博碩士論文 108326027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:13.58.199.20
姓名 林曉君(Hsiao-Chun Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 自製光觸媒催化輕質材料應用於甲醛去除之可行性研究
(Feasibility study on removal of formaldehyde by prepared air-purifying photocatalyst and lightweight material)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-11-8以後開放)
摘要(中) 本研究嘗試利用鹽基度探討不同來源之混燒飛灰及底渣,應用燒結技術製備輕質化材料之可行性,後續並以奈米二氧化鈦塗層技術,進一步製備為光觸媒催化輕質材料。高溫燒結試驗主要控制條件,包括輕質材料生胚之成型壓力(160 kgf/cm2)、添加混燒飛灰及底渣不同比例(鹽基度)、燒結時間(1-3 hr)及溫度(900-1,000°C)等。本研究為驗證光觸媒催化材料之功能特性,實驗規劃甲醛去除之模擬試驗,以期評估製備材料之光觸媒催化能力。
根據鹽基度試驗結果顯示,當不同來源及添加比例之混燒飛灰及底渣,進行輕質化材料之製備,鹽基度主要範圍介於0.17至0.37之間,隨鹽基度增加,輕質化材料試體之視孔隙率及開孔率,亦呈現增加之趨勢,而試體之抗壓強度則呈現降低之現象,然整體而言,試體之抗壓強度均可符合中華民國國家標準普通磚之規範(大於150 kgf/cm2)。另根據群聚分析結果顯示,試體之鹽基度控制在0.15至0.25間,試驗製備之輕質化材料約有66.7%至76.2%之試體,其材料具有吸水率10-20%、視孔隙率25-35%、開孔率35-60%,抗壓強度介於300-700 kgf/cm2等特性。
經二氧化鈦塗佈後之光催化輕質材料之試驗結果顯示,材料物種主要以石英(Quartz, SiO2)、二氧化鈦(Titanium Oxide, TiO2)、透長石(Sanidine, KAlSi3O8)及微斜長石(Microcline, KAlSi3O8)等為主。應用於甲醛去除之試驗結果顯示,添加0.286 wt % TiO2光觸媒之催化材料,具有較佳之光催化活性,其中甲醛去除率及二氧化碳礦化率,分別約為11.52 %及13.94 %。整體而言,本研究以不同來源之混燒飛灰及底渣,製備為光觸媒催化輕質材料,不僅可符合國家輕質化材料之規範要求,同時具有光催化降解甲醛之效果。未來相關技術成果,將能解決大量衍生混燒飛灰及底渣之處理處置問題,同時具有高值化材料應用與發展之潛力。
摘要(英) This study investigated the feasibility of lightweight materials manufactured from different sources of co-fried fly ash and bottom ash with controlled basicity by sintering. Subsequently, nano-titanium dioxide(TiO2) coating technology is used to prepare the air-purifying photocatalyst and lightweight materials. The primary experimental conditions of the high-temperature sintering process include the forming pressure of the sintered specimen (160 kgf/cm2), the different addition of the co-fried fly ash and bottom ash (denoted as basicity), sintering time (1-3 hr), and sintering temperature (900-1,000°C). To further evaluate the prepared air-purifying photocatalyst′s performances, formaldehyde (HCHO) removal experiments were also conducted.
The basicity was ranged from 0.17 to 0.37 as the sintered lightweight specimens prepared by different sources of co-fried fly ash and bottom ash in this research. The apparent porosity and open porosity of the sintered lightweight specimen increased with the basicity. Meanwhile, the compressive strength of the sintered specimen decreases with an increase in the basicity. Overall, the compressive strengths of the prepared lightweight specimens are all in compliance with the CNS 382 common bricks criteria (>150 kgf/cm2). According to the cluster analysis results, there are approximately 66.7% to 76.2% of prepared lightweight materials controlling the basicity ranged from 0.15 and 0.25 had good characteristics, such as water absorption of 10-20%, an apparent porosity of 25-35%, open porosity of 35-60%, and the compressive strength of 300-700 kgf/cm2.
