參考文獻 |
Abbas, S., Saleem, M.A., Kazmi, S.M. and Munir, M.J. 2017. Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering 14, 7-14.
Ahmad, W., Park, E., Lee, H., Kim, J.Y., Kim, B.C., Jurng, J. and Oh, Y. 2021. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation. Applied Surface Science 538, 147504.
Aïssa, A.H., Puzenat, E., Plassais, A., Herrmann, J.M., Haehnel, C. and Guillard, C. 2011. Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Applied Catalysis B: Environmental 107(1-2), 1-8.
Aji, B., Rosalina, D. and Amin, M. 2018. The effect of sintering time on recycled magnesia brick from kiln of the cement plant, p. 012017, IOP Publishing.
Ângelo, J., Andrade, L., Madeira, L.M. and Mendes, A. 2013. An overview of photocatalysis phenomena applied to NOx abatement. Journal of environmental management 129, 522-539.
Anjum, F., Ghaffar, A., Jamil, Y. and Majeed, M.I. 2019. Effect of sintering temperature on mechanical and thermophysical properties of biowaste-added fired clay bricks. Journal of Material Cycles and Waste Management 21(3), 503-524.
Baspinar, M.S., Demir, I. and Orhan, M. 2010. Utilization potential of silica fume in fired clay bricks. Waste management & research 28(2), 149-157.
Carp, O., Huisman, C.L. and Reller, A. 2004. Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry 32(1-2), 33-177.
Celik, A.G., Depci, T. and Kılıc, A.M. 2014. New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials. Construction and Building Materials 62, 59-66.
Chen, H., Nanayakkara, C.E. and Grassian, V.H. 2012. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical reviews 112(11), 5919-5948.
Chen, X., Wang, H., Chen, M., Qin, X., He, H. and Zhang, C. 2021. Co-function mechanism of multiple active sites over Ag/TiO2 for formaldehyde oxidation. Applied Catalysis B: Environmental 282, 119543.
Chindaprasirt, P., Srisuwan, A., Saengthong, C., Lawanwadeekul, S. and Phonphuak, N. 2021. Synergistic effect of fly ash and glass cullet additive on properties of fire clay bricks. Journal of Building Engineering 44, 102942.
De Silva, G.S. and Perera, B. 2018. Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks. Journal of building engineering 18, 252-259.
Debono, O., Hequet, V., Le Coq, L., Locoge, N. and Thevenet, F. 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental 218, 359-369.
Demir, I. 2009. Reuse of waste glass in building brick production. Waste management & research 27(6), 572-577.
Deng, L., Xu, Q. and Wu, H. 2016. Synthesis of zeolite-like material by hydrothermal and fusion methods using municipal solid waste fly ash. Procedia Environmental Sciences 31, 662-667.
El Goresy, A., Chen, M., Gillet, P., Dubrovinsky, L., Graup, G. and Ahuja, R. 2001. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth and Planetary Science Letters 192(4), 485-495.
Elavarasan, S., Priya, A. and Kumar, V.K. 2021. Manufacturing fired clay brick using fly ash and M− Sand. Materials Today: Proceedings 37, 872-876.
Feng, G., Hu, M., Wu, B., Shi, S., Yuan, S., Li, Y. and Zeng, H. 2022. Hydrogenated Amorphous Titania with Engineered Surface Oxygen Vacancy for Efficient Formaldehyde and Dye Removals under Visible-Light Irradiation. Nanomaterials 12(5), 742.
Fu, P., Zhang, P. and Li, J. 2011. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+ 185nm irradiation. Applied Catalysis B: Environmental 105(1-2), 220-228.
Gana, A., Okunola, A.A. and Abioye, O. 2021. Comparative study on the use of rice husk ash cassava peel ash, perinkle shell ash, and gypsum as stabilizing agent for clay brick production. CED TEech International Journal of Agriculture Research & Life Science, V2, 12-45.
