博碩士論文 108326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.147.63.222
姓名 林子晞(Tzu-Hsi Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討
(Potential for the facilitated proliferation of antibiotic resistance genes in arable soil resulting from biogas residues applied as fertilizer)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抗生素的濫用已使得臨床抗生素抗藥性的問題以驚人的速度惡化,但多數藥廠仍因毛利過低而不願挹注資源開發新型的抗生素,這樣的局面可能導致未來感染時無藥可醫的困境,也因此世界衛生組織將抗生素抗藥性問題視為全球最大的健康威脅之一。而除了醫療之外,抗生素也作為生長促進劑在畜牧業中被廣泛使用,但無法被動物腸道所吸收的殘餘抗生素會隨著禽畜糞排出體外,造就抗生素抗性基因(ARGs)進入環境的途徑,讓禽畜糞回歸農用成為潛在的環境ARGs污染源與暴露風險。雖然已有文獻證實禽畜糞經好氧工法製成堆肥能有效削減其ARGs相對豐度,不過此效益卻常常無法在中、常溫厭氧消化程序被複製,但現今國內響應政府沼液沼渣再利用的畜牧場其消化設施卻以中、常溫的操作最為普遍,此現象值得深究。考量國內目前對於沼液沼渣ARGs相對豐度之調查仍然有限,本研究採集了新竹至雲林共27間牛/豬畜牧場之沼液沼渣樣品,分析其中4類ARGs (tet, sul, bla, erm)以及intI1之相對豐度,並與傳統肥料(即市售堆肥)中的ARGs豐度進行比較(本研究群先前碩論之數據),以探討國內沼液沼渣再利用行為對於環境中ARGs增生是否有較高之潛力。調查結果顯示,國內沼液沼渣中多數ARGs相對豐度顯著高於市售堆肥(p < .05),符合本研究最初預期,而不同種類(牛/豬)沼液沼渣中ARGs整體相對豐度也有顯著差異(p < .05)。為了更進一步確認沼液沼渣中ARGs進入農地後於土壤環境中的宿命,本研究也透過實驗室規模的培養試驗,檢視添加沼液沼渣土壤於一個月期間的ARGs豐度變化,且同樣和本研究群先前碩論之市售堆肥的縮模試驗結果對比。結果顯示添加豬沼液沼渣土壤及添加市售堆肥土壤在試驗第0天、第30天時,其ARGs整體相對豐度無顯著差異,但兩實驗組別均顯著高於添加牛沼液沼渣土壤以及環境背景值(p < .05);而不論添加何種肥料之土壤,在縮模試驗第30天之ARGs整體相對豐度均無顯著削減,顯示來自這些有機肥料之ARGs整體相對豐度有一定持久性,若沒有適當控管施肥頻率,很有可能造成ARGs於土壤環境的累積,進而增加農地工作者暴露ARGs的可能性。即便如此,由於縮模系統在設計與操作上的侷限性,本研究結果僅能代表農地表層土壤添加沼液沼渣後ARGs之豐度概況,後續仍有待現地的採樣、調查、分析、比較,方能確切瞭解沼液沼渣再利用對於農地環境抗藥性發展之影響。
摘要(英) Over the past seven years, the Taiwan EPA and Council of Agriculture have been vigorously encouraging farmers of the husbandry to treat livestock excretion through conventional (i.e., non-thermophilic) anaerobic digestion processes and use the treated biogas slurry/residues as a new kind of fertilizer in arable soils, echoing the current "circular economy" policy. However, previous studies have shown that compared to the thermophilic biochemical treatment including composting, digestion of livestock feces under ambient temperature and mesophilic conditions fails to substantially diminish the abundance of the antibiotic resistance genes (ARGs) inherent in manure. Given that (i) environmental antibiotic resistance is being shown to have a cyclical relationship to clinical antimicrobial resistance and (ii) according to the WHO, the rising level of antimicrobial resistance is positioned to endanger “the very core of modern medicine”, the new fertilizer practice is of concern. To probe whether this policy execution would result in facilitating antibiotic resistome proliferation in farmland and thus ultimately imposing risks to public health, the first step undoubtedly is to compare the abundance of ARGs harbored in the new (i.e., biogas residue) versus old (i.e., compost) fertilizer. Consequently, in this study we collected 27 biogas residue samples of swine and cattle farms from Hsinchu to Yunlin. We then analyzed ARGs of four common antibiotics (namely tetracyclines, sulfonamides, β-lactams, and macrolides) as well as intI1, in addition to characterizing the basic physicochemical properties of the samples. Results indeed show that the relative abundance of the most target ARG in biogas residue samples was significantly higher than that in compost samples (p < .05). Moreover, the sum of ARG relative abundance was more elevated in swine biogas residue samples than in cattle samples (p < .05). To confirm the soil environmental fate of ARGs from biogas residues after fertilizing, the soil microcosm test was performed to quantify the ARGs reduction ratios of biogas residue-applied soil, and the results were also compared with the compost-soil microcosm test. The results show that the sums of ARG relative abundance in swine biogas residue-applied soils and compost-applied soils were not significantly different on the zeroth day and the thirtieth day, but the levels of the summed ARGs of both groups were significantly higher than cattle biogas residue-applied soils and environmental background (p < .05). The abundances of total ARGs in soil microcosms were not significantly reduced during 30 days after applying biogas residues/composts, which suggested the ARGs in biogas residue/compost-applied soils were quite persistent. If the frequencies of fertilizing were not controlled well, the ARGs perhaps accumulated in arable soil and promote agriculture workers′ ARGs exposure. However, the results of the soil microcosm only represented the situation of topsoil due to the limitation of the experimental design. Future research on the abundance and fate of in situ ARGs in arable soils is warranted, to obtain a complete picture of the potential risk and impact.