XRD identified the main crystal phases of the air-purifying photocatalyst and lightweight materials, including Quartz (SiO2), Titanium Oxide (TiO2), Sanidine (KAlSi3O8), and Microcline (KAlSi3O8). According to the formaldehyde (HCHO) removal results, the prepared air-purifying photocatalyst containing 0.286 wt% TiO2 had good photocatalytic activity. The HCHO removal efficiency and CO2 mineralization were 11.52 % and 13.94 %, respectively. In summary, the prepared air-purifying photocatalyst and lightweight materials manufactured from the co-fried fly ash and bottom ash with controlling the basicity could match the National lightweight materials standard but also have a good performance for removing HCHO via photocatalytic degradation. The results of this research could provide a solution for solving a large amount of co-fried fly ash and bottom ash treatment problems. The results also verified the potential for the application and development of high-value materials.
關鍵字(中) ★ 混燒飛灰
★ 混燒底渣
★ 燒結技術
★ 鹽基度
★ 光觸媒催化材料
關鍵字(英) ★ co-fried fly ash
★ co-fried bottom ash
★ sintering
★ basicity
★ air-purifying photocatalyst
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
第二章 文獻回顧 3
2-1 混燒飛灰及底渣處理現況及性質分析 3
2-1-1 混燒飛灰及底渣產量及物化特性 3
2-1-2混燒飛灰及底渣處理現況 6
2-2 燒結技術之操作條件 11
2-3輕質化材料 21
2-4揮發性有機物之簡介 24
2-4-1揮發性有機物物種及定義 24
2-4-2甲醛 25
2-5光觸媒催化處理揮發性有機化合物 27
2-5-1揮發性有機化合物處理技術 27
2-5-2光觸媒介紹 28
2-5-3二氧化鈦光催化氧化原理機制 32
2-5-4光觸媒去除VOCs之應用 36
2-6光催化氧化技術不同參數對去除率的影響 38
第三章 研究材料與方法 49
3-1 實驗材料 49
3-1-1 混燒飛灰及底渣及黏土原料 49
3-1-2 二氧化鈦 49
3-2 實驗操作條件與方法 50
3-2-1 燒結試驗 50
3-2-2 塗佈TiO2試驗 52
3-2-3 甲醛去除試驗 53
3-3 分析項目及方法 56
第四章 結果與討論 65
4-1 原料基本特性分析 65
4-1-1 原料之粒徑分析 65
4-1-2 原料之化學特性分析結果 70
4-1-3 原料之紅外線光譜分析結果 73
4-1-4 原料之晶相物種鑑定分析結果 74
4-1-5 原料熱重損失之分析結果 76
4-2燒結產物之材料特性分析 78
4-2-1 燒結產物之燒失量(weight loss on ignition) 78
4-2-2 燒結產物之線性及體積變化率 80
4-2-3 燒結產物之吸水率 83
4-2-4 燒結產物之孔隙率(視孔隙率、開孔率及閉孔率) 85
4-2-5 燒結產物之體密度 89
4-2-6 燒結產物之抗壓強度(Compressive strength) 90
4-2-7 燒結產物材料特性之相關性分析 92
4-2-8 燒結產物之鹽基度(Basicity) 95
4-2-9 鹽基度與燒結產物特性之相關性分析 96
4-2-10燒結產物之重金屬分析結果 101
4-2-11燒結產物之比表面積分析結果 103
4-2-12燒結產物之紅外線光譜分析結果 104
4-2-13燒結產物之晶相物種鑑定分析結果 106
4-3 光觸媒催化材料之特性分析 108
4-3-1 TiO2塗層特性分析 108
4-3-2 TiO2塗層之表面輪廓分析結果 108
4-3-3 光觸媒催化材料之紅外線光譜分析結果 110
4-3-4 光觸媒催化材料之晶相物種鑑定分析結果 111
4-4 光觸媒催化材料甲醛去除之可行性 113
4-4-1 光觸媒催化材料甲醛去除試驗 113
4-4-2 甲醛去除率 115
4-4-3 二氧化碳礦化率 117
4-4-4 光催化反應後光觸媒催化材料之紅外線光譜分析結果 118
4-4-5 光催化反應後光觸媒催化材料之晶相物種鑑定分析結果 120
第五章 結論與建議 123
5-1 結論 123
5-2 建議 124
參考文獻 127
附錄 139
參考文獻 Abbas, S., Saleem, M.A., Kazmi, S.M. and Munir, M.J. 2017. Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering 14, 7-14.