Ge, L., Xu, M. and Fang, H. 2006. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4–TiO2 thin films under visible-light irradiation. Journal of Molecular Catalysis A: Chemical 258(1-2), 68-76.
Gencel, O., Munir, M.J., Kazmi, S.M.S., Sutcu, M., Erdogmus, E., Velasco, P.M. and Quesada, D.E. 2021. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceramics International 47(21), 30425-30438.
Giergiczny, Z. 2019. Fly ash and slag. Cement and Concrete Research 124, 105826.
Guimarães, C., Delaqua, G., de Azevedo, A.R.G., Monteiro, S.N., Amaral, L., Souza, C.L.M., da Silva, A., Holanda, J.N. and Vieira, C.M.F. 2021. Heating Rate Effect during Sintering on the Technological Properties of Brazilian Red Ceramics.
Guo, Q., Zhou, C., Ma, Z. and Yang, X. 2019. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials 31(50), 1901997.
Hemmings, R.T., Hill, R.L., Cornelius, B.J. and McBay, A. 2004 Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites, Google Patents.
Hossain, S.S., Bae, C.J. and Roy, P. 2021. A replacement of traditional insulation refractory brick by a waste‐derived lightweight refractory castable. International Journal of Applied Ceramic Technology 18(5), 1783-1791.
Hu, X., Li, C., Sun, Z., Song, J. and Zheng, S. 2020. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Building and Environment 168, 106481.
Huang, Q., Ma, W., Yan, X., Chen, Y., Zhu, S. and Shen, S. 2013. Photocatalytic decomposition of gaseous HCHO by ZrxTi1− xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. Journal of Molecular Catalysis A: Chemical 366, 261-265.
Huang, Y., Ho, S.S.H., Lu, Y., Niu, R., Xu, L., Cao, J. and Lee, S. 2016. Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1), 56.
Hwang, C.L., Huynh, T.P. and Risdianto, Y. 2016. An application of blended fly ash and residual rice husk ash for producing green building bricks. Journal of the Chinese Institute of Engineers 39(7), 850-858.
Ifang, S., Gallus, M., Liedtke, S., Kurtenbach, R., Wiesen, P. and Kleffmann, J. 2014. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment 91, 154-161.
Iftikhar, S., Rashid, K., Haq, E.U., Zafar, I., Alqahtani, F.K. and Khan, M.I. 2020. Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials 259, 119659.
Ji, J., Xu, Y., Huang, H., He, M., Liu, S., Liu, G., Xie, R., Feng, Q., Shu, Y. and Zhan, Y. 2017. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal 327, 490-499.
Kadir, A.A. and Mohajerani, A. 2015. Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts. Applied Clay Science 104, 269-276.
Khodadadian, F., De Boer, M.W., Poursaeidesfahani, A., Van Ommen, J.R., Stankiewicz, A.I. and Lakerveld, R. 2018. Design, characterization and model validation of a LED-based photocatalytic reactor for gas phase applications. Chemical Engineering Journal 333, 456-466.
Kibanova, D., Sleiman, M., Cervini Silva, J. and Destaillats, H. 2012. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of hazardous materials 211, 233-239.
Kizinievič, O., Kizinievič, V. and Malaiškienė, J. 2018. Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks. Construction and Building Materials 169, 689-696.
Kwon, D.W., Seo, P.W., Kim, G.J. and Hong, S.C. 2015. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: the effect of relative humidity on catalytic activity. Applied catalysis B: environmental 163, 436-443.
Lam, R.C., Leung, M.K., Leung, D.Y., Vrijmoed, L.L., Yam, W. and Ng, S. 2007. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. Solar energy materials and solar cells 91(1), 54-61.
Lee, Y.E., Chung, W.C. and Chang, M.B. 2019. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environmental Science and Pollution Research 26(20), 20908-20919.
Li, Y., Jiang, Y., Peng, S. and Jiang, F. 2010. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. Journal of Hazardous Materials 182(1-3), 90-96.