關鍵字(中) ★ 沼液沼渣
★ 抗生素抗性基因
★ 市售堆肥
★ 土壤縮模試驗
關鍵字(英) ★ biogas slurry/residue
★ antibiotic resistance genes
★ compost
★ soil microcosm
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.1.1 抗生素抗藥性議題 1
1.1.2 畜牧業與抗生素抗性之關聯 2
1.1.3 前處理程序對禽畜糞肥中ARGs豐度之影響 4
1.1.4 評估ARGs環境宿命之模型 5
1.1.5 沼液沼渣再利用的潛在抗生素抗性發展風險 6
1.2 研究目的 7
第二章 研究方法 9
2.1 研究流程及架構 9
2.2 第I階段實驗:沼液沼渣概況調查 11
2.2.1 沼液沼渣樣品採集 11
2.2.2 沼液沼渣基本特性分析 13
2.3 第II階段實驗:土壤縮模試驗 15
2.3.1 試驗土壤樣品採集與保存 15
2.3.2 試驗土壤基本特性分析 15
2.3.3 土壤縮模試驗 19
2.4 分子生物實驗 22
2.4.1 DNA萃取 23
2.4.2 目標基因定量 23
2.5 數據分析 34
2.5.1 統計分析 34
2.5.2 目標基因削減率/衰減係數計算 35
2.6 研究設備與試劑 37
第三章 結果與討論 40
3.1 沼液沼渣基本特性 40
3.1.1 沼液沼渣基本水質特性 40
3.1.2 沼液沼渣抗生素濃度 41
3.2 沼液沼渣目標基因豐度 44
3.2.1 沼液沼渣中ARGs/MGE豐度概況 44
3.2.2 不同料源沼液沼渣以及市售堆肥中目標基因豐度比較 54
3.3 沼液沼渣ARGs/MGE豐度與環境參數之間的潛在關聯 61
3.4 沼液沼渣土壤縮模試驗 64
3.4.1 試驗土壤基本特性 64
3.4.2 沼液沼渣縮模試驗ARGs/MGE豐度概況 65
3.4.3 縮模試驗各實驗組於不同時間之目標基因豐度 69
3.4.4 縮模試驗各實驗組目標基因豐度削減情況 81
3.5 環境意義 88
3.5.1 國內畜牧場沼液沼渣所含ARGs/MGE背景豐度 88
3.5.2 沼液沼渣中ARGs/MGE土壤環境宿命 88
3.5.3 潛在影響沼液沼渣ARGs/MGE豐度的要素或相關因子 89
3.5.4 研究脈絡以及環境意義 91
第四章 結論與建議 93
4.1 結論 93
4.2 建議 94
參考文獻 95
附錄 111
附錄一 Real-time PCR偵測極限測試 111
附錄二 Real-time PCR檢量線 112
附錄三 Melting curve 115
附錄四 原始數據 117
附錄五 沼液沼渣目標基因相對豐度與環境因子之Spearman相關性 132
附錄六 網絡分析 134
附錄七 學位考試委員意見回覆表 136
參考文獻 1. Tan, S. Y.; Tatsumura, Y., Alexander Fleming (1881–1955): discoverer of penicillin. Singapore Med. J. 2015, 56 (7), 366.
2. Gaynes, R., The discovery of penicillin—new insights after more than 75 years of clinical use. Emerging Infect. Dis. 2017, 23 (5), 849.
3. Uddin, T. M.; Chakraborty, A. J.; Khusro, A.; Zidan, B.; Mitra, S.; Bin Emran, T.; Dhama, K.; Ripon, M. K. H.; Gajdacs, M.; Sahibzada, M. U. K.; Hossain, M. J.; Koirala, N., Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14 (12), 1750-1766.
4. Walsh; Wright, Introduction:  Antibiotic Resistance. Chem. Rev. 2005, 105 (2), 391-394.
5. Lewis, K., The Science of Antibiotic Discovery. Cell 2020, 181 (1), 29-45.
6. Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol., Clin. Pharmacol. 2017, 33 (3), 300.
7. Ribeiro da Cunha, B.; Fonseca, L. P.; Calado, C. R. C., Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics (Basel, Switz.) 2019, 8 (2), 45.
8. Smith, P. W.; Watkins, K.; Hewlett, A., Infection control through the ages. Am. J. Infect. Control 2012, 40 (1), 35-42.
9. World Health Organization, Global action plan on antimicrobial resistance. World Health Organization: Geneva, 2015.
10. Renwick, M.; Mossialos, E., What are the economic barriers of antibiotic R&D and how can we overcome them? Expert Opin. Drug Discovery 2018, 13 (10), 889-892.
11. Buckley, B. S.; Henschke, N.; Bergman, H.; Skidmore, B.; Klemm, E. J.; Villanueva, G.; Garritty, C.; Paul, M., Impact of vaccination on antibiotic usage: a systematic review and meta-analysis. Clin. Microbiol. Infect. 2019, 25 (10), 1213-1225.
12. Sreeja, M.; Gowrishankar, N.; Adisha, S.; Divya, K., Antibiotic resistance-reasons and the most common resistant pathogens–a review. Res. J. Pharm. Technol. 2017, 10 (6), 1886.
13. Canton, R., Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin. Microbiol. Infect. 2009, 15, 20-25.
14. Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services, Centres for Disease Control and Prevention: 2019.