Ahmad, W., Park, E., Lee, H., Kim, J.Y., Kim, B.C., Jurng, J. and Oh, Y. 2021. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation. Applied Surface Science 538, 147504.
Aïssa, A.H., Puzenat, E., Plassais, A., Herrmann, J.M., Haehnel, C. and Guillard, C. 2011. Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Applied Catalysis B: Environmental 107(1-2), 1-8.
Aji, B., Rosalina, D. and Amin, M. 2018. The effect of sintering time on recycled magnesia brick from kiln of the cement plant, p. 012017, IOP Publishing.
Ângelo, J., Andrade, L., Madeira, L.M. and Mendes, A. 2013. An overview of photocatalysis phenomena applied to NOx abatement. Journal of environmental management 129, 522-539.
Anjum, F., Ghaffar, A., Jamil, Y. and Majeed, M.I. 2019. Effect of sintering temperature on mechanical and thermophysical properties of biowaste-added fired clay bricks. Journal of Material Cycles and Waste Management 21(3), 503-524.
Baspinar, M.S., Demir, I. and Orhan, M. 2010. Utilization potential of silica fume in fired clay bricks. Waste management & research 28(2), 149-157.
Carp, O., Huisman, C.L. and Reller, A. 2004. Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry 32(1-2), 33-177.
Celik, A.G., Depci, T. and Kılıc, A.M. 2014. New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials. Construction and Building Materials 62, 59-66.
Chen, H., Nanayakkara, C.E. and Grassian, V.H. 2012. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical reviews 112(11), 5919-5948.
Chen, X., Wang, H., Chen, M., Qin, X., He, H. and Zhang, C. 2021. Co-function mechanism of multiple active sites over Ag/TiO2 for formaldehyde oxidation. Applied Catalysis B: Environmental 282, 119543.
Chindaprasirt, P., Srisuwan, A., Saengthong, C., Lawanwadeekul, S. and Phonphuak, N. 2021. Synergistic effect of fly ash and glass cullet additive on properties of fire clay bricks. Journal of Building Engineering 44, 102942.
De Silva, G.S. and Perera, B. 2018. Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks. Journal of building engineering 18, 252-259.
Debono, O., Hequet, V., Le Coq, L., Locoge, N. and Thevenet, F. 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental 218, 359-369.
Demir, I. 2009. Reuse of waste glass in building brick production. Waste management & research 27(6), 572-577.
Deng, L., Xu, Q. and Wu, H. 2016. Synthesis of zeolite-like material by hydrothermal and fusion methods using municipal solid waste fly ash. Procedia Environmental Sciences 31, 662-667.
El Goresy, A., Chen, M., Gillet, P., Dubrovinsky, L., Graup, G. and Ahuja, R. 2001. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth and Planetary Science Letters 192(4), 485-495.
Elavarasan, S., Priya, A. and Kumar, V.K. 2021. Manufacturing fired clay brick using fly ash and M− Sand. Materials Today: Proceedings 37, 872-876.
Feng, G., Hu, M., Wu, B., Shi, S., Yuan, S., Li, Y. and Zeng, H. 2022. Hydrogenated Amorphous Titania with Engineered Surface Oxygen Vacancy for Efficient Formaldehyde and Dye Removals under Visible-Light Irradiation. Nanomaterials 12(5), 742.
Fu, P., Zhang, P. and Li, J. 2011. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+ 185nm irradiation. Applied Catalysis B: Environmental 105(1-2), 220-228.