Liang, H.H. and Li, J.L. 2015. The influence of hydration and swelling properties of gypsum on the preparation of lightweight brick using water supply reservoir sediment. Construction and Building Materials 94, 691-700.
Liu, Y., Wei, J., Xiong, R., Pan, C. and Shi, J. 2011. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Applied surface science 257(18), 8121-8126.
Luo, L., Li, K., Fu, W., Liu, C. and Yang, S. 2020. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Construction and building materials 232, 117250.
La Rubia-García, M.D., Yebra-Rodríguez, Á., Eliche-Quesada, D., Corpas-Iglesias, F.A. and López-Galindo, A. 2012. Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Construction and Building Materials 36, 495-500.
Mamaghani, A.H., Haghighat, F. and Lee, C.S. 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental 203, 247-269.
Mamaghani, A.H., Haghighat, F. and Lee, C.S. 2018. Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chemical engineering journal 337, 60-73.
Mao, L., Zhou, H., Peng, M., Hu, L. and Zhang, W. 2020. Effects of waste glass particle size on improving the property and environmental safety of fired brick containing electroplating sludge. Construction and Building Materials 257, 119583.
Maury-Ramirez, A., Nikkanen, J.P., Honkanen, M., Demeestere, K., Levänen, E. and De Belie, N. 2014. TiO2 coatings synthesized by liquid flame spray and low temperature sol-gel technologies on autoclaved aerated concrete for air-purifying purposes. Materials characterization 87, 74-85.
Muñoz, P., Mendívil, M., Letelier, V. and Morales, M. 2019. Thermal and mechanical properties of fired clay bricks made by using grapevine shoots as pore forming agent. Influence of particle size and percentage of replacement. Construction and Building Materials 224, 639-658.
Nicolas, M.F., Vlasova, M., Aguilar, P.A.M., Kakazey, M., Cano, M.M.C., Matus, R.A. and Puig, T.P. 2020. Development of an energy-saving technology for sintering of bricks from high-siliceous clay by the plastic molding method. Construction and Building Materials 242, 118142.
Ousji, R., Ksibi, Z., Ghorbel, A. and Fontaine, C. 2022. Ag-Based Catalysts in Different Supports: Activity for Formaldehyde Oxidation. Advances in Materials Physics and Chemistry 12(8), 163-176.
Pitak, I., Baltušnikas, A., Kalpokaitė-Dičkuvienė, R., Kriukiene, R. and Denafas, G. 2022. Experimental study effect of bottom ash and temperature of firing on the properties, microstructure and pore size distribution of clay bricks: a Lithuania point of view. Case Studies in Construction Materials, e01230.
Ram, S., Pradhan, K. and Ralegaonkar, R.V. 2017 Use of co-fired blended ash in the development of sustainable construction materials, pp. 425-432, Thomas Telford Ltd.
Rayalu, S., Labhasetwar, N.K. and Khanna, P. 1999 Process for the synthesis of flyash based zeolite-A, Google Patents.
Sakagami, E. 2006 Method and device for manufacturing zeolite from ashes resulting from the incineration of combustible waste, Google Patents.
Shah, K.W. and Li, W. 2019. A review on catalytic nanomaterials for volatile organic compounds VOC removal and their applications for healthy buildings. Nanomaterials 9(6), 910.
Shayegan, Z., Haghighat, F. and Lee, C.S. 2019. Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chemical Engineering Journal 357, 533-546.
Shelote, K.M., Gavali, H.R., Bras, A. and Ralegaonkar, R.V. 2021. Utilization of co-fired blended ash and chopped basalt fiber in the development of sustainable mortar. Sustainability 13(3), 1247.
Shie, J.L., Lee, C.H., Chiou, C.S., Chang, C.T., Chang, C.C. and Chang, C.Y. 2008. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous materials 155(1-2), 164-172.