15. Woodford, N.; Ellington, M. J., The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 2007, 13 (1), 5-18.
16. von Wintersdorff, C. J. H.; Penders, J.; van Niekerk, J. M.; Mills, N. D.; Majumder, S.; van Alphen, L. B.; Savelkoul, P. H. M.; Wolffs, P. F. G., Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7.
17. Larsson, D. G. J.; Flach, C.-F., Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20 (5), 257-269.
18. Crecchio, C.; Ruggiero, P.; Curci, M.; Colombo, C.; Palumbo, G.; Stotzky, G., Binding of DNA from Bacillus subtilis on montmorillonite-humic acids-aluminum or iron hydroxypolymers: Effects on transformation and protection against DNase. Soil Sci. Soc. Am. J. 2005, 69 (3), 834-841.
19. Johnston, C.; Martin, B.; Fichant, G.; Polard, P.; Claverys, J. P., Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 2014, 12 (3), 181-196.
20. Lerminiaux, N. A.; Cameron, A. D. S., Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019, 65 (1), 34-44.
21. Schnoor, J. L., Re-Emergence of Emerging Contaminants. Environ. Sci. Technol. 2014, 48 (19), 11019-11020.
22. Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K. H., Antibiotic Resistance Genes as Emerging Contaminants:  Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40 (23), 7445-7450.
23. Ventola, C. L., The antibiotic resistance crisis: part 1: causes and threats. P T 2015, 40 (4), 277.
24. Durand, G. A.; Raoult, D.; Dubourg, G., Antibiotic discovery: history, methods and perspectives. Int. J. Antimicrob. Agents 2019, 53 (4), 371-382.
25. D′Costa, V. M.; McGrann, K. M.; Hughes, D. W.; Wright, G. D., Sampling the antibiotic resistome. Science 2006, 311 (5759), 374-377.
26. Wright, G. D., The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5 (3), 175-186.
27. 林邑璁; 王復德, 腸道微菌叢和感染症疾病的關聯. 臨床醫學月刊 2019, 84 (1), 440-446.
28. Kim, D. W.; Cha, C. J., Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53 (3), 301-309.
29. World Health Organization Antimicrobial resistance global report on surveillance: 2014 summary; World Health Organization: 2014.
30. World Health Organization Thirteenth general programme of work, 2019–2023: promote health, keep the world safe, serve the vulnerable; World Health Organization: 2019.
31. Van Boeckel, T. P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N. G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R., Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365 (6459).
32. Page, S. W.; Gautier, P., Use of antimicrobial agents in Livestock. Rev. sci. tech. - Off. int. épizoot. 2012, 31 (1), 145-188.
33. Krishnasamy, V.; Otte, J.; Silbergeld, E., Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob. Resist. Infect. Control 2015, 4 (1), 17.
34. Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K. J., The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultr. Sci. 2019, 98 (4), 1791-1804.
35. He, Y.; Yuan, Q. B.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R. N.; Alvarez, P. J. J., Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 2020, 3 (1), 11.
36. Malijan, G. M.; Howteerakul, N.; Ali, N.; Siri, S.; Kengganpanich, M.; Grp, O.; Nascimento, R.; Booton, R. D.; Turner, K. M. E.; Cooper, B.; Meeyai, A., A scoping review of antibiotic use practices and drivers of inappropriate antibiotic use in animal farms in WHO Southeast Asia region. One Health 2022, 15, 11.
37. Gilchrist, M. J.; Greko, C.; Wallinga, D. B.; Beran, G. W.; Riley, D. G.; Thorne, P. S., The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115 (2), 313-316.
38. Sarmah, A. K.; Meyer, M. T.; Boxall, A. B., A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65 (5), 725-759.
39. Dungan, R. S.; McKinney, C. W.; Leytem, A. B., Tracking antibiotic resistance genes in soil irrigated with dairy wastewater. Sci. Total Environ. 2018, 635, 1477-1483.
40. Koch, B. J.; Hungate, B. A.; Price, L. B., Food-animal production and the spread of antibiotic resistance: the role of ecology. Front. Ecol. Environ. 2017, 15 (6), 309-318.
41. Zalewska, M.; Blazejewska, A.; Czapko, A.; Popowska, M., Antibiotics and Antibiotic Resistance Genes in Animal Manure - Consequences of Its Application in Agriculture. Front. Microbiol. 2021, 12, 21.
42. Martínez, J. L., Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science 2008, 321 (5887), 365-367.
43. Alonso, A.; Sanchez, P.; Martinez, J. L., Environmental selection of antibiotic resistance genes. Environ. Microbiol. 2001, 3 (1), 1-9.
44. Summers, A. O., Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis. 2002, 34, S85-S92.
45. Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D. J.; Larsson, D. G. J.; Hobman, J. L., Metal Resistance and Its Association With Antibiotic Resistance. In Microbiology of Metal Ions, Poole, R. K., Ed. Academic Press Ltd-Elsevier Science Ltd: London, 2017; Vol. 70, pp 261-313.
46. Seiler, C.; Berendonk, T. U., Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 10.
47. Stepanauskas, R.; Glenn, T. C.; Jagoe, C. H.; Tuckfield, R. C.; Lindell, A. H.; McArthur, J. V., Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ. Sci. Technol. 2005, 39 (10), 3671-3678.
48. Baker-Austin, C.; Wright, M. S.; Stepanauskas, R.; McArthur, J. V., Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14 (4), 176-182.