Gana, A., Okunola, A.A. and Abioye, O. 2021. Comparative study on the use of rice husk ash cassava peel ash, perinkle shell ash, and gypsum as stabilizing agent for clay brick production. CED TEech International Journal of Agriculture Research & Life Science, V2, 12-45.
Ge, L., Xu, M. and Fang, H. 2006. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4–TiO2 thin films under visible-light irradiation. Journal of Molecular Catalysis A: Chemical 258(1-2), 68-76.
Gencel, O., Munir, M.J., Kazmi, S.M.S., Sutcu, M., Erdogmus, E., Velasco, P.M. and Quesada, D.E. 2021. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceramics International 47(21), 30425-30438.
Giergiczny, Z. 2019. Fly ash and slag. Cement and Concrete Research 124, 105826.
Guimarães, C., Delaqua, G., de Azevedo, A.R.G., Monteiro, S.N., Amaral, L., Souza, C.L.M., da Silva, A., Holanda, J.N. and Vieira, C.M.F. 2021. Heating Rate Effect during Sintering on the Technological Properties of Brazilian Red Ceramics.
Guo, Q., Zhou, C., Ma, Z. and Yang, X. 2019. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Advanced Materials 31(50), 1901997.
Hemmings, R.T., Hill, R.L., Cornelius, B.J. and McBay, A. 2004 Asphalt composites including fly ash fillers or filler blends, methods of making same, and methods for selecting or modifying a fly ash filler for use in asphalt composites, Google Patents.
Hossain, S.S., Bae, C.J. and Roy, P. 2021. A replacement of traditional insulation refractory brick by a waste‐derived lightweight refractory castable. International Journal of Applied Ceramic Technology 18(5), 1783-1791.
Hu, X., Li, C., Sun, Z., Song, J. and Zheng, S. 2020. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Building and Environment 168, 106481.
Huang, Q., Ma, W., Yan, X., Chen, Y., Zhu, S. and Shen, S. 2013. Photocatalytic decomposition of gaseous HCHO by ZrxTi1− xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. Journal of Molecular Catalysis A: Chemical 366, 261-265.
Huang, Y., Ho, S.S.H., Lu, Y., Niu, R., Xu, L., Cao, J. and Lee, S. 2016. Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1), 56.
Hwang, C.L., Huynh, T.P. and Risdianto, Y. 2016. An application of blended fly ash and residual rice husk ash for producing green building bricks. Journal of the Chinese Institute of Engineers 39(7), 850-858.
Ifang, S., Gallus, M., Liedtke, S., Kurtenbach, R., Wiesen, P. and Kleffmann, J. 2014. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment 91, 154-161.
Iftikhar, S., Rashid, K., Haq, E.U., Zafar, I., Alqahtani, F.K. and Khan, M.I. 2020. Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials 259, 119659.
Ji, J., Xu, Y., Huang, H., He, M., Liu, S., Liu, G., Xie, R., Feng, Q., Shu, Y. and Zhan, Y. 2017. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal 327, 490-499.
Kadir, A.A. and Mohajerani, A. 2015. Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts. Applied Clay Science 104, 269-276.
Khodadadian, F., De Boer, M.W., Poursaeidesfahani, A., Van Ommen, J.R., Stankiewicz, A.I. and Lakerveld, R. 2018. Design, characterization and model validation of a LED-based photocatalytic reactor for gas phase applications. Chemical Engineering Journal 333, 456-466.
Kibanova, D., Sleiman, M., Cervini Silva, J. and Destaillats, H. 2012. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of hazardous materials 211, 233-239.
Kizinievič, O., Kizinievič, V. and Malaiškienė, J. 2018. Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks. Construction and Building Materials 169, 689-696.
Kwon, D.W., Seo, P.W., Kim, G.J. and Hong, S.C. 2015. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: the effect of relative humidity on catalytic activity. Applied catalysis B: environmental 163, 436-443.
Lam, R.C., Leung, M.K., Leung, D.Y., Vrijmoed, L.L., Yam, W. and Ng, S. 2007. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. Solar energy materials and solar cells 91(1), 54-61.
Lee, Y.E., Chung, W.C. and Chang, M.B. 2019. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2. Environmental Science and Pollution Research 26(20), 20908-20919.
