H., Berg, M., Siade, A. J., Sun, J., & Kipfer, R. (2020). The river–groundwater interface as a hotspot for arsenic release. In Nature Geoscience (Vol. 13, Issue 4, pp. 288–295).
Watanabe, T., & Hirano, S. (2013). Metabolism of arsenic and its toxicological relevance. Archives of toxicology, 87(6), 969–979.
Wilson, N. (2020). Soil Water and Ground Water Sampling. https://doi.org/10.1201/9781003075585
Williamson, W. M., Close, M. E., Leonard, M. M., Webber, J. B., & Lin, S. (2012). Groundwater biofilm dynamics grown in situ along a nutrient gradient. Ground Water, 50(5), 690–703.
Xu, J., Wu, J., & He, Y. (2013). Functions of Natural Organic Matter in Changing Environment. Springer Science & Business Media.
Yong, R. N., & Mulligan, C. N. (2003). Natural Attenuation of Contaminants in Soils. CRC Press.
Yuwen Chen., Junyi Zou., Hui Sun., Jihong Qin & Jiyuan Yang. (2021). Metals in Traditional Chinese medicinal materials (TCMM): A systematic review. Ecotoxicology and Environmental Safety, 207.
Zacarías-Estrada, O. L., Ballinas-Casarrubias, L., Montero-Cabrera, M. E., Loredo-Portales, R., Orrantia-Borunda, E., & Luna-Velasco, A. (2020). Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor. Journal of Hazardous Materials, 384, 121392.
Zaldívar, R. (1974). Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitrage Zur Pathologie, 151(4), 384–400.
Zhang, J., Zhou, W., Liu, B., He, J., Shen, Q., & Zhao, F.-J. (2015). Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environmental Science & Technology, 49(10), 5956–5964.
Zhu, W., Young, L. Y., Yee, N., Serfes, M., Danielle Rhine, E., & Reinfelder, J. R. (2008). Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. In Geochimica et Cosmochimica Acta (Vol. 72, Issue 21, pp. 5243–5250).
Zhu, Y., Guo, H., Bhattacharya, P., Ahmad, A., Bundschuh, J., & Naidu, R. (2019). Environmental Arsenic in a Changing World: Proceedings of the 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018), July 1-6, 2018, Beijing, P.R. China. CRC Press.
水文地質資料庫整合查詢平台。台灣: 中央地質調查所
全國環境水質監測資訊網-水質監測歷史數據下載【資料檔】。台灣: 環境保護署。
行政院環境保護署地下水砷濃度潛勢範圍查詢平台。台灣: 環境保護署
陳文福,呂學諭,劉聰桂 (2010)。台灣地下水之氧化還原狀態與砷濃度。農業工程學報。
陳文山,宋時驊,吳樂群,徐澔德,楊小青 (2005)。末次冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊。62,40-55。
指導教授 林居慶(Chu-Ching Lin) 審核日期 2022-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明