49. He, L. Y.; Liu, Y. S.; Su, H. C.; Zhao, J. L.; Liu, S. S.; Chen, J.; Liu, W. R.; Ying, G. G., Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: Identification of Indicator ARGs and Correlations with Environmental Variables. Environ. Sci. Technol. 2014, 48 (22), 13120-13129.
50. Zhu, Y. G.; Johnson, T. A.; Su, J. Q.; Qiao, M.; Guo, G. X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M., Diverse and abundant antibiotic resistance genes in Chinese swine farms. PNAS 2013, 110 (9), 3435-3440.
51. Wanninger, S.; Donati, M.; Di Francesco, A.; Hassig, M.; Hoffmann, K.; SethSmith, H. M. B.; Marti, H.; Borel, N., Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PLoS One 2016, 11 (11), 16.
52. Binh, C. T. T.; Heuer, H.; Kaupenjohann, M.; Smalla, K., Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol. Ecol. 2008, 66 (1), 25-37.
53. Han, B. J.; Yang, F. X.; Tian, X. L.; Mu, M. R.; Zhang, K. Q., Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotoxicol. Environ. Saf. 2021, 219, 9.
54. Lima, T.; Domingues, S.; Da Silva, G. J., Manure as a Potential Hotspot for Antibiotic Resistance Dissemination by Horizontal Gene Transfer Events. Vet. sci. 2020, 7 (3), 21.
55. Forsberg, K. J.; Reyes, A.; Bin, W.; Selleck, E. M.; Sommer, M. O. A.; Dantas, G., The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science 2012, 337 (6098), 1107-1111.
56. Pruden, A.; Larsson, D. J.; Amézquita, A.; Collignon, P.; Brandt, K. K.; Graham, D. W.; Lazorchak, J. M.; Suzuki, S.; Silley, P.; Snape, J. R., Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 2013, 121 (8), 878-885.
57. Williams-Nguyen, J.; Sallach, J. B.; Bartelt-Hunt, S.; Boxall, A. B.; Durso, L. M.; McLain, J. E.; Singer, R. S.; Snow, D. D.; Zilles, J. L., Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. J. Environ. Qual. 2016, 45 (2), 394-406.
58. Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; Ru, G.; Simmons, M.; Skandamis, P.; Suffredini, E.; Arguello, H.; Berendonk, T.; Cavaco, L. M.; Gaze, W.; Schmitt, H.; Topp, E.; Guerra, B.; Liebana, E.; Stella, P.; Peixe, L.; Efsa Panel Biological Hazards, Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19 (6), 188.
59. Casey, J. A.; Curriero, F. C.; Cosgrove, S. E.; Nachman, K. E.; Schwartz, B. S., High-Density Livestock Operations, Crop Field Application of Manure, and Risk of Community-Associated Methicillin-Resistant Staphylococcus aureus Infection in Pennsylvania. JAMA Intern. Med. 2013, 173 (21), 1980-1990.
60. Crespo-Piazuelo, D.; Lawlor, P. G., Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir. Vet. J. 2021, 74 (1), 12.
61. Mortier, N.; Velghe, F.; Verstichel, S., Chapter 4 - Organic Recycling of Agricultural Waste Today: Composting and Anaerobic Digestion. In Biotransformation of Agricultural Waste and By-Products, Poltronieri, P.; D′Urso, O. F., Eds. Elsevier: 2016; pp 69-124.
62. Oliver, J. P.; Gooch, C. A.; Lansing, S.; Schueler, J.; Hurst, J. J.; Sassoubre, L.; Crossette, E. M.; Aga, D. S., Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 2020, 103 (2), 1051-1071.
63. Pereira, A. R.; Paranhos, A. G. D.; de Aquino, S. F.; Silva, S. D., Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Environ. Sci. Pollut. Res. 2021, 28 (21), 26380-26403.
64. Liu, Y. T.; Zheng, L.; Cai, Q. J.; Xu, Y. B.; Xie, Z. F.; Liu, J. Y.; Ning, X. N., Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotoxicol. Environ. Saf. 2021, 208, 11.
65. Zhang, M.; He, L. Y.; Liu, Y. S.; Zhao, J. L.; Zhang, J. N.; Chen, J.; Zhang, Q. Q.; Ying, G. G., Variation of antibiotic resistome during commercial livestock manure composting. Environ. Int. 2020, 136, 10.
66. Selvam, A.; Xu, D. L.; Zhao, Z. Y.; Wong, J. W. C., Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 2012, 126, 383-390.
67. Wang, G. Y.; Kong, Y. L.; Yang, Y.; Ma, R. N.; Li, L. Q.; Li, G. X.; Yuan, J., Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. Environ. Pollut. 2022, 303, 9.
68. Youngquist, C. P.; Mitchell, S. M.; Cogger, C. G., Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. J. Environ. Qual. 2016, 45 (2), 537-545.
69. Sun, W.; Qian, X.; Gu, J.; Wang, X. J.; Duan, M. L., Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Sci. Rep. 2016, 6, 9.
70. Huang, X.; Zheng, J. L.; Tian, S. H.; Liu, C. X.; Liu, L.; Wei, L. L.; Fan, H. Y.; Zhang, T. F.; Wang, L.; Zhu, G. F.; Xu, K. Q., Higher Temperatures Do Not Always Achieve Better Antibiotic Resistance Gene Removal in Anaerobic Digestion of Swine Manure. Appl. Environ. Microbiol. 2019, 85 (7), 12.
71. Yoshizawa, N.; Usui, M.; Fukuda, A.; Asai, T.; Higuchi, H.; Okamoto, E.; Seki, K.; Takada, H.; Tamura, Y., Manure Compost Is a Potential Source of Tetracycline-Resistant Escherichia coli and Tetracycline Resistance Genes in Japanese Farms. Antibiotics (Basel, Switz.) 2020, 9 (2), 9.