Li, Y., Jiang, Y., Peng, S. and Jiang, F. 2010. Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. Journal of Hazardous Materials 182(1-3), 90-96.
Liang, H.H. and Li, J.L. 2015. The influence of hydration and swelling properties of gypsum on the preparation of lightweight brick using water supply reservoir sediment. Construction and Building Materials 94, 691-700.
Liu, Y., Wei, J., Xiong, R., Pan, C. and Shi, J. 2011. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Applied surface science 257(18), 8121-8126.
Luo, L., Li, K., Fu, W., Liu, C. and Yang, S. 2020. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Construction and building materials 232, 117250.
La Rubia-García, M.D., Yebra-Rodríguez, Á., Eliche-Quesada, D., Corpas-Iglesias, F.A. and López-Galindo, A. 2012. Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Construction and Building Materials 36, 495-500.
Mamaghani, A.H., Haghighat, F. and Lee, C.S. 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental 203, 247-269.
Mamaghani, A.H., Haghighat, F. and Lee, C.S. 2018. Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chemical engineering journal 337, 60-73.
Mao, L., Zhou, H., Peng, M., Hu, L. and Zhang, W. 2020. Effects of waste glass particle size on improving the property and environmental safety of fired brick containing electroplating sludge. Construction and Building Materials 257, 119583.
Maury-Ramirez, A., Nikkanen, J.P., Honkanen, M., Demeestere, K., Levänen, E. and De Belie, N. 2014. TiO2 coatings synthesized by liquid flame spray and low temperature sol-gel technologies on autoclaved aerated concrete for air-purifying purposes. Materials characterization 87, 74-85.
Muñoz, P., Mendívil, M., Letelier, V. and Morales, M. 2019. Thermal and mechanical properties of fired clay bricks made by using grapevine shoots as pore forming agent. Influence of particle size and percentage of replacement. Construction and Building Materials 224, 639-658.
Nicolas, M.F., Vlasova, M., Aguilar, P.A.M., Kakazey, M., Cano, M.M.C., Matus, R.A. and Puig, T.P. 2020. Development of an energy-saving technology for sintering of bricks from high-siliceous clay by the plastic molding method. Construction and Building Materials 242, 118142.
Ousji, R., Ksibi, Z., Ghorbel, A. and Fontaine, C. 2022. Ag-Based Catalysts in Different Supports: Activity for Formaldehyde Oxidation. Advances in Materials Physics and Chemistry 12(8), 163-176.
Pitak, I., Baltušnikas, A., Kalpokaitė-Dičkuvienė, R., Kriukiene, R. and Denafas, G. 2022. Experimental study effect of bottom ash and temperature of firing on the properties, microstructure and pore size distribution of clay bricks: a Lithuania point of view. Case Studies in Construction Materials, e01230.
Ram, S., Pradhan, K. and Ralegaonkar, R.V. 2017 Use of co-fired blended ash in the development of sustainable construction materials, pp. 425-432, Thomas Telford Ltd.
Rayalu, S., Labhasetwar, N.K. and Khanna, P. 1999 Process for the synthesis of flyash based zeolite-A, Google Patents.
Sakagami, E. 2006 Method and device for manufacturing zeolite from ashes resulting from the incineration of combustible waste, Google Patents.
Shah, K.W. and Li, W. 2019. A review on catalytic nanomaterials for volatile organic compounds VOC removal and their applications for healthy buildings. Nanomaterials 9(6), 910.
Shayegan, Z., Haghighat, F. and Lee, C.S. 2019. Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chemical Engineering Journal 357, 533-546.
Shelote, K.M., Gavali, H.R., Bras, A. and Ralegaonkar, R.V. 2021. Utilization of co-fired blended ash and chopped basalt fiber in the development of sustainable mortar. Sustainability 13(3), 1247.
Shie, J.L., Lee, C.H., Chiou, C.S., Chang, C.T., Chang, C.C. and Chang, C.Y. 2008. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous materials 155(1-2), 164-172.