Shon, C.S., Saylak, D. and Zollinger, D.G. 2009. Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks. Construction and Building Materials 23(5), 2062-2071.
Sun, J., Zhou, H., Jiang, H., Zhang, W. and Mao, L. 2021. Recycling municipal solid waste incineration fly ash in fired bricks: An evaluation of physical-mechanical and environmental properties. Construction and Building Materials 294, 123476.
Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E. and Ozbakkaloglu, T. 2019. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production 233, 753-764.
Tasbihi, M., Bendyna, J.K. and Notten, P.H. 2015. A short review on photocatalytic degradation of formaldehyde. Journal of nanoscience and nanotechnology 15(9), 6386-6396.
Tsega, E., Mosisa, A. and Fufa, F. 2017. Effects of firing time and temperature on physical properties of fired clay bricks. American Journal of Civil Engineering 5(1), 21.
Ukwatta, A. and Mohajerani, A. 2017. Characterisation of fired-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks. Construction and Building Materials 142, 11-22.
Weon, S. and Choi, W. 2016. TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environmental Science & Technology 50(5), 2556-2563.
Wu, G., Zhao, C., Zhou, X., Chen, J. and Li, Y. 2019. DFT study on the interaction of HCHO molecule with S-doped TiO2 (001) surface without and with water and oxygen molecules. Journal of Materiomics 5(4), 558-566.
You, Y., Zhang, S., Wan, L. and Xu, D. 2012. Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde. Applied surface science 258(8), 3469-3474.
Yulin, L., Jianhong, Z., Junlin, A., Boping, Z., Hanxi, X., Ye, X. and Youzhi, D. 2022. Fabrication of BiOBr/RGO/diatomite and its photocatalytic degradation performance of formaldehyde gas under visible light. Chinese Journal of Environmental Engineering 16(5), 1558-1568.
Zhang, C., He, H. and Tanaka, K.I. 2005. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catalysis Communications 6(3), 211-214.
Zhang, G. and Qin, X. 2013. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites. Materials Research Bulletin 48(10), 3743-3749.
Zhang, T., Li, X., Rao, Y., Liu, Y. and Zhao, Q. 2020. Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustainable Cities and Society 55, 102050.
Zhang, X. and Liu, Q. 2008. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Applied Surface Science 254(15), 4780-4785.
Zhang, Y., Ni, H., Lv, S., Wang, X., Li, S. and Zhang, J. 2021. Preparation of sintered brick with aluminum dross and optimization of process parameters. Coatings 11(9), 1039.
Zhao, Y., Ren, Q. and Na, Y. 2019. Potential utilization of phosphorus in fly ash from industrial sewage sludge incineration with biomass. Fuel Processing Technology 188, 16-21.
Zhong, L., Brancho, J.J., Batterman, S., Bartlett, B.M. and Godwin, C. 2017. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental 216, 122-132.
Zhou, C. 2018. Production of eco-friendly permeable brick from debris. Construction and Building Materials 188, 850-859.
Zhu, L., Jacob, D.J., Keutsch, F.N., Mickley, L.J., Scheffe, R., Strum, M., González Abad, G., Chance, K., Yang, K. and Rappenglück, B. 2017. Formaldehyde (HCHO) as a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States. Environmental Science & Technology 51(10), 5650-5657.
Zong, Y.B., Chen, W.H., Liu, Y.X., Xu, X.X., LIU, Z.B. and Cang, D.Q. 2019. Influence of slag particle size on performance of ceramic bricks containing red clay and steel-making slag. Journal of the Ceramic Society of Japan 127(2), 105-110.