72. Xie, S.; Wu, N.; Tian, J.; Liu, X.; Wu, S.; Mo, Q.; Lu, S. In Review on the removal of antibiotic resistance genes from livestock manure by composting, IOP Conf. Ser.: Earth Environ. Sci, IOP Publishing: 2019; p 052010.
73. Aziz, A.; Sengar, A.; Basheer, F.; Farooqi, I. H.; Isa, M. H., Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment - A comprehensive review. J. Environ. Chem. Eng. 2022, 10 (1), 27.
74. Beneragama, N.; Iwasaki, M.; Lateef, S. A.; Yamashiro, T.; Ihara, I.; Umetsu, K., The survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk. Anim. Sci. J. 2013, 84 (5), 426-433.
75. Resende, J. A.; Diniz, C. G.; Silva, V. L.; Otenio, M. H.; Bonnafous, A.; Arcuri, P. B.; Godon, J. J., Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. J. Appl. Microbiol. 2014, 117 (6), 1689-1699.
76. Xu, M.; Stedtfeld, R. D.; Wang, F.; Hashsham, S. A.; Song, Y.; Chuang, Y. H.; Fan, J. B.; Li, H.; Jiang, X.; Tiedje, J. M., Composting increased persistence of manureborne antibiotic resistance genes in soils with different fertilization history. Sci. Total Environ. 2019, 689, 1172-1180.
77. Engemann, C. A.; Adams, L.; Knapp, C. W.; Graham, D. W., Disappearance of oxytetracycline resistance genes in aquatic systems. FEMS Microbiol. Lett. 2006, 263 (2), 176-182.
78. Engemann, C. A.; Keen, P. L.; Knapp, C. W.; Hall, K. J.; Graham, D. W., Fate of tetracycline resistance genes in aquatic systems: Migration from the water column to peripheral biofilms. Environ. Sci. Technol. 2008, 42 (14), 5131-5136.
79. Zhang, W.; Sturm, B. S. M.; Knapp, C. W.; Graham, D. W., Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environ. Sci. Technol. 2009, 43 (20), 7643-7650.
80. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids. Front. Microbiol. 2013, 4, 9.
81. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Air-Drying Beds Reduce the Quantities of Antibiotic Resistance Genes and Class 1 Integrons in Residual Municipal Wastewater Solids. Environ. Sci. Technol. 2013, 47 (17), 9965-9971.
82. Diehl, D. L.; LaPara, T. M., Effect of Temperature on the Fate of Genes Encoding Tetracycline Resistance and the Integrase of Class 1 Integrons within Anaerobic and Aerobic Digesters Treating Municipal Wastewater Solids. Environ. Sci. Technol. 2010, 44 (23), 9128-9133.
83. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environ. Sci. Technol. 2014, 48 (10), 5620-5627.
84. Burch, T. R.; Sadowsky, M. J.; LaPara, T. M., Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil. Environ. Sci. Technol. 2017, 51 (24), 14225-14232.
85. Alt, L. M.; Iverson, A. N.; Soupir, M. L.; Moorman, T. B.; Howe, A., Antibiotic resistance gene dissipation in soil microcosms amended with antibiotics and swine manure. J. Environ. Qual. 2021, 50 (4), 911-922.
86. Sandberg, K. D.; LaPara, T. M., The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol. Ecol. 2016, 92 (2).
87. Fahrenfeld, N.; Knowlton, K.; Krometis, L. A.; Hession, W. C.; Xia, K.; Lipscomb, E.; Libuit, K.; Green, B. L.; Pruden, A., Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environ. Sci. Technol. 2014, 48 (5), 2643-2650.
88. Wang, M. Z.; Sun, Y. X.; Liu, P.; Sun, J.; Zhou, Q.; Xiong, W. G.; Zeng, Z. L., Fate of antimicrobial resistance genes in response to application of poultry and swine manure in simulated manure-soil microcosms and manure-pond microcosms. Environ. Sci. Pollut. Res. 2017, 24 (26), 20949-20958.
89. Tsai, W. T., Regulatory Promotion and Benefit Analysis of Biogas-Power and Biogas-Digestate from Anaerobic Digestion in Taiwan′s Livestock Industry. Fermentation 2018, 4 (3), 10.
90. 葉昇炎; 鄭閔謙; 程梅萍, 畜牧糞尿水資源化再利用之發展沿革. 農業生技產業季刊 2016, (46), 29-32.
91. 郭楊正; 廖麗玲 沼液沼渣回收再利用方法評估; 行政院原子能委員會核能研究所: 2020.
92. Larsson, D. G. J.; Andremont, A.; Bengtsson-Palme, J.; Brandt, K. K.; Husman, A. M. D.; Fagerstedt, P.; Fick, J.; Flach, C. F.; Gaze, W. H.; Kuroda, M.; Kvint, K.; Laxminarayan, R.; Manaia, C. M.; Nielsen, K. M.; Plant, L.; Ploy, M. C.; Segovia, C.; Simonet, P.; Smalla, K.; Snape, J.; Topp, E.; van Hengel, A. J.; Verner-Jeffreys, D. W.; Virta, M. P. J.; Wellington, E. M.; Wernersson, A. S., Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 2018, 117, 132-138.
93. 鄭念媛. 不同料源製成之市售堆肥其抗生素抗性基因含量調查. 國立中央大學, 桃園市, 2022.