Shon, C.S., Saylak, D. and Zollinger, D.G. 2009. Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks. Construction and Building Materials 23(5), 2062-2071.
Sun, J., Zhou, H., Jiang, H., Zhang, W. and Mao, L. 2021. Recycling municipal solid waste incineration fly ash in fired bricks: An evaluation of physical-mechanical and environmental properties. Construction and Building Materials 294, 123476.
Sutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E. and Ozbakkaloglu, T. 2019. Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production 233, 753-764.
Tasbihi, M., Bendyna, J.K. and Notten, P.H. 2015. A short review on photocatalytic degradation of formaldehyde. Journal of nanoscience and nanotechnology 15(9), 6386-6396.
Tsega, E., Mosisa, A. and Fufa, F. 2017. Effects of firing time and temperature on physical properties of fired clay bricks. American Journal of Civil Engineering 5(1), 21.
Ukwatta, A. and Mohajerani, A. 2017. Characterisation of fired-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks. Construction and Building Materials 142, 11-22.
Weon, S. and Choi, W. 2016. TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environmental Science & Technology 50(5), 2556-2563.
Wu, G., Zhao, C., Zhou, X., Chen, J. and Li, Y. 2019. DFT study on the interaction of HCHO molecule with S-doped TiO2 (001) surface without and with water and oxygen molecules. Journal of Materiomics 5(4), 558-566.
You, Y., Zhang, S., Wan, L. and Xu, D. 2012. Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde. Applied surface science 258(8), 3469-3474.
Yulin, L., Jianhong, Z., Junlin, A., Boping, Z., Hanxi, X., Ye, X. and Youzhi, D. 2022. Fabrication of BiOBr/RGO/diatomite and its photocatalytic degradation performance of formaldehyde gas under visible light. Chinese Journal of Environmental Engineering 16(5), 1558-1568.
Zhang, C., He, H. and Tanaka, K.I. 2005. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catalysis Communications 6(3), 211-214.
Zhang, G. and Qin, X. 2013. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites. Materials Research Bulletin 48(10), 3743-3749.
Zhang, T., Li, X., Rao, Y., Liu, Y. and Zhao, Q. 2020. Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustainable Cities and Society 55, 102050.
Zhang, X. and Liu, Q. 2008. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Applied Surface Science 254(15), 4780-4785.
Zhang, Y., Ni, H., Lv, S., Wang, X., Li, S. and Zhang, J. 2021. Preparation of sintered brick with aluminum dross and optimization of process parameters. Coatings 11(9), 1039.
Zhao, Y., Ren, Q. and Na, Y. 2019. Potential utilization of phosphorus in fly ash from industrial sewage sludge incineration with biomass. Fuel Processing Technology 188, 16-21.
Zhong, L., Brancho, J.J., Batterman, S., Bartlett, B.M. and Godwin, C. 2017. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental 216, 122-132.
Zhou, C. 2018. Production of eco-friendly permeable brick from debris. Construction and Building Materials 188, 850-859.
Zhu, L., Jacob, D.J., Keutsch, F.N., Mickley, L.J., Scheffe, R., Strum, M., González Abad, G., Chance, K., Yang, K. and Rappenglück, B. 2017. Formaldehyde (HCHO) as a hazardous air pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States. Environmental Science & Technology 51(10), 5650-5657.
Zong, Y.B., Chen, W.H., Liu, Y.X., Xu, X.X., LIU, Z.B. and Cang, D.Q. 2019. Influence of slag particle size on performance of ceramic bricks containing red clay and steel-making slag. Journal of the Ceramic Society of Japan 127(2), 105-110.