行政院環境保護署,事業廢棄物申報及管理資訊系統,各事業廢棄物代碼申報流向,網址:https://waste.epa.gov.tw/RWD/Statistics/?page=Year1,網頁擷取日期:2022年9月。
行政院公共工程委員會,公共工程飛灰混凝土手冊,行政院公共工程委員會,臺北,1999。
經濟部工業局,工業廢棄物清理與資源化資訊網,再生技術資料庫,爐渣及灰渣,網址:https://riw.tgpf.org.tw/tech/,網頁擷取日期:2022年9月。
經濟部工業局,廢棄物資源化技術資料彙編,經濟部工業局,臺北,1999。
吳冠興,垃圾焚化飛灰與淨水污泥應用高壓蒸氣技術製備為輕質化材料之可行性評估研究,碩士論文,逢甲大學環境工程與科學學系,台中,2015。
吳浚瑋,江康鈺,淨水污泥與漿紙污泥煆燒灰共同製備輕質化材料之抗菌特性評估研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
李公哲,範振軒,陳冠均,以TFT-LCD廢玻璃混合轉爐石燒製之輕質骨材拌製輕質混凝土研究,中華民國環境工程學會2014年廢棄物處理技術研討會,台中,2014。
李善源,陳盈良,謝尚谷,王俊瑋,張祖恩,水洗焚化飛灰再利用於輕質混凝土之研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
杜侑倫,江康鈺,自製光觸媒催化材料應用於去除甲苯之可行性研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
林宸毅,吳明富,黃偉慶,純燃煤與流體化床混燒煤灰渣材料特性分析與再利用可行性評估,鋪面工程,18卷1期,63-71,2020。
林凱隆,鄭敬融,太陽能板廢玻璃燒結作為地磚材料之研究,台灣環境資源永續發展協會2011年區域與環境資源永續發展研討會,臺北,2011。
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,M D類焚化飛灰再利用製成紅磚之研究,中華民國環境工程學會2020年廢棄物處理技術研討會,桃園市,2020。
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,MSWI 開創 D 類焚化飛灰結合淨水污泥製成紅磚之研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
張坤森,林珮琪,林宜青,胡佳莉,江冠臻,以廢棄牡蠣殼燒製輕質玻璃之研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
許育婷,林以潔,陳志成,焚化底渣再利用合成環保吸附材料對重金屬之吸附效能與特性模擬研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
許育婷,林以潔,陳志成,焚化底渣合成環保吸附材料之效能測試研究,中華民國環境工程學會2020年廢棄物處理技術研討會,桃園市,2020。
陳震翰,陳振澤,林裕程,董正釱,陳秋妏,稻殼添加對浚泥再利用製成輕質骨材特性影響之研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
楊昇府,邱文通,王多美,李文成,陳靖良,曾錦清,以電漿熔岩試做多孔性輕質熔岩板材之研究,中華民國環境工程學會2007年廢棄物處理技術研討會,高雄,2007。
楊詠勝,李慧梅,杜紹輔,鉑金改質二氧化鈦之光觸媒降解室內甲醛之研究,中華民國環境工程學會2014年空氣污染控制技術研討會,台中,2014。
劉彥良,混燒灰碴應用於控制性低強度材料工程性質之研究,碩士論文,國立臺灣海洋大學,基隆市,2015。
劉美芬,回收無害化垃圾焚化飛灰製備一般瓷磚與輕質瓷磚之研究,碩士論文,國立聯合大學,苗栗市,2013。
蔡坤龍,葉王珍,曹明浙,許志福,莊士群,焚化爐及燃煤電廠飛灰底渣無機物指紋鑑識計畫,中華民國環境分析學2011年環境分析化學研討會,桃園市,2011。
蔡築廷,陳昀萱,許育婷,林以潔,陳志成,焚化底渣水熱合成沸石及其吸附特性研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
戴肇寬,林居慶,江康鈺,應用高壓蒸氣技術製備抗菌輕質材料及其特性評估研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,中華民國環境工程學會2009年廢棄物處理技術研討會,雲林,2009。
羅煌木,陳右儒,邱薰瑩,簡鈺銘,丁哲皓,許芢賓,焚化爐灰燼特性及輕質骨材之再利用研究,中華民國環境工程學會2011年廢棄物處理技術研討會,台南,2011。
|