94. Liao, J. Q.; Chen, Y. G., Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Rev. Environ. Sci. Bio/Technol. 2018, 17 (3), 471-500.
95. Su, H. C.; Hu, X. J.; Wang, L. L.; Xu, W. J.; Xu, Y.; Wen, G. L.; Li, Z. J.; Cao, Y. C., Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms. J. Environ. Sci. Health, Part B 2020, 55 (3), 220-229.
96. 鄧教毅. 重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響. 國立中央大學, 桃園縣, 2018.
97. 陳柏廷. 生物炭對沼液沼渣中所含抗生素抗性基因於農地宿命之影響(題目暫定). 國立中央大學, 桃園市, 尚未發表.
98. Carter, L. J.; Harris, E.; Williams, M.; Ryan, J. J.; Kookana, R. S.; Boxall, A. B. A., Fate and Uptake of Pharmaceuticals in Soil-Plant Systems. J. Agric. Food. Chem. 2014, 62 (4), 816-825.
99. 林居慶; 邱成財; 洪瑋濃 土壤中有機污染物濃度與實際污染強度關聯性調查計畫 (2/2); 行政院環境保護署: 2016.
100. U.S. Department of Agriculture, USDA Soil Textural Triangle.
101. 張智聖. 抗生素抗性菌與抗性基因在污水處理程序中的動態變化. 國立中央大學, 桃園縣, 2019.
102. Urbanova, M.; Kopecky, J.; Valaskova, V.; Sagova-Mareckova, M.; Elhottova, D.; Kyselkova, M.; Moenne-Loccoz, Y.; Baldrian, P., Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol. Ecol. 2011, 78 (1), 59-69.
103. Zhu, Y.-G.; Zhu, D.; Delgado-Baquerizo, M.; Su, J.-Q.; Ding, J.; Li, H.; Gillings, M. R.; Penuelas, J., Difference of microbiome and antibiotic resistome between earthworm gut and soil deciphered by a continental-scale survey. Research Square: 2020.
104. Zhao, Y.; Su, J. Q.; Ye, J.; Rensing, C.; Tardif, S.; Zhu, Y. G.; Brandt, K. K., AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic. Environ. Sci. Technol. 2019, 53 (2), 798-807.
105. Ng, L. K.; Martin, I.; Alfa, M.; Mulvey, M., Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15 (4), 209-215.
106. Ahmed, M. O.; Clegg, P. D.; Williams, N. J.; Baptiste, K. E.; Bennett, M., Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7.
107. Aminov, R. I.; Garrigues-Jeanjean, N.; Mackie, R. I., Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 2001, 67 (1), 22-32.
108. Henderson, M.; Ergas, S. J.; Ghebremichael, K.; Gross, A.; Ronen, Z., Occurrence of Antibiotic-Resistant Genes and Bacteria in Household Greywater Treated in Constructed Wetlands. Water (Basel, Switz.) 2022, 14 (5), 16.
109. Miao, J. J.; Yin, Z. D.; Yang, Y. Q.; Liang, Y. W.; Xu, X. D.; Shi, H. M., Abundance and Dynamic Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary Antibiotic Manufacturing Site. Antibiotics (Basel, Switz.) 2021, 10 (11), 15.
110. Mu, Q. H.; Li, J.; Sun, Y. X.; Mao, D. Q.; Wang, Q.; Luo, Y., Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environ. Sci. Pollut. Res. 2015, 22 (9), 6932-6940.
111. Lin, H.; Chapman, S. J.; Freitag, T. E.; Kyle, C.; Ma, J. W.; Yang, Y. Y.; Zhang, Z. L., Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotoxicol. Environ. Saf. 2019, 170, 39-46.
112. Kim, J.; Lim, Y. M.; Jeong, Y. S.; Seol, S. Y., Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 2005, 49 (4), 1572-1575.
113. Marti, E.; Jofre, J.; Balcazar, J. L., Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS One 2013, 8 (10), 8.
114. Xi, C. W.; Zhang, Y. L.; Marrs, C. F.; Ye, W.; Simon, C.; Foxman, B.; Nriagu, J., Prevalence of Antibiotic Resistance in Drinking Water Treatment and Distribution Systems. Appl. Environ. Microbiol. 2009, 75 (17), 5714-5718.
115. Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T., Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci. Total Environ. 2015, 512, 316-325.
116. Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E. T.; Schwartz, T., Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 11.
117. Chen, J.; Yu, Z. T.; Michel, F. C.; Wittum, T.; Morrison, M., Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 2007, 73 (14), 4407-4416.
118. Luo, Y.; Mao, D. Q.; Rysz, M.; Zhou, D. X.; Zhang, H. J.; Xu, L.; Alvarez, P. J. J., Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44 (19), 7220-7225.
119. 正茂生物科技股份有限公司, Bio-Rad CFX real-time PCR 系列儀器教育訓練教材(未公開). 2022.
120. Lee, C.; Kim, J.; Shin, S. G.; Hwang, S., Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 2006, 123 (3), 273-280.
121. Whelan, J. A.; Russell, N. B.; Whelan, M. A., A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 2003, 278 (1-2), 261-269.
122. Stoddard, S. F.; Smith, B. J.; Hein, R.; Roller, B. R. K.; Schmidt, T. M., rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015, 43 (D1), D593-D598.
123. Zhao, Z. L.; Wang, J.; Han, Y.; Chen, J. W.; Liu, G. F.; Lu, H.; Yan, B.; Chen, S. S., Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. Environ. Pollut. 2017, 220, 909-918.