行政院環境保護署,事業廢棄物申報及管理資訊系統,各事業廢棄物代碼申報流向,網址:https://waste.epa.gov.tw/RWD/Statistics/?page=Year1,網頁擷取日期:2022年9月。
行政院公共工程委員會,公共工程飛灰混凝土手冊,行政院公共工程委員會,臺北,1999。
經濟部工業局,工業廢棄物清理與資源化資訊網,再生技術資料庫,爐渣及灰渣,網址:https://riw.tgpf.org.tw/tech/,網頁擷取日期:2022年9月。
經濟部工業局,廢棄物資源化技術資料彙編,經濟部工業局,臺北,1999。
吳冠興,垃圾焚化飛灰與淨水污泥應用高壓蒸氣技術製備為輕質化材料之可行性評估研究,碩士論文,逢甲大學環境工程與科學學系,台中,2015。
吳浚瑋,江康鈺,淨水污泥與漿紙污泥煆燒灰共同製備輕質化材料之抗菌特性評估研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
李公哲,範振軒,陳冠均,以TFT-LCD廢玻璃混合轉爐石燒製之輕質骨材拌製輕質混凝土研究,中華民國環境工程學會2014年廢棄物處理技術研討會,台中,2014。
李善源,陳盈良,謝尚谷,王俊瑋,張祖恩,水洗焚化飛灰再利用於輕質混凝土之研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
杜侑倫,江康鈺,自製光觸媒催化材料應用於去除甲苯之可行性研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
林宸毅,吳明富,黃偉慶,純燃煤與流體化床混燒煤灰渣材料特性分析與再利用可行性評估,鋪面工程,18卷1期,63-71,2020。
林凱隆,鄭敬融,太陽能板廢玻璃燒結作為地磚材料之研究,台灣環境資源永續發展協會2011年區域與環境資源永續發展研討會,臺北,2011。
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,M D類焚化飛灰再利用製成紅磚之研究,中華民國環境工程學會2020年廢棄物處理技術研討會,桃園市,2020。
邱孔濱,張坤森,曾昭恩,黃孝綸,黃子源,龔聖瑋,MSWI 開創 D 類焚化飛灰結合淨水污泥製成紅磚之研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
張坤森,林珮琪,林宜青,胡佳莉,江冠臻,以廢棄牡蠣殼燒製輕質玻璃之研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
許育婷,林以潔,陳志成,焚化底渣再利用合成環保吸附材料對重金屬之吸附效能與特性模擬研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
許育婷,林以潔,陳志成,焚化底渣合成環保吸附材料之效能測試研究,中華民國環境工程學會2020年廢棄物處理技術研討會,桃園市,2020。
陳震翰,陳振澤,林裕程,董正釱,陳秋妏,稻殼添加對浚泥再利用製成輕質骨材特性影響之研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
楊昇府,邱文通,王多美,李文成,陳靖良,曾錦清,以電漿熔岩試做多孔性輕質熔岩板材之研究,中華民國環境工程學會2007年廢棄物處理技術研討會,高雄,2007。
楊詠勝,李慧梅,杜紹輔,鉑金改質二氧化鈦之光觸媒降解室內甲醛之研究,中華民國環境工程學會2014年空氣污染控制技術研討會,台中,2014。
劉彥良,混燒灰碴應用於控制性低強度材料工程性質之研究,碩士論文,國立臺灣海洋大學,基隆市,2015。
劉美芬,回收無害化垃圾焚化飛灰製備一般瓷磚與輕質瓷磚之研究,碩士論文,國立聯合大學,苗栗市,2013。
蔡坤龍,葉王珍,曹明浙,許志福,莊士群,焚化爐及燃煤電廠飛灰底渣無機物指紋鑑識計畫,中華民國環境分析學2011年環境分析化學研討會,桃園市,2011。
蔡築廷,陳昀萱,許育婷,林以潔,陳志成,焚化底渣水熱合成沸石及其吸附特性研究,中華民國環境工程學會2021年廢棄物處理技術研討會,台中,2021。
戴肇寬,林居慶,江康鈺,應用高壓蒸氣技術製備抗菌輕質材料及其特性評估研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,中華民國環境工程學會2009年廢棄物處理技術研討會,雲林,2009。
羅煌木,陳右儒,邱薰瑩,簡鈺銘,丁哲皓,許芢賓,焚化爐灰燼特性及輕質骨材之再利用研究,中華民國環境工程學會2011年廢棄物處理技術研討會,台南,2011。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2022-11-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明