124. US EPA, Chemical concentration data near the detection limit. US Environmental Protection Agency USA: 1991.
125. Hung, W.-C.; Miao, Y.; Truong, N.; Jones, A.; Mahendra, S.; Jay, J., Tracking antibiotic resistance through the environment near a biosolid spreading ground: Resistome changes, distribution, and metal (loid) co-selection. Sci. Total Environ. 2022, 153570.
126. Yu, G., Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics 2020, 69 (1), e96.
127. Yu, G.; Lam, T. T.-Y.; Zhu, H.; Guan, Y., Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. Mol. Biol. Evol. 2018, 35 (12), 3041-3043.
128. Yu, G.; Smith, D. K.; Zhu, H.; Guan, Y.; Lam, T. T.-Y., ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8 (1), 28-36.
129. Gu, Z., Complex heatmap visualization. iMeta 2022, 1 (3).
130. Gu, Z. G.; Eils, R.; Schlesner, M., Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32 (18), 2847-2849.
131. Xu, S. B.; Chen, M. J.; Feng, T. Z.; Zhan, L.; Zhou, L.; Yu, G. C., Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 7.
132. Desiraju, K. ggplot theme for publication ready Plots. https://rpubs.com/Koundy/71792.
133. Arbizu, P. M. Re: How can I do PerMANOVA pairwise contrasts in R? https://www.researchgate.net/post/How_can_I_do_PerMANOVA_pairwise_contrasts_in_R/586d20ee3d7f4b7e79125172/citation/download.
134. Bastian, M.; Heymann, S.; Jacomy, M., Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media 2009, 3 (1), 361-362.
135. 陳琦玲; 林旻頡; 廖崇億, (特 206 號) 畜牧廢水農地施肥要領. 農業試驗所, 宏仁果菜合作社: 2018.
136. Garcia-Ochoa, F.; Santos, V. E.; Naval, L.; Guardiola, E.; Lopez, B., Kinetic model for anaerobic digestion of livestock manure. Enzyme Microb. Technol. 1999, 25 (1-2), 55-60.
137. Huang, R. Y.; Mei, Z. L.; Long, Y.; Xiong, X.; Wang, J.; Guo, T.; Luo, T.; Long, E. S., Impact of Optimized Flow Pattern on Pollutant Removal and Biogas Production Rate Using Wastewater Anaerobic Fermentation. BioResources 2015, 10 (3), 4826-4842.
138. Omar, R.; Harun, R. M.; Mohd Ghazi, T.; Wan Azlina, W.; Idris, A.; Yunus, R. In Anaerobic treatment of cattle manure for biogas production, Proceedings Philadelphia, Annual meeting of American Institute of Chemical Engineers, 2008; pp 1-10.
139. World Organisation for Animal Health, OIE Standards, Guidelines and Resolution on antimicrobial resistance and the use of antimicrobial agents, 2nd Ed. 2020. 2020; p 156.
140. Sabbagh, P.; Rajabnia, M.; Maali, A.; Ferdosi-Shahandashti, E., Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iran. J. Basic Med. Sci. 2021, 24 (2), 136-142.
141. Bennett, P. M., Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 2008, 153, S347-S357.
142. Alcock, B. P.; Raphenya, A. R.; Lau, T. T. Y.; Tsang, K. K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A. V.; Cheng, A. A.; Liu, S.; Min, S. Y.; Miroshnichenko, A.; Tran, H. K.; Werfalli, R. E.; Nasir, J. A.; Oloni, M.; Speicher, D. J.; Florescu, A.; Singh, B.; Faltyn, M.; Hernandez-Koutoucheva, A.; Sharma, A. N.; Bordeleau, E.; Pawlowski, A. C.; Zubyk, H. L.; Dooley, D.; Griffiths, E.; Maguire, F.; Winsor, G. L.; Beiko, R. G.; Brinkman, F. S. L.; Hsiao, W. W. L.; Domselaar, G. V.; McArthur, A. G., CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48 (D1), D517-d525.
143. Wongsaroj, L.; Chanabun, R.; Tunsakul, N.; Prombutara, P.; Panha, S.; Somboonna, N., First reported quantitative microbiota in different livestock manures used as organic fertilizers in the Northeast of Thailand. Sci. Rep. 2021, 11 (1), 15.
144. Aasmäe, B.; Häkkinen, L.; Kaart, T.; Kalmus, P., Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015. Acta Vet. Scand. 2019, 61, 8.
145. Lim, S. K.; Kim, D.; Moon, D. C.; Cho, Y.; Rho, M., Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. GigaScience 2020, 9 (5), 11.
146. Wang, Q. D.; Mao, C. Z.; Lei, L.; Yan, B.; Yuan, J.; Guo, Y. Y.; Li, T. L.; Xiong, X.; Cao, X. Y.; Huang, J.; Han, J.; Yu, K.; Zhou, B. S., Antibiotic resistance genes and their links with bacteria and environmental factors in three predominant freshwater aquaculture modes. Ecotoxicol. Environ. Saf. 2022, 241, 12.
147. Yuan, X. X.; Zhang, Y.; Sun, C. X.; Wang, W. B.; Wu, Y. J.; Fan, L. X.; Liu, B., Profile of Bacterial Community and Antibiotic Resistance Genes in Typical Vegetable Greenhouse Soil. Int. J. Env. Res. Public Health 2022, 19 (13), 15.
148. McKinney, C. W.; Loftin, K. A.; Meyer, M. T.; Davis, J. G.; Pruden, A., tet and sul Antibiotic Resistance Genes in Livestock Lagoons of Various Operation Type, Configuration, and Antibiotic Occurrence. Environ. Sci. Technol. 2010, 44 (16), 6102-6109.
149. Accinelli, C.; Koskinen, W. C.; Becker, J. M.; Sadowsky, M. J., Environmental Fate of Two Sulfonamide Antimicrobial Agents in Soil. J. Agric. Food. Chem. 2007, 55 (7), 2677-2682.
150. Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z., Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10.
151. Subbiah, M.; Top, E. M.; Shah, D. H.; Call, D. R., Selection Pressure Required for Long-Term Persistence of bla(CMY-2)-Positive IncA/C Plasmids. Appl. Environ. Microbiol. 2011, 77 (13), 4486-4493.
152. Berglund, B., Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infection Ecology & Epidemiology 2015, 5 (1), 28564.
153. Huyan, J. Q.; Tian, Z.; Zhang, Y.; Zhang, H.; Shi, Y. H.; Gillings, M. R.; Yang, M., Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environ. Int. 2020, 140, 9.
154. Koczura, R.; Mokracka, J.; Taraszewska, A.; Lopacinska, N., Abundance of Class 1 Integron-Integrase and Sulfonamide Resistance Genes in River Water and Sediment Is Affected by Anthropogenic Pressure and Environmental Factors. Microb. Ecol. 2016, 72 (4), 909-916.
155. Jamieson, R.; Gordon, R.; Sharples, K.; Stratton, G.; Madani, A., Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can. Biosyst. Eng. 2002, 44 (1), 1-9.
156. Reddy, K. R.; Khaleel, R.; Overcash, M. R., Behavior and Transport of Microbial Pathogens and Indicator Organisms in Soils Treated with Organic Wastes. J. Environ. Qual. 1981, 10 (3), 255-266.
157. Wang, Y. Q.; Lu, S. Y.; Liu, X. H.; Chen, J.; Han, M. Z.; Wang, Z.; Guo, W., Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. Ecotoxicol. Environ. Saf. 2021, 221, 10.
158. Li, Y.; Wang, X. J.; Li, J.; Wang, Y.; Song, J. K.; Xia, S. Q.; Jing, H. P.; Zhao, J. F., Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil. Chem. Eng. J. 2019, 375, 10.
159. Capkin, E.; Terzi, E.; Altinok, I., Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis. Aquat. Org. 2015, 114 (2), 127-137.
160. Krumperman, P. H., Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46 (1), 165-170.
161. Al-Dulaimi, M. M. K.; Abd Mutalib, S.; Abd Ghani, M.; Zaini, N. A. M.; Ariffin, A. A., Multiple Antibiotic Resistance (MAR), Plasmid Profiles, and DNA Polymorphisms among Vibrio vulnificus Isolates. Antibiotics-Basel 2019, 8 (2), 13.
162. Ayandele, A.; Oladipo, E.; Oyebisi, O.; Kaka, M., Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. Qatar medical journal 2020, 2020 (1), 9.
163. Davis, R.; Brown, P. D., Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J. Med. Microbiol. 2016, 65, 261-271.
164. Port, J. A.; Cullen, A. C.; Wallace, J. C.; Smith, M. N.; Faustman, E. M., Metagenomic Frameworks for Monitoring Antibiotic Resistance in Aquatic Environments. Environ. Health Perspect. 2014, 122 (3), 222-228.
165. Chen, C. Q.; Pankow, C. A.; Oh, M.; Heath, L. S.; Zhang, L. Q.; Du, P.; Xia, K.; Pruden, A., Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. Environ. Int. 2019, 128, 233-243.
166. Oh, M.; Pruden, A.; Chen, C. Q.; Heath, L. S.; Xia, K.; Zhang, L. Q., MetaCompare: a computational pipeline for prioritizing environmental resistome risk. FEMS Microbiol. Ecol. 2018, 94 (7), 9.
167. Jin, L.; Pruden, A.; Boehm, A. B.; Alvarez, P. J. J.; Raskin, L.; Kohn, T.; Li, X., Integrating Environmental Dimensions of “One Health” to Combat Antimicrobial Resistance: Essential Research Needs. Environ. Sci. Technol. 2022.
168. Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L.; Vandesompele, J.; Wittwer, C. T., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55 (4), 611-622.
169. Kralik, P.; Ricchi, M., A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 9.
170. 尹開民; 顏榮華; 李以彬, qPCR 偵測極限之製作方式. 環境分析評論 2012, 6, 125-134.
171. Klymus, K. E.; Merkes, C. M.; Allison, M. J.; Goldberg, C. S.; Helbing, C. C.; Hunter, M. E.; Jackson, C. A.; Lance, R. F.; Mangan, A. M.; Monroe, E. M., Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 2020, 2 (3), 271-282.
172. Zhang, Y. J.; Hu, H. W.; Gou, M.; Wang, J. T.; Chen, D. L.; He, J. Z., Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231, 1621-1632.
173. Song, M. K.; Peng, K.; Jiang, L. F.; Zhang, D. Y.; Song, D. D.; Chen, G. E.; Xu, H. J.; Li, Y. T.; Luo, C. L., Alleviated Antibiotic-Resistant Genes in the Rhizosphere of Agricultural Soils with Low Antibiotic Concentration. J. Agric. Food. Chem. 2020, 68 (8), 2457-2466.
174. Zhang, Y.; Li, A. L.; Dai, T. J.; Li, F. F.; Xie, H.; Chen, L. J.; Wen, D. H., Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. Environ. Sci. Technol. 2018, 52 (1), 248-257.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2023-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明